2振动的能量和合成
- 格式:ppt
- 大小:926.50 KB
- 文档页数:26
振动能量公式振动能量公式是描述振动系统能量的一个重要公式。
它可以用来计算振动系统的总能量,包括动能和势能。
振动能量公式可以表示为E = 1/2mv^2 + 1/2kx^2,其中E表示振动系统的能量,m表示质量,v表示速度,k表示弹性系数,x表示位移。
我们来看一下公式中的第一项,1/2mv^2,它表示振动系统的动能。
动能是由质量和速度决定的,质量越大、速度越大,动能也就越大。
动能可以理解为物体运动时所具有的能量。
公式中的第二项,1/2kx^2,表示振动系统的势能。
势能是由弹性系数和位移决定的,弹性系数越大、位移越大,势能也就越大。
势能可以理解为物体在弹性力的作用下所具有的能量。
振动能量公式将动能和势能结合在一起,可以全面描述振动系统的能量变化。
当振动系统处于运动状态时,动能和势能不断地相互转化,能量在系统中不断地传递。
当振动系统处于平衡位置时,动能和势能相等,总能量达到最小值。
而当振动系统处于最大位移位置时,动能为零,势能达到最大值,总能量也达到最大值。
振动能量公式的应用十分广泛。
在物理学中,它可以用来计算各种振动系统的能量,如弹簧振子、简谐振子等。
在工程中,它可以用来分析和设计各种振动系统,如机械振动系统、电子振动系统等。
在生活中,它也有很多实际应用,如音乐乐器发声的原理、地震波传播的机制等。
振动能量公式的理解和应用对于我们深入了解和研究振动现象具有重要意义。
通过对振动能量的分析,我们可以了解振动系统的能量变化规律,预测和控制振动系统的行为。
同时,振动能量公式也为我们提供了一种计算和比较不同振动系统能量大小的方法,帮助我们选择和优化振动系统。
振动能量公式是描述振动系统能量的一个重要工具。
它通过结合动能和势能,全面描述了振动系统的能量变化。
振动能量公式的理解和应用对于我们研究和应用振动现象具有重要意义,有助于我们深入探索和利用振动的力量。
振动能量公式振动能量公式是描述振动系统能量变化的数学公式。
振动是物体在平衡位置周围做周期性往复运动的现象,而振动能量则是描述这种运动过程中能量的变化。
在物理学中,振动能量公式可以通过振幅、角频率、质量和弹性系数来表示。
振动能量公式可以用如下形式表示:E = 1/2 * k * x^2其中,E表示振动系统的能量,k表示弹性系数,x表示振幅。
这个公式的推导过程涉及到牛顿第二定律和胡克定律等基本原理,这里不再展开。
振动能量公式的意义在于可以通过已知的参数来计算振动系统的能量。
在振动过程中,物体的能量会在平衡位置周围不断转化,从动能转化为势能,再从势能转化为动能。
振动能量公式可以用来计算系统在某一时刻的能量大小。
假设一个弹簧振子,系统的质量为m,弹性系数为k,振幅为A。
根据振动能量公式,我们可以计算出系统在任意时刻的能量。
在振动的开始阶段,物体从平衡位置开始做往复运动。
当物体位移为x时,根据振动能量公式,系统的能量为E = 1/2 * k * x^2。
在振动过程中,物体的能量会不断变化,但总能量保持不变。
当物体位移达到最大值A时,能量也达到最大值E_max = 1/2 * k * A^2。
此时,物体的动能为0,全部转化为势能。
而当物体通过平衡位置时,位移为0,能量也为0。
振动能量的变化过程是周期性的。
物体从最大位移A开始运动,能量逐渐减小,直到通过平衡位置并达到最小位移-A,能量也达到最小值E_min = 1/2 * k * (-A)^2。
之后,物体又重新回到最大位移A处,能量再次达到最大值。
振动能量的大小取决于振幅和弹性系数。
当振幅增大时,能量也相应增大。
而当弹性系数增大时,能量也会增大。
振动能量的大小与质量无关,只与弹性系数和振幅有关。
振动能量公式在实际应用中具有重要意义。
例如,在工程设计中,我们可以利用振动能量公式来计算机械振动系统的能量,从而评估系统的稳定性和安全性。
在物理实验中,我们也可以利用振动能量公式来研究振动现象和能量变化规律。
单摆、振动中的能量知识目标一、单摆1、单摆:在细线的一端挂上一个小球,另一端固定在悬点上,如果线的伸缩和质量可以忽略,球的直径比线长短得多,这样的装置叫做单摆.这是一种理想化的模型,一般情况下细线〔杆〕下接一个小球的装置都可作为单摆.2、单摆振动可看做简谐运动的条件是:在同一竖直面内摆动,摆角θ<100.3、单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。
在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。
4、单摆的周期:当l、g一定,那么周期为定值T=2πgl,与小球是否运动无关.与摆球质量m、振幅A都无关。
其中摆长l指悬点到小球重心的距离,重力加速度为单摆所在处的测量值。
要区分摆长和摆线长。
5、小球在光滑圆弧上的往复滚动,和单摆完全等同。
只要摆角足够小,这个振动就是简谐运动。
这时周期公式中的l应该是圆弧半径R和小球半径r的差。
6、秒摆:周期为2s的单摆.其摆长约为lm.【例1】如图为一单摆及其振动图象,答复:〔1〕单摆的振幅为,频率为,摆长为,一周期内位移x〔F回、a、E p〕最大的时刻为.解析:由纵坐标的最大位移可直接读取振幅为3crn.横坐标可直接读取完成一个全振动即一个完整的正弦曲线所占据的时间.轴长度就是周期T=2s,进而算出频率f=1/T=0.5Hz,算出摆长l=gT2/4π2=1m·从图中看出纵坐标有最大值的时刻为0.5 s末和1.5s末.〔2〕假设摆球从E指向G为正方向,α为最大摆角,那么图象中O、A、B、C点分别对应单摆中的点.一周期内加速度为正且减小,并与速度同方向的时间范围是。
势能增加且速度为正的时间范围是.解析:图象中O点位移为零,O到A的过程位移为正.且增大.A处最大,历时1/4周期,显然摆球是从平衡位置E起振并向G方向运动的,所以O对应E,A对应G.A到B的过程分析方法一样,因而O、A、B、C对应E、G、E、F点.摆动中EF间加速度为正,且靠近平衡位置过程中加速度逐渐减小,所以是从F向E的运动过程,在图象中为C到D的过程,时间范围是1.5—2.0s间摆球远离平衡位置势能增加,即从E向两侧摆动,而速度为正,显然是从E向G的过程.在图象中为从O到A,时间范围是0—0.5 s间.〔3〕单摆摆球屡次通过同一位置时,下述物理量变化的是〔〕A .位移;B .速度;C .加速度;D .动量;E .动能;F .摆线X 力解析:过同一位置,位移、回复力和加速度不变;由机械能守恒知,动能不变,速率也不变,摆线X 力mgcos α+m v 2/L 也不变;由运动分析,相邻两次过同一点,速度方向改变,从而动量方向也改变,应选B 、D .如果有兴趣的话,可以分析一下,当回复力由小变大时,上述哪些物理量的数值是变小的?从〔1〕、〔2〕、〔3〕看出,解决此类问题的关键是把图象和实际的振动—一对应起来.〔4〕当在悬点正下方O /处有一光滑水平细钉可挡住摆线,且E O /=¼E O .那么单摆周期为s .比拟钉挡绳前后瞬间摆线的X 力.解析:放钉后改变了摆长,因此单摆周期应分成钉左侧的半个周期,前已求出摆线长为lm ,所以T 左=πg l =1s :钉右侧的半个周期T 右=πg l 4=0.5s ,所以T =T 左十T 右=1.5s .由受力分析,X 力T=mg +mv 2/L ,因为钉挡绳前后瞬间摆球速度不变,球重力不变,挡后摆线长为挡前的1/4.所以挡后绳X 力变大.〔5〕假设单摆摆球在最大位移处摆线断了,此后球做什么运动?假设在摆球过平衡位置时摆线断了,摆球又做什么运动?解析:问题的关键要分析在线断的时间,摆球所处的运动状态和受力情况.在最大位移处线断,此时球速度为零,只受重力作用,所以球做自由落体运动.在平衡位置线断,此时球有最大水平速度,又只受重力,所以做平抛运动.【例2】有一个单摆,其摆长l=1.02m ,摆球的质量m =0.1kg ,从和竖直方向成摆角θ= 40的位置无初速度开场运动〔如下图〕,问:〔1〕振动的次数n =30次,用了时间t =60.8 s ,重力加速度g 多大?〔2〕摆球的最大回复力多大?〔3〕摆球经过最低点时速度多大?〔4〕此时悬线拉力为多大?〔5〕如果将这个摆改为秒摆,摆长应怎样改变?为什么?〔取sin40=0.0698,cos40 =0.9976,π=3.14〕【解析】〔1〕θ<50,单摆做简谐运动,其周期T=t/n=60.8/30 s =2·027 s ,根据T=2g L /π得,g=4×π×1.02/2.0272=9.791 m/s 2。
振动自由能是指系统可用于进行振动的能量。
它是描述系统在一定温度下的能量状态的函数。
在经典物理中,振动自由能可以通过系统的哈密顿量和配分函数来计算。
对于一个简谐振子系统,其振动自由能可以用以下公式表示:
F = -kT ln(Z)
其中,F是振动自由能,k是玻尔兹曼常数,T是系统的绝对温度,Z是配分函数。
配分函数Z与系统的能级有关,可以通过对系统的能级密度进行积分计算得到。
对于简单的谐振子系统,可以使用能级等间距的近似,即能级间距为hω,其中h是普朗克常数,ω是振子的角频率。
这样配分函数可以写成:Z = ∑exp(-Ei/kT)
其中,Ei是第i个能级的能量。
根据等间距能级的求和公式,我们可以得到:Z = (1 - exp(-hω/kT)) / (1 - exp(-hω/kT))
将配分函数代入振动自由能的公式中,可以得到简谐振子的振动自由能表达式:
F = -kT ln((1 - exp(-hω/kT)) / (1 - exp(-hω/kT)))
这是简谐振子系统的振动自由能的一般表达式。
振 动 学 基 础内容提要一、振动的基本概念1、振动 某物理量随时间变化,如果其数值总在一有限范围内变动,就说该物理量在振动;2、周期振动 如果物理量在振动时,每隔一定的时间间隔其数值就重复一次,称为周期振动;3、机械振动 物体在一定的位置附近作往复运动称为机械振动;4、简谐振动 如果物体振动的位移随时间按余(正)弦函数规律变化,即:()0cos ϕω+=t A x这样振动称为简谐振动;5、周期T 物体进行一次完全振动所需的时间称为周期,单位:秒。
一次完全振动指物体由某一位置出发连续两次经过平衡位置又回到原来的状态。
6、振动频率ν 单位时间内振动的次数,单位:次/秒,称为赫兹〔Hz 〕;7、振动圆频率ω 振动频率的π2倍,单位是弧度/秒〔rad /s 〕,即Tππνω22== 8、振幅A 物体离开平衡位置〔0=x 〕的最大位移的绝对值; 9、相位ϕ0ϕωϕ+=t 称为相位或相,单位:弧()rad 。
它是时间的单值增函数,每经历一个周期T ,相位增加π2,完成一次振动; 10、初相位0ϕ 开始计时时刻的相位;11、振动速度v 表示振动物体位移快慢的物理量,即:()⎪⎭⎫ ⎝⎛++=+-==2cos sin 00πϕωωϕωωt A t A dt dx v 说明速度的相位比位移的相位超前2π; 12、振动加速度a 表示振动物体速度变化快慢的物理量,即:()()πϕωωϕωω++=+-===020222cos cos t A t A dtx d dt dv a加速度的相位比速度的相位超前2π,比位移的相位超前π; 13、初始条件 在0=t 时刻的运动状态〔位移和速度〕称为初始条件,它决定振动的振幅和初位相,即:⎪⎩⎪⎨⎧-======000000sin cos ϕωϕA v v A x x t t 则可求得: ⎪⎪⎩⎪⎪⎨⎧-=+=00022020x v tg v x A ωϕω二、旋转矢量法简谐振动可以用一旋转矢量在x 轴上的投影来表示。
§3-3简谐振动的能量下面以弹簧振子为例来说明简谐振动的能量。
某一时刻 t :位移 ()0c o s x A t ωϕ=+ 速度 ()0s i n v A t ωωϕ=-+振动动能 ()2222011sin 22k E mv m A t ωωϕ==+ ()2201sin 2kA t ωϕ=+振动势能 ()222011cos 22p E kx kA t ωϕ==+ 总能量 22221122k p E E E kA m A A ω=+==∝ 振幅反映了振动的强度 简谐振动系统机械能守恒!动能和势能相互转化。
简谐振动的系统都是保守系统。
动能和势能在一个周期内的平均值为()2220001111()sin 24T T k k E E t dt kA t dt kA T T ωϕ==+=⎰⎰ ()2220001111()cos 24T T p p E E t d t kA t dt kA T T ωϕ==+=⎰⎰21142k p E E kA E ===动能和势能在一个周期内的平均值相等,都等于总能量的一半。
例3.4:见第一册教材第113页。
(不讲)例:光滑水平面上的弹簧振子由质量为 M 的木块和劲度系数为 k 的轻弹簧构成。
现有一个质量为 m ,速度为 0u 的子弹射入静止的木块后陷入其中,此时弹簧处于自由状态。
(不讲) (1)试写出谐振子的振动方程;Ox(2)求出2Ax =-处系统的动能和势能。
解:(1)射入过程,水平方向动量守恒。
设射入后子弹和木块的共同速度为 0V ()00mu M m V =+00mV u M m=+ 建立坐标系如图,初始条件为00x =, 00v V = 谐振系统的圆频率为ω=初相位 032ϕπ=振幅v A ω===振动方程3o 2x π⎫=+⎪⎪⎭(2)势能 ()22220112228p m u A E kx k M m ⎛⎫=== ⎪+⎝⎭O动能 ()22222031132888k p m u E E E kA kA kA M m =-=-==+Ex :质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=t x 的规律作谐振动,求:(1)振动的周期、振幅和初相位及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?(3)s 52=t 与s 11=t 两个时刻的相位差; 解:(1) 0.1m,8A ωπ== rad/s , 214T πω∴==秒, 02/3ϕπ= πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅ 2.632==A a m ω2s m -⋅ (2) 0.63N m m F ma ==J 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即 )21(212122kA kx ⋅=∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t§3-4简谐振动的合成一、两个同向同频简谐振动的合成设质点同时参与两个同方向同频率的谐振动 ()1110c o s x A t ωϕ=+()2220c o s x A t ωϕ=+质点的合位移()()12110220c o sc o sx x x A t A t ωϕωϕ=+=+++下面我们用旋转矢量法求合位移:0t = 时刻,两分振动与 x 轴正方向的夹角分别为 10ϕ 和 20ϕ,以相同的角速度 ω 逆时针转动。