中考数学二轮专题复习专题二图表信息问题课件
- 格式:pptx
- 大小:3.82 MB
- 文档页数:46
中考数学冲刺第二轮专题复习——图表信息型问题和阅读理解型问题一、图表信息型问题1、图表信息型问题的特点:由图象(表)来获取信息.从而达到解题目的的题型。
2、图表信息型问题的主要类型:(1)图像信息型,即教材介绍的基本函数图象(如直线、双曲线、抛物线);(2)图形信息型,主要是几何问题;(3)统计图表型,即结合实际情境描绘的不规则图象(如折线型、统计图表等).这种题型一般是由图象给出的数据信息,探求两个变量之间的关系,进行数、形之间的互换.题型可涉及填空、选择和解答。
3、图表信息型考我们什么?(1)注重考查数形之间的转化能力,(2)考察发现问题、解决问题的能力4、解答图表信息型问题的步骤:(1)观察图像,获取有效信息;(2)对获取的信息进行整理,理清各量之间的关系;(3)通过建模解决问题。
第一种类型:图像信息型,即教材介绍的基本函数图象(如直线、双曲线、抛物线)【例1】(2012 绍兴)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是(只需填序号).第二种类型:图形信息型,主要是几何问题【例2】(2011 绍兴)取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,把剪下的①这部分展开,平铺在桌面上.若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为.【例3】(2010 绍兴)如图为某机械装置的截面图,相切的两圆⊙O1,⊙O2均与⊙O的弧AB 相切,且O1O2∥l1(l1为水平线),⊙O1,⊙O2的半径均为30mm,弧AB的最低点到l1的距离为30mm,公切线l2与l1间的距离为100mm.则⊙O的半径为()A.70mm B.80mm C.85mm D.100mm【例4】(2011 贵阳)用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②③中的一种)设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不诱钢材料总长度为12米,当x为多少时,矩形架ABCD的面积S最大?最大面积是多少?(3)在图③中,如果不锈钢材料总长度为a米,共有n条竖档,那么当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?第三种类型:统计图表型,即结合实际情境描绘的不规则图象(如折线型、统计图表等)【例5】(2011 衢州)下列材料来自2006年5月衢州有关媒体的真实报道:有关部门进行民众安全感满意度调查,方法是:在全市内采用等距抽样,抽取32个小区,共960户,每户抽一名年满16周岁并能清楚表达意见的人,同时,对比前一年的调查结果,得到统计图如下:写出2005年民众安全感满意度的众数选项是;该统计图存在一个明显的错误是.【例6】(2011 湖州)班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)请根据图1,回答下列问题:①这个班共有名学生,发言次数是5次的男生有人、女生有人;②男、女生发言次数的中位数分别是次和次;(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示,求第二天发言次数增加3次的学生人数和全班增加的发言总次数.二、阅读理解型问题1、阅读理解型的主要题型:(1)阅读特殊范例,推出一般结论;(2)阅读解题过程,总结解题思路和方法;(3)阅读新知识,研究新问题等。
中考冲刺:图表信息型问题【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细节不能忽视,它往往起提示作用,如图表下的“注”“数字单位”等.2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等.3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.【典型例题】类型一、图象信息题例1.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B. C.D.例2.甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求甲距A地的路程S与行驶时间t的函数关系式.(3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)举一反三:【变式】如图,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P 上,求k的取值范围.类型二、图表信息题例3.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:请你根据以上信息解答下列问题:(1)补全图,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.例4.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A .计算机行业好于其他行业B .贸易行业好于化工行业C .机械行业好于营销行业D .建筑行业好于物流行业举一反三:【变式】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %; (2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到男篮门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格.类型三、从表格、数字中寻求规律例5.我市某工艺厂为配合北京奥运,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?最大利润多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?举一反三:【变式】某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【巩固练习】一、选择题1.如图,平行四边形ABCD的边长AD为8,面积为32,四个全等的小平行四边形对称中心分别在平行四边形ABCD的顶点上,它们的各边与平行四边形ABCD的各边分别平行,且与平行四边形ABCD相似.若平行四边形的一边长为x,且0<x≤8,阴影部分的面积和为y,则y与x之间的函数关系的大致图象是().A.B.C.D.2.物理知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为FPS .当一个物体所受压力为定值时,那么该物所受压强P与受力面积S之间的关系用图象表示大致为( ).3.某蓄水池的横断面示意图如图1所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是 ( ).二、填空题4.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为°.第4题第5题5.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是 .6.如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是.三、解答题7. 小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x(m2)表示铺设地面的面积,用y(元)表示铺设费用,制成如图.请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为元/ m2,铺设客厅的费用为元/ m2.(2)表示铺设居室的费用y(元)与面积 x(m2)之间的函数关系式为,表示铺设客厅的费用y(元)与面积x(m2)之间的函数关系式为 .(3)已知在小亮的预算中,铺设1 m2的瓷砖比铺设1m2的木质地板的工钱多5元;购买1m2的瓷砖是购买1m2木质地板费用的34.那么,铺设每平方米木质地板、瓷砖的工钱各是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?8. 如图所示,A,B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线OPQ和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙出发的时间相差小时?(2)(填写“甲”或“乙”)更早到达B城?(3)乙出发大约小时就追上甲?(4)描述一下甲的运动情况;(5)请你根据图象上的数据,求出甲骑自行车在全程的平均速度.9.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:刹车时车速(km/h) 0 10 20 30 40 50 60 刹车距离(m) 0 0.3 1.0 2.1 3.6 5.5 7.8(1)以车速为x轴,以车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?10.某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:运输单位运输速度(千米/小时)运输费用(元/千米)包装与装卸时间(小时)包装与装卸费用(元)甲公司60 6 4 1500乙公司50 8 2 1000丙公司100 10 3 700解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);(2)如果A、B两市的距离为S千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?。
中考冲刺:图表信息型问题—知识讲解(基础)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;(2)求出图(2)中抛物线段c的函数关系式.【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l的表达式,注意t的取值范围,当t=1时,S用地面积=M建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c的函数关系式.【答案与解析】解:(1)设M =kt+b ,由图象上两点的坐标(2,28000)、(6,80000),可求得是k =13000,b =2000.所以线段l 的函数关系式为: M =13000t+2000(1≤t ≤8).由M t S =建筑面积用地面积知,当t =1时,S M =用地面积建筑面积.把t =1代入M =13000t+2000中,可得 M =15000.即开发该小区的用地面积是15 000 m 2.(2)根据图象特征可设抛物线段c 的函数关系式为Q =a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a =. 所以219(4)100100Q t =-+2121(18)100254t t t =-+≤≤.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A 地,他们距A 地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h).(2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离为S (km )和行驶时间t (h )之间的函数关系的图象如图所示,根据图中提供的信息,回答下列问题:(1)甲乙两个同学都骑了 (km ).(2)图中P 点的实际意义是 . (3)整个过程中甲的平均速度是 . 【思路点拨】利用函数图象,结合问题可得出甲乙两个同学骑车距离,甲的平均速度等. 【答案与解析】 解:(1利用图象可得:s 为18千米,即甲乙两个同学都骑了18千米, (2)图中P 点的实际意义是:甲,乙相遇,此时乙出发了0.5小时, (3)整个过程中甲的平均速度是 18÷2.5=7.2千米每小时. 故填:(1)18 ;(2)乙出发0.5小时后追上甲,(3)7.2km/h . 【总结升华】此题主要考查了利用函数图象得出正确的信息,题目解决的是实际问题,比较典型. 举一反三:【高清课堂:图表信息型问题 例2】【变式】为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该户六月份用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式;(3)若该用户六月份用水量为40吨,缴纳消费y 元的取值范围为70≤y ≤90,试求m 的取值范围. 【答案】解:(1)六月份应缴纳的水费为:1.5102831⨯+⨯=(元) (2)当010x ≤≤时, 1.5y x =当10x m <≤时,152(10)25y x x =+-=-当x m >时,152(10)3()35y m x m x m =+-+-=--∴ 1.52535xy x x m ⎧⎪=-⎨⎪--⎩(010)(10)()x x m x m ≤≤<≤>(3)当4050m <≤时,240575y =⨯-=元,满足条件,当2040m ≤≤时,3405115y m m =⨯--=-,则7011590m ≤-≤ ∴2540m ≤≤ 综上所述,2540m ≤≤类型二、图表信息题3.某市为了进一步改善居民的生活环境,园林处决定增加公园A 和公园B 的绿化面积.已知公园A 、B 分别有如图(1)(2)所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608 m 2和1200 m 2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:公园A公园B路程(千米) 运费单价(元) 路程(千米) 运费单价(元)甲地 30 0.25 32 0.25 乙地220.3300.3(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A 、B 需铺设草坪的面积;(结果精确到1m 2)(2)请设计出总运费最省的草皮运送方案,并说明理由.【思路点拨】(1)公园A 草坪的面积=大矩形的面积-两条小道的面积+两条小道重叠部分的面积.公园B 草坪的面积=大矩形的面积-两个扇形的面积-扇形所夹的两个三角形的面积.(2)本题可根据总运费=公园A 向甲,乙两地购买草坪所需的费用+公园B 向甲乙两地购买草坪所需的费用,如果设总运费为y 元,公园A 向甲地购买草皮xm 2,那么根据上面的等量关系可得出y 与x 的关系式,然后根据甲乙两地出售的草坪的面积和公园A ,B 所需的草坪面积得出x 的取值范围,再根据函数的性质得出花钱最少的方案. 【答案与解析】解:(1)公园A 需铺设草坪的面积为S 1=62×32-62×2-32×2+2×2=1800(m 2).设图(4)中圆的半径为R ,易知,圆心到距形长边的距离为252,所以25cos302R =°,R =.公园B 需铺设草坪的面积为2221201256525221008(m )36022S π=⨯-⨯⨯-⨯≈. (2)设总运费为y 元,公园A 向甲地购买草皮x m 2,向乙地购买草皮(1800-x)m 2. 由于园林处需要购买的草皮面积总数为1800+1008=2808(m 2),甲、乙两地出售的草皮面积总数为:1608+1200=2808(m 2),所以,公园B 向甲地购买草皮(1608-x)m 2,向乙地购买草皮1200-(1800-x)=(x-600)m 2.则01608,018001200,x x ≤≤⎧⎨≤-≤⎩求得600≤x ≤1608.由题意,得y =30×0.25x+22×0.3×(1800-x)+32×0.25×(1608-x)+30×0.3×(x-600)=1.9x+19344.因为k =1.9>0,所以y 随x 的增大而增大, 所以,当x =600时,y =最小值 1.9×600+19344=20484(元).即公园A 在甲地购买600 m 2,在乙地购买1800-600=1200(m 2);公园B 在甲地购买1608-600=1008(m 2),运送草皮的总运费最省. 【总结升华】本题是一个图表信息类的实际应用题,将代数知识、几何知识巧妙地融为一体,通过解答,可以有效考查圆的有关计算、一元一次不等组、一次函数等知识的综合运用,难度不大但涉及知识点丰富、技巧性强,是不可多得的一道好题.举一反三:【高清课堂:图表信息型问题 例1】【变式】今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米.⑴设从A 水库调往甲地的水量为x 万吨,完成下表:⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x ;15-x ;x-1 .⑵ y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值y=5+1275=1280∴调运方案为A往甲调1吨,往乙调13吨;B往甲调14吨,不往乙调.4.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全图中的条形统计图.(3)写出A品牌粽子在图(2)中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.【思路点拨】(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,补全图形即可;(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)由于C品牌的销售量最大,所以建议多进C种.【答案与解析】解:(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,(3)A 品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°; (4)建议:多进一些C 品牌的粽子.【总结升华】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.类型三、信息综合题5.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 路线作匀速运动,设运动时间为x (s ),∠APB=y (°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为( )A.2B.2π C. 12π+ D. 无法确定 【思路点拨】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 【答案与解析】解:根据题意,可知点P 从圆心O 出发,运动到点C 时,∠APB 的度数由90°减小到45°,C 点的横坐标为1,CD 弧的长度为12π. 点M 是∠APB 由稳定在45°,保持不变到增大的转折点; 另点O 的运动有周期性;结合图象,可得答案为C . 故选C 【总结升华】正确理解函数图象横纵坐标表示的意义,理解问题的过程.为大家整理的资料供大家学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。