数字逻辑第2章布尔代数基础
- 格式:pptx
- 大小:2.57 MB
- 文档页数:75
数字逻辑布尔代数基础知识数字逻辑布尔代数是计算机科学和电子工程中的重要基础知识。
它提供了一种分析和设计数字电路的方法,通过逻辑运算实现了信息处理和控制。
本文将简要介绍数字逻辑布尔代数的基本概念和应用。
一、布尔代数的基本概念1. 真值表和逻辑运算符布尔代数使用真值表来表示逻辑运算的结果。
常见的逻辑运算符包括与(AND)、或(OR)、非(NOT)、异或(XOR)等。
它们的真值表分别表示了不同运算的逻辑规则和输出结果。
2. 逻辑门和逻辑电路逻辑门是数字电路中实现逻辑运算的基本构件,常见的逻辑门包括与门(AND)、或门(OR)、非门(NOT)等。
逻辑电路通过将逻辑门连接起来实现复杂的逻辑功能,如加法器、多路选择器等。
3. 布尔函数和逻辑代数布尔函数是布尔代数中的一个重要概念,它描述了逻辑运算的输入和输出之间的关系。
布尔函数可以使用逻辑表达式或真值表来表示,通过代数运算可以对其进行化简和优化。
二、布尔代数的应用1. 组合逻辑电路组合逻辑电路是一种没有存储元件的数字电路,其输出仅由输入决定。
通过使用布尔代数的方法,可以对组合逻辑电路进行分析和设计,实现各类数字电路功能,如加法器、译码器等。
2. 时序逻辑电路时序逻辑电路是一种带有存储元件的数字电路,其输出不仅由输入决定,还与电路内部的状态有关。
时序逻辑电路常用于计数器、寄存器、时钟等电路的设计。
3. 布尔代数在计算机科学中的应用布尔代数是计算机科学中的基础知识,对于计算机程序的编写和逻辑设计有重要的影响。
在计算机算法中,布尔代数的运算常用于判断条件和逻辑控制。
同时,布尔代数也被广泛应用于计算机网络、数据库系统等领域。
总结:数字逻辑布尔代数是计算机科学和电子工程中的重要基础知识,通过逻辑运算实现了信息处理和控制。
它涉及了布尔代数的基本概念,如真值表、逻辑运算符,以及应用领域,如组合逻辑电路、时序逻辑电路和计算机科学。
熟练掌握数字逻辑布尔代数的知识,对于理解和设计数字电路以及计算机系统都具有重要意义。
《数字电子技术基础》读书笔记02 逻辑代数基础2.1从布尔代数到逻辑代数1849年英国数学家乔治布尔(George Boole)提出布尔代数,使用数学方法进行逻辑运算。
把布尔代数应用到二值逻辑电路中,即为逻辑代数。
2.2逻辑代数中的运算(想想初等代数中的加减乘除)2.2.1三种基本运算与(AND):逻辑乘,Y=A B或(OR):逻辑加,Y=A+B非(NOT):逻辑求反,Y=Aˊ简单逻辑运算(与、或、非)的两套图形符号,均为IEEE(国际电气与电子工程师协会)和IEC(国际电工协会)认定。
上排为国外教材和EDA软件中普遍使用的特定外形符号;下排为矩形符号。
2.2.2复合逻辑运算(都可以表示为与、或、非的组合)与非(NAND):先与后非,与的反运算,Y=(A B)ˊ或非(NOR):先或后非,非的反运算,Y=(A+B)ˊ与或非(AND-NOR):先与再或再非,Y=(A B+C D)ˊ异或(Exclusive OR):Y=A⊕B=A Bˊ+AˊB A和B不同,Y为1;A和B相同,Y为0。
当A与B相反时,A Bˊ和AˊB,肯定有一个结果为1,则Y为1。
同或(Exclusive NOR):Y=A⊙B=A B+AˊBˊA和B相同,Y为1;A和B不同,Y为0。
当A与B相同时,A B和AˊBˊ,肯定有一个结果为1,则Y为1。
同或与同或互为反运算,即两组运算,只要输入相同,一定结果相反。
A⊕B=(A⊙B)ˊA⊙B=(A⊕B)ˊ复合逻辑运算的图像符号和运算符号。
2.3逻辑代数的基本公式和常用公式2.3.1基本公式(见对偶定理)2.3.2若干常用公式(见逻辑函数化简方法之公式化简法)2.4逻辑代数的基本定理2.4.1代入定理(相当于初等代数中的换元)任何一个包含逻辑变量A的逻辑等式中,若以另外一个逻辑式代入式中所有A的位置,则等式依然成立。
2.4.2反演定理对于任意一个逻辑式Y,若将其中所有的""换成"+","+"换成"","0"换成"1","1"换成"0",原变量换成反变量,反变量换成原变量,则得到的结果就是Yˊ。
布尔代数基础和布尔函数的化简和实现布尔代数是分析和设计数字逻辑电路的数学工具。
因此这里从应用的角度向读者介绍布尔代数,而不是从数学的角度去研究布尔代数。
一、布尔代数的基本概念1、布尔代数的定义域和值域都只有“0”和“1”。
布尔代数的运算只有三种就是“或”(用+表示),“与”(用·表示)和“非”(用 ̄表示,以后用’表示)。
因此布尔代数是封闭的代数系统,可记为B=(k,+,·, ̄,0,1),其中k表示变量的集合。
2、布尔函数有三种表示方法。
其一是布尔表达式,用布尔变量和“或”、“与”和“非”三种运算符所构成的式子。
其二是用真值表,输入变量的所有可能取值组合及其对应的输出函数值所构成的表格。
其三是卡诺图,由表示逻辑变量所有可能取值组合的小方格所构成的图形。
3、布尔函数的相等可以有两种证明方法,一种是从布尔表达式经过演绎和归纳来证明。
另一种就是通过列出真值表来证明,如两个函数的真值表相同,则两个函数就相等。
二、布尔代数的公式、定理和规则1、基本公式有交换律、结合律、分配律、0—1律、互补律、重叠律、吸收律、对合律和德·摩根律。
值得注意的是分配律有两个是:A·(B+C)=A·B+A·C和A+B·C=(A+B)·(A+C),另外就是吸收律,A+AB=A;A+A’B=A+B它们是代数法化简的基本公式。
2、布尔代数的主要定理是展开定理(教材中称为附加公式)。
3、布尔代数的重要规则有对偶规则和反演规则。
三、基本逻辑电路1、与门F=A·B2、或门F=A+B3、非门F=A’(为了打字的方便,以后用单引号“’”表示非运算,不再用上划线表示非运算)4、与非门F=(A·B)’5、或非门F=(A+B)’6、与或非门F=(A·B+C·D)’7、异或门F=A’B+AB’=A⊕B8、同或门F=A’B’+AB=A⊙B四、布尔函数的公式法化简同一个布尔函数可以有许多种布尔表达式来表示它,一个布尔表达式就相应于一种逻辑电路。
*数字逻辑o第一章进位计数制o第二章、布尔代数▪第一节、“与”“或”“非”逻辑运算的基本定义▪第二节、布尔代数的基本公式及规则▪第三节、逻辑函数的代数化简法▪第四节、逻辑函数的图解化简法▪第五节、逻辑函数的列表化简法o第三章组合逻辑电路的设计▪第一节、常用门电路▪第二节、半加器和全加器的分析▪第三节译码器的分析▪第四节、其它常用电路分析o第四章组合逻辑函数的设计▪第一节、采用门电路实现组合逻辑电路的设计▪第二节、转化成“与非”“或非”“与或非”形式▪第三节、组合电路设计中几个问题的考虑▪第四节、组合逻辑电路设计举例o第五章大规模集成电路▪第一节、由中规模器件构成的组合逻辑电路▪第二节、由中规模器件构成的组合逻辑电路设计▪第三节、采用只读存贮器实现组合逻辑电路设计▪第四节、组合逻辑电路中的竞争与险象*o第六章时序电路的分析▪第一节、同步时序电路▪第二节、触发器的逻辑符号及外部特性▪第三节、时序电路的状态表和状态图▪第四节、同步时序电路的分析方法o第七章同步时序电路的设计▪第一节、概述▪第二节、形成原始状态表的方法▪第三节、状态化简▪第四节、同步时序电路设计举例▪第五节、状态编码*o第八章异步时序电路的分析和设计▪第一节、脉冲异步电路的分析和设计▪第二节、电平异步电路概述▪第三节、电平异步电路分析▪第四节、电平异步电路的设计▪第五节、时序电路中的竞争与险象*o第九章数字逻辑计算机辅助设计方法▪3 / 205 / 207 / 209 / 2011 / 20A. B. C. D. 参考答案:D13 / 2015 / 2017 / 20。
第二章逻辑代数基础逻辑代数是描述、设计数字系统的重要工具,是由逻辑学发展而来的。
逻辑学是研究逻辑思维和推理规律的一门学科。
19世纪中布尔(Boole)创立了布尔代数,即用代数形式来描述、研究逻辑学问题。
二十世纪初香农(Shannon)把布尔代数应用于继电器构成的开关电路,称为开关代数。
目前逻辑门是数字系统的基础,因此把开关代数又称为逻辑代数。
2.1 逻辑代数的基本概念2.1.1 逻辑变量与逻辑函数逻辑代数有两个逻辑常量:逻辑0和逻辑1。
不同于普通代数中的0和1,逻辑0和逻辑1不具有数量的概念,而是两个对立的状态。
数字系统中可用电平值或元件状态表示逻辑0和逻辑1。
逻辑变量是一个符号,它可以取值逻辑0或逻辑1。
逻辑代数中,若某逻辑变量F 的取值唯一地由一组变量A 1, A 2, …, A n 的取值确定,则称这样的逻辑关系为逻辑函数关系,可表示为:F = f ( A 1, A 2, …, A n )其中,称逻辑变量F 为逻辑因变量或输出变量,多用于描述数字系统的输出状态;变量组A 1, A 2, …, A n 称为逻辑自变量或输入变量,常用于描述数字系统的输入状态。
与普通代数中的函数不同,逻辑函数中的变量仅能取离散值逻辑0、逻辑1,逻辑函数中的运算可分解为与、或、非这三种逻辑运算。
逻辑函数相同的概念为,若有逻辑函数F 1= f 1( A 1, A 2, …, A n )F 2= f 2( A 1, A 2, …, A n )且对于A 1, A 2, …, A n 的所有取值组,F 1 、F 2的取值都相同,则认为逻辑函数F 1 、F 2相同。
2.1.2 逻辑运算逻辑代数中有“与”、“或”、“非”三种逻辑运算。
1. “与”运算若决定某事件发生的多个条件同时满足时,该事件才能发生,称这样的逻辑关系为“与”逻辑。
逻辑代数中用“与”运算描述“与”逻辑,其运算符为“·”或“∧”。
“与”运算式可表示为:F = A ·B或F = A∧B“与”运算也称为逻辑乘。
布尔代数的基本运算与性质布尔代数是一种逻辑代数,用于对逻辑表达式进行运算和分析。
它是以数学符号和运算为基础,对逻辑关系进行描述和计算的一种工具。
在计算机科学和电子工程等领域,布尔代数被广泛应用于数位逻辑电路和逻辑编程等方面。
本文将介绍布尔代数的基本运算与性质。
一、布尔代数的基本运算1. 与运算(AND)与运算是布尔代数中最基本的运算之一,它采用逻辑与操作符“∧”表示。
与运算的规则是:只有在两个变量同时为真时,结果才为真;否则结果为假。
例如,变量A和变量B的与运算可以表示为 A ∧ B。
2. 或运算(OR)或运算是布尔代数中另一个基本运算,它采用逻辑或操作符“∨”表示。
或运算的规则是:只要两个变量中有一个为真,结果就为真;否则结果为假。
例如,变量A和变量B的或运算可以表示为 A ∨ B。
3. 非运算(NOT)非运算是布尔代数中最简单的运算,它采用逻辑非操作符“¬”表示。
非运算的规则是:翻转变量的取值,如果原来为真,则结果为假;如果原来为假,则结果为真。
例如,变量A的非运算可以表示为 ¬A。
二、布尔代数的性质1. 结合律布尔代数的运算满足结合律,即运算的结果与运算的先后顺序无关。
例如,对于与运算,A ∧ (B ∧ C) 的结果和 (A ∧ B) ∧ C 的结果相同。
2. 分配律布尔代数的运算满足分配律,即一个运算符在有两个不同的运算符作用时,结果相同。
对于与运算和或运算,有以下两个分配律:- A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)- A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)3. 吸收律布尔代数的运算满足吸收律,即一个变量与该变量的运算结果相同。
例如,A ∨ (A ∧ B) 的结果和A的结果相同。
4. 对偶性原理布尔代数的运算满足对偶性原理,即一个布尔代数式子中的与运算(∧)与或运算(∨),变量的取反(¬)可以互换。
例如,对于布尔表达式 A ∧ B ∨ C,可以通过对偶性原理转换为 A ∨ B ∧ ¬C。
计算机数字逻辑与布尔代数简介数字逻辑与布尔代数是计算机科学中非常重要的基础知识,它们是现代计算机技术的基石。
通过学习数字逻辑与布尔代数,我们能够深入了解计算机是如何工作的,以及如何设计和优化计算机系统。
本文将简要介绍数字逻辑与布尔代数的基本概念,并说明它们在计算机科学中的应用。
数字逻辑是研究数字之间的关系和运算规律的一门学科。
在计算机科学中,数字逻辑主要应用于描述计算机内部的运算过程。
数字逻辑的基本元素包括逻辑门、寄存器、计数器等。
逻辑门是数字逻辑的基本构建块,常见的逻辑门包括与门、或门、非门等。
通过组合不同类型的逻辑门,我们可以实现复杂的逻辑运算,比如加法、减法、乘法等。
布尔代数是一种用于描述逻辑关系的代数体系。
在布尔代数中,变量取值只能是0或1,分别表示假和真。
布尔代数定义了逻辑运算的规则,比如与、或、非等。
通过布尔代数,我们可以描述复杂的逻辑表达式,从而实现对计算机系统的精确控制。
数字逻辑与布尔代数在计算机科学中有着广泛的应用。
它们被广泛应用于计算机的逻辑设计、电路设计、编程语言设计等方面。
在计算机的逻辑设计中,我们使用数字逻辑来描述计算机内部的数据运算逻辑,通过设计不同的逻辑电路来实现计算、存储等功能。
在编程语言设计中,我们使用布尔代数来描述程序中的逻辑运算,通过控制程序中的布尔表达式来实现不同的逻辑分支。
总之,数字逻辑与布尔代数是计算机科学中非常重要的基础知识,它们是现代计算机技术的基石。
通过深入学习数字逻辑与布尔代数,我们可以更好地理解计算机是如何工作的,提高计算机系统的设计与性能。
希望本文对您有所帮助,谢谢阅读!。
布尔代数与数字逻辑电路设计布尔代数是数学的一个分支,用于处理逻辑值而不是数值的代数系统。
布尔代数常用于计算机科学和电子工程领域,特别是在数字逻辑电路设计中起着重要作用。
在本文中,将探讨布尔代数的基本概念以及如何应用于数字逻辑电路的设计中。
### 布尔代数基本概念布尔代数基于两个逻辑值:真(true)和假(false)。
布尔代数定义了逻辑运算,包括与(and)、或(or)、非(not)、异或(xor)等。
这些逻辑运算可以应用于表示逻辑语句,如“A AND B”、“A OR B”、“NOT A”等。
布尔代数还引入了逻辑门的概念,逻辑门是用来实现布尔运算的电路元件。
常见的逻辑门包括与门(and gate)、或门(or gate)、非门(not gate)、异或门(xor gate)等。
这些逻辑门可以根据输入信号的逻辑值输出确定的逻辑值。
### 数字逻辑电路设计数字逻辑电路是利用数字信号进行信息处理的电路,广泛应用于计算机、通信、控制系统等领域。
数字逻辑电路由逻辑门和逻辑元件组成,根据布尔代数的原理来设计。
在数字逻辑电路设计中,首先确定电路的需求,包括输入信号、输出信号以及逻辑功能。
然后根据需求选择合适的逻辑门组合,设计电路的逻辑结构。
最后进行电路的布线和调试,确保电路可以正确地实现所需功能。
### 布尔代数在数字逻辑电路设计中的应用布尔代数为数字逻辑电路设计提供了理论基础和方法论。
通过布尔代数的逻辑运算,可以将复杂的逻辑功能进行简化,并实现高效的数字逻辑电路设计。
在数字逻辑电路设计中,可以利用布尔代数的定理和规则来优化电路设计,减少逻辑门的数量,提高电路的性能和可靠性。
例如,通过德摩根定理可以将逻辑表达式进行简化,通过卡诺图法可以找到最小化的逻辑表达式。
### 总结布尔代数与数字逻辑电路设计密切相关,是电子工程领域的重要理论基础。
掌握布尔代数的基本概念和应用方法,可以帮助工程师设计出高效、可靠的数字逻辑电路。