三角函数典型例题剖析与规律总结
- 格式:doc
- 大小:404.50 KB
- 文档页数:9
三角函数图像与性质经典题型题型1:三角函数的图象例1.(2000全国,5)函数y =-xc os x 的部分图象是( )解析:因为函数y =-xc os x 是奇函数,它的图象关于原点对称,所以排除A 、C ,当x ∈(0,2π)时,y =-xc os x <0。
题型2:三角函数图象的变换例2.试述如何由y =31sin (2x +3π)的图象得到y =sin x 的图象。
解析:y =31sin (2x +3π))(纵坐标不变倍横坐标扩大为原来的3πsin 312+=−−−−−−−−−→−x y x y sin 313π=−−−−−−−−→−纵坐标不变个单位图象向右平移 x y sin 3=−−−−−−−−−→−横坐标不变倍纵坐标扩大到原来的例3.(2003上海春,15)把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( )A .(1-y )sin x +2y -3=0B .(y -1)sin x +2y -3=0C .(y +1)sin x +2y +1=0D .-(y +1)sin x +2y +1=0解析:将原方程整理为:y =x cos 21+,因为要将原曲线向右、向下分别移动2π个单位和1个单位,因此可得y =)2cos(21π-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.题型3:三角函数图象的应用例4.(2003上海春,18)已知函数f (x )=A sin (ωx +ϕ)(A >0,ω>0,x ∈R )在一个周期内的图象如图所示,求直线y =3与函数f (x )图象的所有交点的坐标。
解析:根据图象得A =2,T =27π-(-2π)=4π,∴ω=21,∴y =2sin (2x +ϕ),又由图象可得相位移为-2π,∴-21ϕ=-2π,∴ϕ=4π.即y =2sin (21x +4π)。
三角函数专题(知识归纳/记忆技巧/典型真题题剖析)一、三角函数的概念(1) 角的概念:终边相同角的集合:所有与α终边相同的角,连同α在内,可构成集合{}0|360,k k Z ββα=⋅+∈或{}|2,k k Z ββπα=+∈(2) 象限角:第一象限角的集合|22,2x k x k k Z πππ⎧⎫<<+∈⎨⎬⎩⎭第二象限角的集合|22,2x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭第三象限角的集合|22,2x k x k k Z ππππ⎧⎫-<<-∈⎨⎬⎩⎭第四象限角的集合|22,2x k x k k Z πππ⎧⎫-<<∈⎨⎬⎩⎭(3) 轴线角:终边在x 轴上角的集合{}|,k k Z ααπ=∈,终边在y 轴上角的集合|,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭,终边在坐标轴上角的集合|,2k k Z παα⎧⎫=∈⎨⎬⎩⎭(4) 角度、弧度的换算关系:(1)3602rad π=,1180rad π=,1801rad π⎛⎫= ⎪⎝⎭(2)扇形的弧长、面积公式:设扇形的弧长为l ,圆心角为()rad α,半径为r ,则l r α=⋅,扇形的面积21122S lr r α==⋅3、三角函数定义: 若(),P x y 是角θ终边上任意异于O 的一点,O 为坐标原点,OP r =,则sin ,cos ,tan ,cot y x y x r r x yθθθθ==== 4、三角函数在各象限的符号规律:口诀“一全正, 二正弦,三正切,四余弦.sin α cos α tan α(cot α)二、同角三角函数的基本关系与诱导公式1、同角三角函数的基本关系式(1)倒数关系:tan cot 1αα⋅=(2)商的关系:sin cos tan ,cot .cos sin αααααα== (3)平方关系:22sin 1cos αα+=2、诱导公式x函数 sin x cos xtan x cot x α-sin α-cos αtan α-cot α-+ + ——+ + + + ————2πα±cos αsin α cot αtan απα±sin αcos α-tan α±cot α±32πα± cos α-sin α±cot α tan α2πα±sin α±cos αtan α cot α±注意:(1)诱导公式可概括为2k πα⋅±的各三角函数值的化简公式。
第12讲 三角函数高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。
因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。
以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。
一、知识整合1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数sin()y A x ωϕ=+的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.二、高考考点分析2004年各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。
主要考察内容按综合难度分,我认为有以下几个层次:第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。
如判断符号、求值、求周期、判断奇偶性等。
第二层次:三角函数公式变形中的某些常用技巧的运用。
如辅助角公式、平方公式逆用、切弦互化等。
第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。
如分段函数值,求复合函数值域等。
三、方法技巧1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
初中三角函数知识点总结及典型习题含答案)初三下学期锐角三角函数知识点总结及典型题1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2.2.在直角三角形ABC中,若∠C为直角,则∠A的三角函数为:正弦函数sinA=对边a/斜边c,取值范围为[0,1]。
余弦函数cosA=邻边b/斜边c,取值范围为[0,1]。
正切函数tanA=对边a/邻边b,取值范围为R(实数集)。
3.任意锐角的正弦值等于其余角的余弦值,余弦值等于其余角的正弦值,即sinA=cosB,cosA=sinB,其中A+B=90°。
4.特殊角的三角函数值:30°:sin30°=1/2,cos30°=√3/2,tan30°=1/√3.45°:sin45°=cos45°=√2/2,tan45°=1.60°:sin60°=√3/2,cos60°=1/2,tan60°=√3.6.正弦、余弦的增减性:当0°≤A≤90°时,XXX随A的增大而增大,cosA随A的增大而减小。
7.正切的增减性:当0°<A<90°时,XXX随A的增大而增大。
8.解直角三角形的方法:已知边和角(其中必有一边)→求所有未知的边和角。
依据:①边的关系:a^2+b^2=c^2;②角的关系:A+B=90°;③三角函数的定义。
9.应用举例:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
坡度:坡面的铅直高度h和水平宽度l的比,用i=h/l表示。
方位角:从某点的指北方向按顺时针转到目标方向的水平角。
方向角:指北或指南方向线与目标方向线所成的小于90°的水平角。
例1:在直角三角形ABC中,已知∠C=90°,sinA=3/5,求XXX的值。
三角函数典型例题剖析与规律总结一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。
分析:要求1sin 2+=y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足21sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。
解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期⎥⎦⎤⎢⎣⎡-23,2ππ上符合①的角为⎥⎦⎤⎢⎣⎡-67,6ππ,由此可得到函数的定义域为⎥⎦⎤⎢⎣⎡+-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。
(2)若函数是分式函数,则分母不能为零。
(3)若函数是偶函数,则被开方式不能为负。
(4)若函数是形如()()1,0log ≠>=a a x f y a的函数,则其定义域由()x f 确定。
(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。
二.函数值域及最大值,最小值 (1)求函数的值域 例。
求下列函数的值域(1)x y 2sin 23-= (2)2sin 2cos 2-+=x y x分析:利用1cos ≤x 与1sin ≤x 进行求解。
解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2)()[].0,4,1sin 11sin 1sin 2sin 2sin 2222cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。
(2)函数的最大值与最小值。
例。
求下列函数的最大值与最小值 (1)x y sin 211-= (2)⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫ ⎝⎛+=6662sin 2πππx x y(3)4sin 5cos 22-+=x x y (4)⎥⎦⎤⎢⎣⎡∈+-=32,31cos 4cos 32ππx x x y分析:(1)(2)可利用sinx,cosx 的值域求解求解过程要注意自变量的去值范围(3)(4)可利用二次函数c bx ax x f ++=2)(在闭区间[]n m ,上求最值得方法。
三角函数例题和知识点总结三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。
下面我们将通过一些例题来加深对三角函数知识点的理解,并对相关知识点进行总结。
一、三角函数的基本概念1、角的概念角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
按旋转方向不同,角可分为正角、负角和零角。
2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。
用弧度作为单位来度量角的制度叫做弧度制。
弧度与角度的换算关系为:180°=π 弧度。
3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它到原点的距离为 r(r =√(x²+ y²)),则角α的正弦、余弦、正切分别为:sinα = y/r ,cosα = x/r ,tanα = y/x (x ≠ 0)二、三角函数的图像和性质1、正弦函数 y = sin x图像:正弦函数的图像是一个周期为2π,振幅为 1 的波浪线。
性质:定义域为 R,值域为-1, 1,是奇函数,在π/2 +2kπ, π/2 +2kπ (k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ (k∈Z)上单调递减。
2、余弦函数 y = cos x图像:余弦函数的图像是一个周期为2π,振幅为 1 的波浪线。
性质:定义域为 R,值域为-1, 1,是偶函数,在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ (k∈Z)上单调递减。
3、正切函数 y = tan x图像:正切函数的图像是由无数个周期为π的分支组成,其定义域为{ x |x ≠ π/2 +kπ, k∈Z }。
性质:值域为 R,是奇函数,在(π/2 +kπ, π/2 +kπ )(k∈Z)上单调递增。
三、三角函数的诱导公式1、同角三角函数的基本关系sin²α +cos²α = 1 ,tanα =sinα /cosα2、诱导公式sin( α )=sinα ,cos( α )=cosα ,tan( α )=tanαsin( π α )=sinα ,cos( π α )=cosα ,tan( π α )=tanαsin( π +α )=sinα ,cos( π +α )=cosα ,tan( π +α )=tanαsin( 2π α )=sinα ,cos( 2π α )=cosα ,tan( 2π α )=tanα四、三角函数的和差公式1、两角和与差的正弦公式sin(α +β) =sinαcosβ +cosαsinβsin(α β) =sinαcosβ cosαsinβ2、两角和与差的余弦公式cos(α +β) =cosαcosβ sinαsinβcos(α β) =cosαcosβ +sinαsinβ3、两角和与差的正切公式tan(α +β) =(tanα +tanβ) /(1 tanαtanβ)tan(α β) =(tanα tanβ) /(1 +tanαtanβ)五、例题解析例 1:已知sinα = 3/5,且α为第二象限角,求cosα 和tanα 的值。
目录1、0°~360°间的三角函数.典型例题分析 (2)2、弧度制.典型例题分析 (2)3、任意角的三角函数.典型例题分析一 (3)4、任意角的三角函数.典型例题精析二 (5)5、同角三角函数的基本关系式.典型例题分析 (12)6、诱导公式.典型例题分析 (17)7、用单位圆中的线段表示三角函数值.典型例题分析 (18)8、三角公式总表 (19)9、正弦函数、余弦函数的图象和性质.典型例题分析 (22)10、函数y=Asin(wx+j)的图象.典型例题分析 (27)11、正切函数、余切函数的图象和性质.典型例题分析 (29)12、已知三角函数值求角.典型例题分析 (30)全章小结 (31)高考真题选讲 (31)1、0°~360°间的三角函数·典型例题分析例1已知角α的终边经过点P(3a,-4a)(a<0,0°≤α≤360°),求解α的四个三角函数.解如图2-2:∵x=3a,y=-4a,a<0例2求315°的四个三角函数.解如图2-3,在315°角的终边上取一点P(x,y)设OP=r,作PM垂直于x轴,垂足是M,可见∠POM=45°注:对于确定的角α,三角函数值的大小与P点在角α的终边上的位置无关,如在315°的角的终边上取点Q(1,-1),计算出的结果是一样的.2、弧度制·典型例题分析角度与弧度的换算要熟练掌握,见下表.例2将下列各角化成2kπ+α(k∈Z,0≤α<2π)的形式,并确定其所在的象限。
∴它是第二象限的角.注意:用弧度制表示终边相同角2kπ+α(k∈Z)时,是π的偶数倍,而不是π的整数倍.A.第一象限 B.第二象限C.第三象限 D.第四象限∴sinα>0,tgα<0 因此点P(sinα,tgα)在第四象限,故选D.解∵M集合是表示终边在第一、二、三、四象限的角平分线上的角的集合.N集合是表示终边在坐标轴(四个位置)上和在第一、二、三、四象限的角平分线上的角的集合.3、任意角的三角函数·典型例题分析一例1已知角α的终边上一点P(-15α,8α)(α∈R,且α≠0),求α的各三角函数值.分析根据三角函数定义来解A.1 B.0C.2 D.-2例3若sin2α>0,且cosα<0,试确定α所在的象限.分析用不等式表示出α,进而求解.解∵sin2α>0,∴2α在第一或第二象限,即2kπ<2α<2kπ+π,k∈Z)当k为偶数时,设k=2m(m∈Z),有当k为奇数时,设k=2m+1(m∈Z)有∴α为第一或第三象限的角,又由cosα<0可知α在第二或第四象限.综上所述,α在第三象限.义域为{x|x∈R且x≠kπ,k∈Z},∴函数y=tgx+ctgx的定义域是说明本例进一步巩固终边落在坐标轴上角的集合及各三角函数值在每一象限的符号,三角函数的定义域.例5计算(1)a2sin(-1350°)+b2tg405°-(a-b)2ctg765°-2abcos(-1080°)分析利用公式1,将任意角的三角函数化为0~2π间(或0°~360°间)的三角函数,进而求值.解(1)原式=a2sin(-4×360°+90°)+b2tg(360°+45°)-(a-b)2ctg(2×360°+45°)-2abcos(-3×360°)=a2sin90°+b2tg45°-(a-b)2ctg45°-2abcos0°=a2+b2-(a-b)2-2ab=04、任意角的三角函数·典型例题精析二例1下列说法中,正确的是 [ ]A.第一象限的角是锐角B.锐角是第一象限的角C.小于90°的角是锐角D.0°到90°的角是第一象限的角【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键.【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B).(90°-α)分别是第几象限角?【分析】由sinα·cosα<0,所以α在二、四象限;由sinα·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的【解】(1)由题设可知α是第二象限的角,即90°+k·360°<α<180°+k·360°(k∈Z),的角.(2)因为180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角.(3)解法一:因为90°+k·360°<α<180°+k·360°(k∈Z),所以-180°-k·360°<-α<-90°-k·360°(k∈Z).故-90°-k·360°<90°-α<-k·360°(k∈Z).因此90°-α是第四象限的角.解法二:因为角α的终边在第二象限,所以-α的终边在第三象限.将-α的终边按逆时针旋转90°,可知90°-α的终边在第四象限内.【说明】①在确定形如α+k·180°角的象限时,一般要分k为偶数或奇数讨论;②确定象限时,α+kπ与α-kπ是等效的.例3已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F是区间[ ]【分析】解答本题必须熟练掌握各个象限三角函数的符号、各个象限的三角函数值随角的变化而递增或递减的变化情况.可由三角函数的性质判断,也可由三角函数线判断.用代入特殊值排除错误答案的方法解答本题也比较容易.【解法一】由正、余弦函数的性质,【解法二】由单位圆中的正弦线和正切线容易看出,对于二、四象限的角,AT<MP,即tanα<sinθ,由正弦线和余弦线可看出,当应选(A).可排除(C),(D),得(A).【说明】本题解法很多,用三角函数线还可以有以下解法:因为第一、三象限均有AT>MP,即tanθ>sinθ,所以(B),(C),(D)均不成立.用排除法也有些别的方法,可自己练习.例 4 (1)已知角α终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值;【分析】利用三角函数的定义进行三角式的求值、化简和证明,是三两个象限,因此必须分两种情况讨论.【解】(1)因为x=3k,y=-4k,例5一个扇形的周长为l,求扇形的半径、圆心角各取何值时,此扇形的面积最大.【分析】解答本题,需灵活运用弧度制下的求弧长和求面积公式.本题是求扇形面积的最大值,因此应想法写出面积S以半径r为自变量的函数表达式,再用配方法求出半径r和已知周长l的关系.【解】设扇形面积为S,半径为r,圆心角为α,则扇形弧长为l-2r.所以【说明】在学习弧度制以后,用弧度制表示的求弧长与扇形面积公形的问题中,中心角用弧度表示较方便.本例实际上推导出一个重要公式,即当扇形周长为定值时,怎样选取中心角可使面积得到最大值.本题也可将面积表示为α的函数式,用判别式来解.【分析】第(1)小题因α在第二象限,因此只有一组解;第(2)小题给了正弦函数值,但没有确定角α的象限,因此有两组解;第(3)小题角α可能在四个象限或是轴线角,因此需分两种情况讨论.【解】(3)因为sinα=m(|m|<1),所以α可能在四个象限或α的终边在x轴上.例7(1)已知tanα=m,求sinα的值;【分析】(1)已知tanα的值求sinα或cosα,一般可将tanα母都是sinα和cosα的同次式,再转化为关于tanα的式子求值,转化的方法是将分子、分母同除以cosα(或cos2α,这里cosα≠0),即可根据已知条件求值.【说明】由tanα的值求sinα和cosα的值,有一些书上利用公很容易推出,所以不用专门推导和记忆这些公式,这类问题由现有的关系式和方法均可解决.函数的定义来证明.由左边=右边,所以原式成立.【证法三】(根据三角函数定义)设P(x,y)是角α终边上的任意一点,则左边=左边,故等式成立.例9化简或求值:【分析】解本题的关键是熟练地应用正、余弦的诱导公式和记住特殊角的三角函数值.=-sinα-cosα(因为α为第三象限角).例10 (1)若 f(cos x)=cos9x,求f(sin x)的表达式;【分析】在(1)中理解函数符号的含义,并将f(sin x)化成f(cos(90°-x))是充分利用已知条件和诱导公式的关键.在(2)中必须正确掌握分段函数求值的方法.【解】(1)f(sin x)=f(cos(90°-x))=cos9(90°-x)=cos(2×360°+90°-9x)=cos(90°-9x)=sin9x;=1.5、同角三角函数的基本关系式·典型例题分析1)已知某角的一个三角函数值,求该角的其他三角函数值.解∵sinα<0∴角α在第三或第四象限(不可能在y轴的负半轴上)(2)若α在第四象限,则说明在解决此类问题时,要注意:(1)尽可能地确定α所在的象限,以便确定三角函数值的符号.(2)尽可能地避免使用平方关系(在一般情况下只要使用一次).(3)必要时进行讨论.例2 已知sinα=m(|m|≤1),求tgα的值.(2)当m=±1时,α的终边在y轴上,tgα无意义.(3)当α在Ⅰ、Ⅳ象限时,∵cosα>0.当α在第Ⅱ、Ⅲ象限时,∵cosα<0,说明 (1)在对角的范围进行讨论时,不可遗漏终边在坐标轴上的情况.(2)本题在进行讨论时,为什么以cosα的符号作为分类的标准,而不按sinα的符号(即m的符号)来分类讨论呢?你能找到这里的原因并概括出所用的技巧吗?2)三角函数式的化简三角函数式的化简的结果应满足下述要求:(1)函数种类尽可能地少.(2)次数尽可能地低.(3)项数尽可能地少.(4)尽可能地不含分母.(5)尽可能地将根号中的因式移到根号外面来.化简的总思路是:尽可能地化为同类函数再化简.例3 化简sin2α·tgα+cos2α·ctgα+2sinαcosα=secα·cscα解2 原式=(sin2α·tgα+sinα·cosα)+(cos2α·ctgα+sinαcosα)=tgα·(sin2α+cos2α)+ctgα(sin2α+cos2α)=tgα+ctgα=secα·cscα说明 (1)在解1中,将正切、余切化为正弦、余弦再化简,仍然是循着减少函数种类的思路进行的.(2)解2中的逆用公式将sinα·cosα用tgα表示,较为灵活,解1与解2相比,思路更自然,因而更实用.例4 化简:分析将被开方式配成完全平方式,脱去根号,进行化简.3)三角恒等式的证明证明三角恒等式的过程,实际上是化异为同的过程,即化去形式上的异,而呈现实质上的同,这个过程,往往是从化简开始的——这就是说,在证明三角恒等式时,我们可以从最复杂处开始.例5 求证 cosα(2secα+tgα)(secα-2tgα)=2cosα-3tgα.分析从复杂的左边开始证得右边.=2cosα-3tgα=右边例6 证明恒等式(1)1+3sin2αsec4α+tg6α=sec6α(2)(sinA+ secA)3+(cosA+cscA)2=(1+secAcscA)2分析 (1)的左、右两边均较复杂,所以可以从左、右两边同时化简证明 (1)右边-左边=sec6α-tg6α-3sin2αsec4α-1=(sec2α-tg2α)(sec4α+sec2α·tg2α+tg2α)-3sin2αsec4α-1=(sec4α-2sec2αtg2α+tg2α)-1=(sec2α-tg2α)2-1=0∴等式成立.=sin2A+cos2A=1故原式成立在解题时,要全面地理解“繁”与“简”的关系.实际上,将不同的角化为同角,以减少角的数目,将不同的函数名称,化为同名函数,以减少函数的种类,都是化繁为简,以上两点在三角变换中有着广泛的应用.分析1 从右端向左端变形,将“切”化为“弦”,以减少函数的种类.分析2 由1+2sinxcosx立即想到(sinx+cosx)2,进而可以约分,达到化简的目的.说明 (1)当题目中涉及多种名称的函数时,常常将切、割化为弦(如解法1),或将弦化为切(如解法2)以减少函数的种类.(2)要熟悉公式的各种变形,以便迅速地找到解题的突破口,请看下列.=secα+tgα∴等式成立说明以上证明中采用了“1的代换”的技巧,即将1用sec2α-tg2α代换,可是解题者怎么会想到这种代换的呢?很可能,解题者在采用这种代换时,已经预见到代换后,分子可以因式分解,可以约分,而所有这一切都是建立在熟悉公式的各种变形的基础上的,当然,对不熟练的解题者而言,还有如下的“一般证法”——即证明“左边-右边=0”∴左边=右边6、诱导公式·典型例题分析例1 求下列三角函数值:解 (1)sin(-1200°)=-sin1200°=-sin(3×360°+120°)=-sin120°=-sin(180°-60°)(2)tg945°=tg(2×360°+225°)=tg225°=tg(108°+45°)=tg45°=1例4 求证(1)sin(nπ+α)=(-1)n sinα;(n∈Z)(2)cos(nπ+α)=(-1)n cosα.证明:1°当n为奇数时,设n=2k-1(k∈Z)则(1)sin(nπ+α)=sin[(2k-1)π+α]=sin(-π+α)=-sinα=(-1)n sinα (∵(-1)n=-1)(2)cos(nπ+α)=cos[(2k-1)π+α]=cos(-π+α)=-cosα=(-1)n cosα2°当n为偶数时,设n=2k(k∈Z),则(1)sin(nπ+α)=sin(2kπ+α)=sinα=(-1)n sinα(∵(-1)n=1)(2)cos(nπ+α)=cos(2kπ+α)=cosα=(-1)n cosα由1°,2°,本题得证.例5 设A、B、C是一个三角形的三个内角,则在①sin(A+B)-sinC ② cos(A+B)+cosC③tg(A+B)+tgC ④ctg(A+B)-ctgCA.1个 B.2个C.3个 D.4个解由已知,A+B+C=π,∴A+B=π-C,故有①sin(A+B)-sinC=sin(π-C)-sinC=sinC-sinC=0为常数.②cos(A+B)+cosC=cos(π-C)+cosC=-cosC+cosC=0为常数.③ tg(A+B)+tgC=tg(π-C)+tgC=-tgC+tgC=0为常数.④ctg(A+B)-ctgC=ctg(π-C)-ctgC=-ctgC-ctgC=-2ctgC不是常数.从而选(C).7、用单位圆中的线段表示三角函数值·典型例题分析例1 利用三角函数线,求满足下列条件的角或角的范围.P′,则(2)如图2-11,过点(1,-1)和原点作直线交单位圆于点p和p′,则∴满足条件的所有角是8、三角公式总表1、L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π 2、正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 3、余弦定理:a 2=b2+c2-2bc A cos b2=a2+c2-2ac B cos c2=a2+b2-2ab C cosbca cb A 2cos 222-+=4、S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径) 5、同角关系: ⑴ 商的关系:①θtg =x y =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵ 倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg⑶ 平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,且abtg =ϕ)6、函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω)振幅A ,周期T=ωπ2, 频率f=T1,相位ϕω+⋅x ,初相ϕ7、五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限 9、和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =±③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg 10、二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +==②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=11、三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg 12、半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±=④2cos 12cos2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=± ⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg13、积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin14、和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- ⒗最简单的三角方程方程方程的解集a x =sin1=a {}Z k a k x x ∈+=,arcsin 2|π1<a (){}Z k a k x x k ∈-+=,arcsin 1|π a x =cos1=a {}Z k a k x x ∈+=,arccos 2|π1<a{}Z k a k x x ∈±=,arccos 2|π a tgx ={}Z k arctga k x x ∈+=,|π a ctgx ={}Z k arcctga k x x ∈+=,|π、正弦函数、余弦函数的图象和性质·典型例题分析例1 用五点法作下列函数的图象 (1)y=2-sinx ,x ∈[0,2π]解 (1)(图2-14)名称 函数式 定义域 值域性质反正弦函数 x y arcsin = []1,1-增 ⎥⎦⎤⎢⎣⎡-2,2ππ -arcsinx arcsin(-x)= 奇 反余弦函数 x y arccos = []1,1-减[]π,0x x arccos )arccos(-=-π 反正切函数 arctgx y = R 增 ⎪⎭⎫ ⎝⎛-2,2ππ arctgx - arctg(-x)= 奇反余切函数arcctgx y = R 减()π,0arcctgx x arcctg -=-π)((2)(图2-15)描点法作图:例2 求下列函数的定义域和值域.解 (1)要使lgsinx有意义,必须且只须sinx>0,解之,得 2kπ<x<(2k+1)π,k∈Z.又∵0<sinx≤1,∴-∞<lgsinx≤0.∴定义域为(2kπ,(2k+1)π)(k∈Z),值域为(-∞,0].的取值范围,进而再利用三角函数线或函数图象,求出x的取值范围。
高中数学三角函数解题实例及解题思路详解与举例分析和讲解三角函数是高中数学中一个重要的章节,也是学生们经常遇到的难点之一。
在解题过程中,掌握一些解题技巧和思路是非常重要的。
本文将通过具体的题目举例,详细解析三角函数解题的思路和方法,并给出一些解题技巧,帮助高中学生和他们的父母更好地理解和掌握三角函数的应用。
一、正弦函数的解题实例1. 题目:已知一角的正弦值为0.6,求该角的余弦值。
解析:根据正弦函数的定义sinθ = 对边/斜边,已知sinθ = 0.6,我们可以设对边为3,斜边为5。
根据勾股定理,可以求得邻边为4。
然后,根据余弦函数的定义cosθ = 邻边/斜边,代入已知的值,得到cosθ = 4/5。
2. 题目:已知一角的正弦值为0.8,求该角的余切值。
解析:根据正弦函数的定义sinθ = 对边/斜边,已知sinθ = 0.8,我们可以设对边为8,斜边为10。
根据勾股定理,可以求得邻边为6。
然后,根据余切函数的定义tanθ = 对边/邻边,代入已知的值,得到tanθ = 8/6 = 4/3。
二、余弦函数的解题实例1. 题目:已知一角的余弦值为0.5,求该角的正弦值。
解析:根据余弦函数的定义cosθ = 邻边/斜边,已知cosθ = 0.5,我们可以设邻边为1,斜边为2。
根据勾股定理,可以求得对边为√3。
然后,根据正弦函数的定义sinθ = 对边/斜边,代入已知的值,得到sinθ = √3/2。
2. 题目:已知一角的余弦值为0.6,求该角的正切值。
解析:根据余弦函数的定义cosθ = 邻边/斜边,已知cosθ = 0.6,我们可以设邻边为6,斜边为10。
根据勾股定理,可以求得对边为8。
然后,根据正切函数的定义tanθ = 对边/邻边,代入已知的值,得到tanθ = 8/6 = 4/3。
三、正切函数的解题实例1. 题目:已知一角的正切值为1.5,求该角的余弦值。
解析:根据正切函数的定义tanθ = 对边/邻边,已知tanθ = 1.5,我们可以设对边为3,邻边为2。
三角函数例题和知识点总结一、三角函数的基本概念在数学中,三角函数是一类重要的函数,它们描述了三角形中边与角之间的关系。
首先,我们来了解一下角度的度量。
角度可以用度(°)或弧度来表示。
一个完整的圆周对应的角度是 360°,而用弧度表示则是2π 弧度。
接下来,我们认识一下常见的三角函数:正弦函数(sin)、余弦函数(cos)、正切函数(tan)。
正弦函数sinθ 表示在直角三角形中,对边与斜边的比值;余弦函数cosθ 表示邻边与斜边的比值;正切函数tanθ 则是对边与邻边的比值。
二、三角函数的基本公式1、同角三角函数的基本关系sin²θ +cos²θ = 1tanθ =sinθ /cosθ2、诱导公式例如:sin(π θ) =sinθ ,cos(π θ) =cosθ 等三、三角函数的图像和性质1、正弦函数 y = sin x 的图像是一个周期为2π 的波形,其值域为-1, 1,在 x =π/2 +2kπ (k 为整数)时取得最大值 1,在 x =3π/2 +2kπ (k 为整数)时取得最小值-1。
2、余弦函数 y = cos x 的图像也是一个周期为2π 的波形,值域同样为-1, 1,在 x =2kπ (k 为整数)时取得最大值 1,在 x =π +2kπ (k 为整数)时取得最小值-1。
3、正切函数 y = tan x 的图像其周期为π,定义域为x ≠ π/2 +kπ (k 为整数),值域为 R 。
四、三角函数的例题例 1:已知sinθ = 08,且θ 在第一象限,求cosθ 和tanθ 的值。
因为sin²θ +cos²θ = 1,所以cosθ =√(1 sin²θ) =√(1 08²) =06 。
tanθ =sinθ /cosθ = 08 / 06 = 4 / 3 。
例 2:求函数 y = 2sin(2x +π/3) 的周期和振幅。
三角函数典型例题剖析与规律总结一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。
分析:要求1sin 2+=y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足21sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。
解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期⎥⎦⎤⎢⎣⎡-23,2ππ上符合①的角为⎥⎦⎤⎢⎣⎡-67,6ππ,由此可得到函数的定义域为⎥⎦⎤⎢⎣⎡+-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。
(2)若函数是分式函数,则分母不能为零。
(3)若函数是偶函数,则被开方式不能为负。
(4)若函数是形如()()1,0log ≠>=a a x f y a的函数,则其定义域由()x f 确定。
(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。
二.函数值域及最大值,最小值 (1)求函数的值域 例。
求下列函数的值域(1)x y 2sin 23-= (2)2sin 2cos 2-+=x y x分析:利用1cos ≤x 与1sin ≤x 进行求解。
解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2)()[].0,4,1sin 11sin 1sin 2sin 2sin 2222cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。
(2)函数的最大值与最小值。
例。
求下列函数的最大值与最小值 (1)x y sin 211-= (2)⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫ ⎝⎛+=6662sin 2πππx x y(3)4sin 5cos 22-+=x x y (4)⎥⎦⎤⎢⎣⎡∈+-=32,31cos 4cos 32ππx x x y分析:(1)(2)可利用sinx,cosx 的值域求解求解过程要注意自变量的去值范围(3)(4)可利用二次函数c bx ax x f ++=2)(在闭区间[]n m ,上求最值得方法。
三角函数典型例题剖析与规律总结一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。
分析:要求1sin 2+=y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足21sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。
解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期⎥⎦⎤⎢⎣⎡-23,2ππ上符合①的角为⎥⎦⎤⎢⎣⎡-67,6ππ,由此可得到函数的定义域为⎥⎦⎤⎢⎣⎡+-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。
(2)若函数是分式函数,则分母不能为零。
(3)若函数是偶函数,则被开方式不能为负。
(4)若函数是形如()()1,0log ≠>=a a x f y a的函数,则其定义域由()x f 确定。
(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。
二.函数值域及最大值,最小值 (1)求函数的值域 例。
求下列函数的值域(1)x y 2sin 23-= (2)2sin 2cos 2-+=x y x分析:利用1cos ≤x 与1sin ≤x 进行求解。
解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2)()[].0,4,1sin 11sin 1sin 2sin 2sin 2222cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。
(2)函数的最大值与最小值。
例。
求下列函数的最大值与最小值 (1)x y sin 211-= (2)⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫ ⎝⎛+=6662sin 2πππx x y(3)4sin 5cos 22-+=x x y (4)⎥⎦⎤⎢⎣⎡∈+-=32,31cos 4cos 32ππx x x y分析:(1)(2)可利用sinx,cosx 的值域求解求解过程要注意自变量的去值范围(3)(4)可利用二次函数c bx ax x f ++=2)(在闭区间[]n m ,上求最值得方法。
解:(1)221sin ;261sin 1sin 11sin 10sin 211min max ===-=∴≤≤-∴⎪⎩⎪⎨⎧≤≤-≥-y x y x x x x 时当时,当 (2).11)32cos(5132cos ,1)32cos(1min max =-=+==⎪⎭⎫ ⎝⎛+∴≤+≤-y x y x x 时,;当时,当πππ(3)[]222592cos 5sin 42sin 5sin 22sin ,sin 1,1,48y x x x x x x ⎛⎫=+-=-+-=--+∈- ⎪⎝⎭∴当sin 1x =-,即2(2x k k Z ππ=-+∈)时,y 有最小值9-; 当sin 1x =,即2(2x k k Z ππ=+∈),y 有最大值1。
(4)413,21cos 415y 32,21cos ,21,21cos ,32,3,31)32(cos 31cos 4cos 3min max 22-=====-=⎥⎦⎤⎢⎣⎡-∈⎥⎦⎤⎢⎣⎡∈--=+-=y x x x x x x x x x y 时,即当时,、即从而ππππ 小结:求值域或最大值,最小值的问题,一般的依据是:(1)sinx,cosx 的有界性;(2)tanx 的值可取一切实数;(3)连续函数在闭区间上存在最大值和最小值。
根据上面的原则,常常把给出的函数变成以下几种形式;(1)()sin x ωα+一次形式(2)sin ()x f y =或cos ()x f y =的形式,通过()1f y ≤来确定或其他变形来确定。
三:函数的周期性例 求下列函数的周期()x x f 2cos )(1=())62sin(2)(2π-=x x f分析:该例的两个函数都是复合函数,我们可以通过变量的替换,将它们归结为基本三角函数去处理。
(1) 把x 2看成是一个新的变量u ,那么u cos 的最小正周期是π2,就是说,当π2+u u 增加到且必须增加到π2+u 时,函数u cos 的值重复出现,而),(2222πππ+=+=+x x u 所以当自变量x 增加到π+x 且必须增加到π+x 时,函数值重复出现,因此,x y 2sin =的周期是π。
(2) ⎪⎭⎫ ⎝⎛-=+-62sin 2)262sin(2πππx x 即())62sin(2)()62sin(26421sin 2ππππ-=∴-=⎥⎦⎤⎢⎣⎡-+x x f x x 的周期是π4。
小结:由上面的例题我们看到函数周期的变化仅与自变量x 的系数有关。
一般地,函数)sin(ϕω+=x A y 或)cos(ϕω+=x A y (其中ϕω,,A 为常数,),0,0R x A ∈>≠ω的周期ωπ2=T 。
四.函数的奇偶性例 判断下列函数的奇偶性xxx x f x x x f sin 1cos sin 1)()2)(sin()()1(2+-+=+=π分析:可利用函数奇偶性定义予以判断。
解:(1)函数的定义域R 关于原点对称。
是偶函数。
)()(sin )sin()()(,sin )sin()(x f x f x x x x x f x x x x x f ∴=-=--=--=+=ππ(2函数应满足∴⎭⎬⎫⎩⎨⎧∈+≠∈∴≠+.,2320sin 1Z k k x R x x x ππ,且函数的定义于为函数的定义域不关于原点对称。
∴ 函数既不是奇函数又不是偶函数。
评注:判断函数奇偶性时,必须先检查定义域是否关于原点对称的区间,如果是,再验证)(x f -是否等于)(x f -或)(x f ,进而判断函数的奇偶性,如果不是,则该函数必为非奇非偶函数。
五:函数的单调性 例:下列函数,在⎥⎦⎤⎢⎣⎡ππ,2上是增函数的是( ) x y A sin .= x y B cos = x y C 2sin = x y D 2cos =分析:判断。
在各象限的单调性作出与可根据x x x x cos sin .22,2ππππ≤≤∴≤≤解:sin y x =与cos y x =在2ππ⎡⎤⎢⎥⎣⎦,上都是减函数,∴排除,A B ,2x ππ≤≤,22,x ππ∴≤≤知sin 2y x =在[]2,2x ππ∈内不具有单调性,∴又可排除C ,∴应选D 。
小结:求形如)0,0)(cos()sin(>≠+=+=ωϕωϕωA x A y x A y 其中或的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:式的方向相同(反)。
的单调区间对应的不等与时,所列不等式的方向)视为一个整体;(把“)(cos ),(sin )0(02)"0()1(R x x y R x x y A A x ∈=∈=<>>+ωϕω练习:1. 函数xy sin 1=的定义域为( ) {}[)(]{}0.1,00,1.,..≠-∈≠∈x x D C Z k k x R x B R A π2. 函数)6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的值域是( ) ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎝⎛-1,211,2323,2121,23.DCBA 3. 函数)0)(4sin(>+=ωπωx y 的周期为32π,则ω=------------. 4. 下列函数中是偶函数的是( )1sin sin sin 2sin .+==-==x y Dxy C x y B x y A5. 下列函数中,奇函数的个数为( )(1)x x y sin 2=(2)[]π2,0,sin ∈=x x y (3)[]ππ,,sin -∈=x x y (4)x x y cos =432.1.D C B A6. 在区间⎪⎭⎫⎝⎛2,0π上,下列函数为增函数的是( ) x y Dxy Cxy Bxy A cos sin cos 1sin 1.-=-=-==7. 函数x y 2sin =的单调减区间是( )[]()Z k k k D k k Ck k B k k A ∈⎥⎦⎤⎢⎣⎡+-++⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++4,423,243,4223,22ππππππππππππππππ8. 如果4π≤x ,则函数x x y sin cos 2+=的最小值是——————9. 函数)2434(tan πππ≠≤=x xx y 且的值域为( ) [](][)(][)+∞-∞-+∞-∞--,11,,11,1,1DCBA答案:B B 3 C C D B221B例1已知,且,则可以表示().(A)(B)(C)(D)分析由题意求,不仅要看选择支给出的四个角中哪一个角在区间,还要看哪一个角的正弦值为依据诱导公式,有,,由此排除了B和D.又,故,因此本题应选C.点评反三角函数的记号既然表示一个特定区间上的角,就可以此为基础表示其他指定范围内的角.例2(1)若,则等于().(A)(B)(C)(D)(2)已知,那么的值是().(A)(B)(C)(D)分析(1)方法1因为(注意).(注意由有).于是原式,故选.方法 2 利用,,,又,,,故选(A).(2)本题是的条件下,求两角和的值,只要求出这两个角和的正切值,并确定其取值范围即可.设,,由,有,,,故,并且,,.由此可知,故选.点评本题是利用反三角函数的概念,通过设辅助角,把反三角函数的运算转化为三角函数的问题来解决,这是常用的处理方法,同时,揭示了反三角函数和三角函数的内在联系.例3的值= .分析本题实质上是求角的大小,可以先求它的某种三角函数值,再估计其取值范围而确定.设,则,且又设,则,且,故.∴又由,可得∴,即.例4函数的定义域为,值域为.分析所求函数定义域应该由下列条件确定:解得为,故所求定义域为.又由,则,∴,即所求值域为点评求值域时既要认识给定函数是复合函数,又要注意定义域的制约作用.例5函数的单调递增区间是.分析由,得函数的定义域为由于函数由函数和复合而成,而函数在其定义域内是减函数,故只要求出函数的单调递减区间,为因此,已知函数的递增敬意是点评这里不仅要正确运用复合函数单调性的规律,而且要注意函数的单调区间定是其定义域的子区间.例6满足的的取值范围是;满足的的取值范围是.分析此类题既要用到函数的单调性,还要注意相应式有意义对的限制条件.例7若,则在上满足的的取值范围是().(A)(B)(C)(D)分析这是一道既要运用三角函数的性质,又要运用以反三角函数表示一定范围内的角的题目.如下图,满足已知条件的的取值范围是,其中满足:,故,同样,因此本题应选B.。