数学建模国赛一等奖论文
- 格式:doc
- 大小:484.27 KB
- 文档页数:24
脑卒中发病环境因素分析及干预摘要本文主要讨论脑卒中发病环境因素分析及干预问题。
根据题中所给出的数据,利用SPSS20 软件进行相关性统计分析,分别对各气象因素进行单因素分析,进而建立后退法线性回归分析模型,得到脑卒中与气压、气温、相对湿度之间的关系。
同时在广泛收集各种资料并综合考虑环境因素,对脑卒中高危人群提出预警和干预的建议方案。
首先,利用SPSS20软件,从患病人群的性别、年龄、职业进行统计分析,得到2007-2010年男性患病人数高于女性,且男性所占比例有逐年下降趋势,女性则有上升趋势,因此,性别比例呈减小趋势。
分析不同年龄段患病人数,得到患病高峰期为75-77岁之间,且青少年比例逐年呈增长趋势,可见患病比例趋于年轻化。
同时在不同的职业中,农民发病人数最多,教师,渔民,医务人员,职工,离退人员的发病人数较少。
其次,由题中所给数据先进行单因素分析,剔除对脑卒中影响不显著的因素,得出气温、气压、相对湿度对脑卒中的影响程度大小,进而采用后退法线性回归分析建立模型,利用SPSS20对数据进行分析,求得脑卒中发病率与气温、气压、相对湿度之间的关系。
即发病率与平均温度成正相关,与最高温度成负相关,发病率与平均气压成正相关,与最低气压成负相关,与平均相对湿度成负相关,与最小相对湿度成正相关。
最后,通过查找资料发现,影响脑卒中的因素有两类,一类是不可干预因素,如年龄、性别、家族史,另一类是可干预因素,如高血压、高血脂、糖尿病、肥胖、抽烟、酗酒等因素。
分析这些因素,建立双变量因素分析模型,并结合问题1和问题2,对高危人群提出预警和干预的建议方案。
关键词脑卒中单因素分析后退法线性回归分析双变量因素分析一问题的重述脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。
这种疾病的诱发已经被证实与环境因素,包括气温、湿度之间存在密切的关系。
对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。
全国大学生数学建模国家奖优秀论文在当今高度数字化和信息化的时代,数学建模已经成为解决各种实际问题的重要工具。
全国大学生数学建模竞赛作为一项具有高度影响力的赛事,每年都吸引着众多优秀学子参与,而能够获得国家奖的优秀论文更是代表着学生在数学建模领域的卓越成就。
数学建模的本质是将实际问题转化为数学问题,并通过建立数学模型来求解,从而为实际问题提供有效的解决方案。
这些获奖论文通常具有一些显著的特点。
首先,它们能够准确地把握问题的关键。
在面对复杂的实际问题时,参赛学生需要迅速理清问题的核心,明确问题的约束条件和目标。
例如,在研究城市交通拥堵问题时,关键可能在于分析车流量、道路容量、信号灯设置等因素之间的关系,并确定如何优化交通流量以减少拥堵。
其次,优秀论文中的模型建立具有创新性和合理性。
学生们不会拘泥于传统的模型和方法,而是敢于尝试新的思路和技术。
他们可能会结合多种数学方法,如概率论、线性规划、微分方程等,构建一个综合性的模型,以更精确地描述问题。
再者,数据处理和分析能力也是至关重要的。
为了验证模型的有效性,需要收集大量的数据,并进行有效的清洗、整理和分析。
在这个过程中,学生们需要运用统计学知识,判断数据的可靠性和代表性,运用合适的方法对数据进行拟合和预测。
以一篇关于电商平台商品推荐系统的数学建模论文为例。
在这篇论文中,学生们深入研究了用户的购买历史、浏览行为、评价等数据,通过构建协同过滤模型和基于内容的推荐模型,为用户提供个性化的商品推荐。
他们不仅考虑了用户的兴趣偏好,还考虑了商品的热门程度、时效性等因素,使得推荐结果更加准确和实用。
在模型求解方面,他们采用了高效的算法和计算工具,如 Python 中的相关库和机器学习框架,快速得到模型的解。
并且,通过大量的实验和对比分析,验证了模型的性能和优越性。
此外,优秀的论文还注重结果的解释和应用。
模型求解得到的结果不是孤立的数字,而是需要结合实际情况进行合理的解释和分析。
全国研究生数学建模竞赛获奖论文一、概要《全国研究生数学建模竞赛获奖论文》是对全国范围内研究生数学建模竞赛的优胜者论文的集结和展示。
该竞赛旨在鼓励研究生群体深入探究数学建模理论与实践,挖掘科研潜力,锻炼解决实际问题的能力。
本书收录的论文,均为经过激烈竞争,展现出色创新思维、建模能力和问题解决能力的佳作。
这些论文涉及的领域广泛,包括物理、化学、生物、工程、经济、社会科学等多个学科。
本次竞赛的获奖论文展示了中国研究生在数学建模领域的最新研究成果和前沿思考。
通过对这些论文的研读,可以了解当前研究生数学建模的总体水平,以及未来的发展趋势和研究方向。
这些论文对于推动相关领域的研究进展,提供新的研究思路和方法,具有重要的参考价值和实践指导意义。
本书的一大部分内容是对获奖论文的高度概括和深入分析,包括问题的提出、建模过程、解决方法、结果讨论等各个方面。
通过详尽的阐述,让读者可以全面理解每一篇论文的研究思路和方法。
书中还会介绍各篇论文的创新点、难点及解决策略,以展现研究生们在面对复杂问题时所展现出的科研能力和创新思维。
还将介绍全国研究生数学建模竞赛的背景、发展历程以及未来的发展方向,为读者提供一个全面的视角来理解和参与这一重要的学术活动。
1. 介绍全国研究生数学建模竞赛的背景和意义全国研究生数学建模竞赛是一项针对全国范围内研究生的重要学术竞赛活动,旨在激发研究生在数学建模领域的创新精神和研究热情。
该竞赛不仅为研究生提供了一个展示自身才华的舞台,更是推动数学建模技术发展和应用的重要途径。
其背景源于数学建模在各个领域中的广泛应用,包括工程、经济、金融、生物、医学等多个领域。
随着科技的进步和学科交叉的加深,数学建模已经成为解决复杂问题不可或缺的工具。
全国研究生数学建模竞赛的举办,对于提高研究生的综合素质,培养创新思维和解决问题的能力,推动数学建模技术的研究和发展,具有十分重要的意义。
促进学术交流与合作。
全国研究生数学建模竞赛为来自全国各地的研究生提供了一个交流和学习的平台,促进了学术上的交流与合作,推动了数学建模技术的不断进步。
交巡警服务平台的设置与调度摘要由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。
设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。
用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。
对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。
发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。
其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。
最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。
建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。
此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。
如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。
对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。
得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。
D、E、F区分别需新增4、2、2个平台。
利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。
其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。
在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。
最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。
全国数模优秀论文摘要:数学建模竞赛是我国高校和科研机构之间最具影响力的竞赛之一。
在每年的比赛中,数模优秀论文成为了评选标杆。
本文将介绍一些全国数模优秀论文的典型案例以及其独特之处,以期为今后的数学建模竞赛提供参考和借鉴。
第一部分:背景介绍数学建模竞赛在我国的高校和科研机构之间已经有着悠久的历史。
每年,大量的参赛团队通过精心准备和协作,在赛场上展示自己的数学建模能力。
然而,仅有少部分论文能够被评为全国数模优秀论文。
这些论文具有出色的创新性、严谨的研究方法和对实际问题的深入理解。
第二部分:案例分享2.1 实时监测系统优化某团队在2019年的数学建模竞赛中提出了一种实时监测系统的优化方案。
该方案通过改进数据采集与传输方式、优化算法和提高系统的稳定性,使实时监测系统的准确性和效率得到了极大的提升。
这项优化方案在实际应用中显著降低了监测数据的延迟和误差,为实时监测领域的相关研究提供了有益的参考。
2.2 路径优化及决策支持系统另一团队的研究成果是关于路径优化及决策支持系统。
他们利用数学模型和优化算法,对城市交通拥堵问题进行了研究,并提出了一种有效的路径优化策略,能够帮助驾驶员避开拥堵路段,减少交通时间和燃料消耗。
该论文的创新之处在于结合实时交通数据、地理信息和优化算法,为城市交通领域提供了新的思路和解决方案。
2.3 物流网络规划在2020年的数学建模竞赛中,一支团队针对物流网络规划问题进行了深入研究。
他们结合了图论、运筹学和网络优化方法,提出了一种高效的物流网络规划模型,并利用实际数据进行验证。
该模型不仅考虑了用户需求和运输成本,还考虑了不同供应商之间的协同与共享,使物流网络的效率和资源利用率得到了极大的提高。
第三部分:独特之处3.1 创新性全国数模优秀论文的独特之处在于具有创新性。
这些论文通过对现有问题的重新思考,提出了新的解决方法和思路。
创新性不仅体现在算法和模型的设计上,更是在问题的选取和实际应用中的独特性。
地下储油罐的变位分析与罐容表标定摘要加油站地下储油罐在使用一段时间后,由于地基变形等原因会发生纵向倾斜及横向偏转,导致与之配套的“油位计量管理系统”受到影响,必须重新标定罐容表。
本文即针对储油罐的变位时罐容表标定的问题建立了相应的数学模型。
首先从简单的小椭圆型储油罐入手,研究变位对罐容表的影响。
在无变位、纵向变位的情况下分别建立空间直角坐标系,在忽略罐壁厚度等细微影响下,运用积分的方法求出储油量和测量油位高度的关系。
将计算结果与实际测量数据在同一个坐标系中作图,经计算得误差均保持在3.5%以内。
纵向变位中,要分三种情况来进行求解,然后将三段的结果综合在一起与变位前作比较,可以得到变位对罐容表的影响。
通过计算,具体列表给出了罐体变位后油位高度间隔为1cm 的罐容表标定值。
进一步考虑实际储油罐,两端为球冠体顶。
把储油罐分成中间的圆柱体和两边的球冠体分别求解。
中间的圆柱体求解类似于第一问,要分为三种情况。
在计算球冠内储油量时为简化计算,将其内油面看做垂直于圆柱底面。
根据几何关系,可以得到如下几个变量之间的关系:测量的油位高度0h 实际的油位高度h 计算体积所需的高度H于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
再利用附表2中的数据列方程组寻找α与β最准确的取值。
αβ一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题:出版社的资源配置摘要本文根据题目的要求建立了合理的有限资源分配优化模型,我们借助多种数学软件的优势挖掘出大量数据潜在的信息,并将其合理运用,在此基础上,以利润最大为目标,长远发展为原则,制定出信息不足条件下的量化综合评价体系,并为出版社在2006年如何合理有效地分配有限的书号资源提供了最佳的分配方案。
在本文所建立的模型中,我们采取了层次分析法(AHP)、数据统计拟合以及整数线性规划相结合的手段,这样既借鉴了层次分析法综合评价的优势,又克服了该法中主观因素的不确定性,使模型更具有科学性,作出了出版社2006年的分配方案,如下表经过对模型的检验,单从生产计划准确度一项来看,模型所得出的结果就比以往的高,这样就首先保证了出版社获得年度稳定利润的前提,其他几个评价指标也都可以得出相似的结论。
以2006年与2005年生产计划的准确度为例,作比较:2005年的各分社平均生产计划的准确度为0.702006年的各分社平均生产计划的准确度为0.85平均准确度提高约21%从数据的对比中,我们很容易看出本模型具有较高的有效性和合理性。
根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。
数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。
关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。
广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。
一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。
如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。
一、二年级是学生初步感知数学得重要时期。
低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。
数学建模全国优秀论文范文随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,数学建模全国优秀论文1:《浅谈数学建模教育的作用与开展策略》数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说",数学建模"包含五个阶段。
1.准备阶段主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
数码相机定位摘要本文是双目定位的具体模型和方法进行了研究,分别给出了针孔线性模型、椭圆线性回归模型、RAC模型等并对其进行研究。
对于问题一,在针孔线性模型的基础上,通过对数码相机内外部参数的标定,确定靶标到靶标像的坐标转化关系,建立其坐标转换模型。
对于问题二,利用图像处理所得的像素模拟图表确定20组特征点的坐标在世界坐标系和图像坐标系的坐标,代入上述转换关系来确定系数矩阵M,进而求得圆心在像平面的像坐标,然后利用畸变校正模型对结果进行校正。
结果为左上圆(119.0938,69.6890)、中间圆(155.7689,72.4757)右上圆(234.6404,78.4603)、左下圆(105.4604,185.3796)右下圆(214.5271,184.9706)。
对于问题三,建立椭圆线性回归模型对靶标的像进行拟合,得到的图像中心坐标即为圆心在像平面的像坐标。
结果分析还表明该方法的精度和稳定性都比较好。
结果如下:左上圆(120.0039,69.2536)、中间圆(155.1462,73.0654)右上圆(236.2001,77.8279)、左下圆(103.4572,182.3599)右下圆(216.8469,179.6788)。
模型三与模型一的结果相差最大为2.945%。
很好地验证了模型一的结果的准确性对于问题四,利用RAC模型,确定出单个相机的外部参数,得出其旋转矩阵和平移向量,即完成单个相机的定标,然后利用其几何转化由相机各自的旋转矩阵和平移向量求解出两个相机的相对位置。
关键词:针孔线性模型像素模拟图表畸变校正曲线拟合RAC模型一.问题的重述与分析已知:一靶标和用一位置固定的数码相机摄的它的像,如题目中图3所示。
其中靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。
以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如题目中图1.1所示。
I 、问题重述 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:请尝试建立数学模型讨论下列问题: 1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?中两组评酒员的评价结果有无显著性差异,哪一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?酒的理化指标来评价葡萄酒的质量?II 、问题分析问题思路问题一: 本问题中,两组各10名评酒员分别对27种红葡萄酒和28种白葡萄酒进行评分。
其中,评分标准一样,评酒员都能理性的按照标准给酒一个合理的评分。
由于,每个人的口感、视觉效果和嗅觉不一样,品酒员给每种酒打的分数不一样而产生误差。
品酒员给每种酒打的分数不一样而产生误差。
根据表格,根据表格,分别计算出两组10名评酒员的评价总分、标准方差、平均值。
运用SAS 对两组进行配对样本T 检验,并用Excle 进行图标分析。
对比两种结果并得出统一结论。
给及两组评酒员的评价结果的差异性和可信度进行评估。
组评酒员的评价结果的差异性和可信度进行评估。
问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级,这里的分级问题需要考虑两方面的问题处理:1、对葡萄理化指标和影响葡萄酒质量评定的标准进行整合分析,2、现实中还没有统一的酿酒葡萄分级标准,现实中还没有统一的酿酒葡萄分级标准,对本题中葡萄进行分级需要有一对本题中葡萄进行分级需要有一套标准。
《红色警戒》中兵种战斗力的数字建模与统计研究:以苏联为例北京二中初一(2)班韩澈摘要:数学建模是应用知识从实际课题中抽象、提炼出数学模型的过程。
本文利用数学建模的方法,对游戏《红色警戒red alert》中的兵力情况进行分析,以苏联的9种兵力为例,,探讨了在如此多的兵种中,哪个兵种的攻击力更有价值问题。
研究通过数学建模的思想,运用统计分析方式,发现在此款游戏中,炮兵综合值最高,在战争中最有价值,其次是光凌坦克,最弱的是战斗机。
在今后的对比研究中还可继续拓展分析,以便得到更全面的数据。
关键字:数学建模;红色警戒;比较;统计红色警戒是一款策略游戏,玩家控制苏联或美国来制造军队,配合正确的战略手段,最终将敌人消灭。
在这款游戏中,苏联和美国各有9个兵种,每个兵种都有自己的优势和劣势。
[1]在游戏《红色警戒red alert》当中,苏联共有9种兵力,在如此多的兵种中,究竟哪个更有价值?当玩家在玩“红警”时,总会想到这个问题,只要自己制造的兵力的价值最高,就能在战争中获得胜利。
我把这九种兵力按照“制造时间”、“制造金钱”、“生命”、“攻击”、“打击范围”这几个方面进行统计制成下表:为了更加清楚地比较出哪种兵力更好,我又分别制成了条形统计图,具体分析了每种兵力的特点。
如下:“制造时间”的条形统计图:由于在战争中,速度决定成败,所以制造时间越短,在时间上的优势就越大。
通过图表我们可以很清楚地看出:制造“熊”所需的时间最短,其次是步兵,然后是炮兵,制造所需时间最长的是天启坦克。
“制造金钱”的条形统计图:金钱是战争中必要的资源之一,所以花费的金钱数额相对越少,就有更多优势,可以利用有效的资金建造更多武器资源。
此图标分析出:“熊”的花费最少,“天启”耗资最多。
“生命”的条形统计图:上图表明:天启坦克的生命值最多,其次是光凌坦克,最低为步兵、炮兵、熊。
“攻击”的条形统计图:此图研究出攻击力最强的是天启坦克和飞艇,它们的攻击力是2,最弱的是步兵。
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。
文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。
一、问题重述在当今社会,具体问题背景。
本次数学建模竞赛的问题是:详细描述问题。
需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。
二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。
从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。
进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。
基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。
三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。
四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。
详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。
详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。
系泊系统的设计摘要本文详细对系泊系统的各个机构进行了力学分析,针对系泊系统的要求,建立优化模型,求解系泊系统在多种环境下的最优解,使得浮标游动范围,吃水程度和钢桶倾斜角度尽可能的小。
针对问题一,本文对系泊系统的受力及力矩进行了分析,基于浮标倾斜的考虑,得到了平衡状态下关于受力平衡及力矩平衡的方程组。
由于方程组数量较多及相互影响的特点,直接求解十分困难。
因此我们考虑以浮标两边的浸水长度,h h为变量,12利用搜索算法对方程组进行求解,并得到相应的结果。
如当风速为12m/s时,钢桶的倾斜角度1.0405°,从上到下钢管的倾斜角度分别为1.0086°、1.0146°、1.0206°、1.0267°,浮标吃水深度0.735m,浮标游动区域半径14.4429m。
针对问题二,首先将风速为36m/s的情况代入问题一建立的模型中,但是得到的结果不满足题目所给定的要求。
则考虑在重物球质量一定的条件下,以浮标的吃水深度和游动区域及钢桶的倾斜角为目标,建立了一个单决策变量的多目标最优系泊模型,相比于问题一,此问的变量更多,更加难于求解,故考虑将多目标转化成单目标的问题进行求解,并继续使用搜索法对问题进行求解。
最后找到了三组可行解,其中最优解是重力球的质量为2102kg.针对问题三,本文中有三个决策变量以及三个变系数,相比于前两问,无论是计算量还是计算维数,难度更大。
为了求解该问,建立了一个多决策变量的多目标变系数的最优系泊系统模型,为了简便运算,我们建立了变步长的搜索算法,并最终求解得到结果,得到的一组解为:选用了III型号的锚链,重物球质量为2800kg,锚链长度为23.4m。
针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。
关键词:系泊系统设计;力的平移定理;多目标;优化模型;搜索算法1.问题的重述一个由浮标系统、系泊系统和水声通讯系统组成的近浅海观测网的传输节点。
数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。
通过收集历史空气质量数据,构建空气质量预测模型。
运用机器学习算法对模型进行训练和优化,提高预测精度。
通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。
二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。
建立物流配送模型,考虑配送成本、时间、距离等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。
三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。
构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。
运用风险度量方法对模型进行评估。
通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。
四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。
建立能源消耗模型,考虑设备运行、生产计划等因素。
运用优化算法对模型进行求解。
通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。
五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。
收集历史交通流量数据,构建交通流量预测模型。
运用时间序列分析方法对模型进行训练和优化。
通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。
数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。
建立医疗资源需求模型,考虑人口分布、疾病类型等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。
数学建模获奖论文(优秀范文10篇)11000字数学建模竞赛从1992年始,到现如今已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。
本篇文章就为大家介绍一些数学建模获奖论文,供给大家欣赏和探讨。
数学建模获奖论文优秀范文10篇之第一篇:高中数学核心素养之数学建模能力培养的研究摘要:数学建模是一种比较重要的能力,教师在进行高中数学教学的过程中应该让学生们学习这种能力,这对于解决高中数学问题是比较有效的,而且对于学生们未来接受高等教育有更重要的意义。
教师在进行高中数学教学的过程中需要让学生们的能力得到锻炼,提升能力是教学的主要目的,学习知识是比较基础的教学目的,教师如果想让学生们的能力得到锻炼应该对教学方法进行更新,高中数学对于很多学生们来说都是比较困难的,所以教师应该不断更新教学方法,让学生们能理解教师的教学目的,而且找到适合自己的学习方法,这也是核心素养的基本内涵。
本文将对高中数学核心素养之数学建模能力培养进行研究。
关键词:高中数学; 核心素养; 数学建模; 能力培养; 应用研究;建模活动是一项比较有创造性的活动,学生们在学习的过程中一定要具备创新思维和自主学习能力,建模活动进行过程中可以让学生们独立,自觉运用数学理论知识去探索以及解决问题,构建模型解决实际问,教学活动中,让学生们的基础知识更加牢固、基本技能得到锻炼是最根本的目的。
学生们的运算能力以及逻辑思维能力也能在建模活动中得到锻炼,提升学生们的空间观念以及增强应用数学意识是延伸目的。
一、对数学建模的基本理解概述高中数学建模最简单的解释就是利用学生们学习过的理论知识来建立数学模型解决遇到的问题。
数学建模的基本过程就是对生活中或者课本中比较抽象问题解决的过程。
通过抽象可以建立刻画出一种较强的数学手段,通过运用数学思维也能观察分析各种事物的基本性质和特点。
学生们可以从复杂的问题中抽离出自己熟悉的模型,然后在利用好数学模型去解决实际问题基本就是事半功倍。
电力市场输电阻塞管理模型摘要本文通过设计合理的阻塞费用计算规则,建立了电力市场的输电阻塞管理模型。
通过对各机组出力方案实验数据的分析,用最小二乘法进行拟合,得到了各线路上有功潮流关于各发电机组出力的近似表达式。
按照电力市场规则,确定各机组的出力分配预案。
如果执行该预案会发生输电阻塞,则调整方案,并对引起的部分序内容量和序外容量的收益损失,设计了阻塞费用计算规则。
通过引入危险因子来反映输电线路的安全性,根据安全且经济的原则,把输电阻塞管理问题归结为:以求解阻塞费用和危险因子最小值为目标的双目标规划问题。
采用“两步走”的策略,把双目标规划转化为两次单目标规划:首先以危险因子为目标函数,得到其最小值;然后以其最小值为约束,找出使阻塞管理费用最小的机组出力分配方案。
当预报负荷为982.4MW时,分配预案的清算价为303元/MWh,购电成本为74416.8元,此时发生输电阻塞,经过调整后可以消除,阻塞费用为3264元。
当预报负荷为1052.8MW时,分配预案的清算价为356元/MWh,购电成本为93699.2元,此时发生输电阻塞,经过调整后可以使用线路的安全裕度输电,阻塞费用为1437.5元。
最后,本文分析了各线路的潮流限值调整对最大负荷的影响,据此给电网公司提出了建议;并提出了模型的改进方案。
一、问题的重述我国电力系统的市场化改革正在积极、稳步地进行,随着用电紧张的缓解,电力市场化将进入新一轮的发展,这给有关产业和研究部门带来了可预期的机遇和挑战。
电网公司在组织电力的交易、调度和配送时,必须遵循电网“安全第一”的原则,同时按照购电费用最小的经济目标,制订如下电力市场交易规则:1、以15分钟为一个时段组织交易,每台机组在当前时段开始时刻前给出下一个时段的报价。
各机组将可用出力由低到高分成至多10段报价,每个段的长度称为段容量,每个段容量报一个段价,段价按段序数单调不减。
2、在当前时段内,市场交易-调度中心根据下一个时段的负荷预报、每台机组的报价、当前出力和出力改变速率,按段价从低到高选取各机组的段容量或其部分,直到它们之和等于预报的负荷,这时每个机组被选入的段容量或其部分之和形成该时段该机组的出力分配预案。
电力市场输电阻塞管理模型摘要本文通过设计合理的阻塞费用计算规则,建立了电力市场的输电阻塞管理模型。
通过对各机组出力方案实验数据的分析,用最小二乘法进行拟合,得到了各线路上有功潮流关于各发电机组出力的近似表达式。
按照电力市场规则,确定各机组的出力分配预案。
如果执行该预案会发生输电阻塞,则调整方案,并对引起的部分序内容量和序外容量的收益损失,设计了阻塞费用计算规则。
通过引入危险因子来反映输电线路的安全性,根据安全且经济的原则,把输电阻塞管理问题归结为:以求解阻塞费用和危险因子最小值为目标的双目标规划问题。
采用“两步走”的策略,把双目标规划转化为两次单目标规划:首先以危险因子为目标函数,得到其最小值;然后以其最小值为约束,找出使阻塞管理费用最小的机组出力分配方案。
当预报负荷为982.4MW时,分配预案的清算价为303元/MWh,购电成本为74416.8元,此时发生输电阻塞,经过调整后可以消除,阻塞费用为3264元。
当预报负荷为1052.8MW时,分配预案的清算价为356元/MWh,购电成本为93699.2元,此时发生输电阻塞,经过调整后可以使用线路的安全裕度输电,阻塞费用为1437.5元。
最后,本文分析了各线路的潮流限值调整对最大负荷的影响,据此给电网公司提出了建议;并提出了模型的改进方案。
一、问题的重述我国电力系统的市场化改革正在积极、稳步地进行,随着用电紧张的缓解,电力市场化将进入新一轮的发展,这给有关产业和研究部门带来了可预期的机遇和挑战。
电网公司在组织电力的交易、调度和配送时,必须遵循电网“安全第一”的原则,同时按照购电费用最小的经济目标,制订如下电力市场交易规则:1、以15分钟为一个时段组织交易,每台机组在当前时段开始时刻前给出下一个时段的报价。
各机组将可用出力由低到高分成至多10段报价,每个段的长度称为段容量,每个段容量报一个段价,段价按段序数单调不减。
2、在当前时段内,市场交易-调度中心根据下一个时段的负荷预报、每台机组的报价、当前出力和出力改变速率,按段价从低到高选取各机组的段容量或其部分,直到它们之和等于预报的负荷,这时每个机组被选入的段容量或其部分之和形成该时段该机组的出力分配预案。
最后一个被选入的段价称为该时段的清算价,该时段全部机组的所有出力均按清算价结算。
电网上的每条线路上有功潮流的绝对值有一安全限值,限值还具有一定的相对安全裕度。
如果各机组出力分配方案使某条线路上的有功潮流的绝对值超出限值,称为输电阻塞。
当发生输电阻塞时,需要按照以下原则进行调整:1、调整各机组出力分配方案使得输电阻塞消除;2、如果1做不到,可以使用线路的安全裕度输电,以避免拉闸限电,但要使每条线路上潮流的绝对值超过限值的百分比尽量小;3、如果无论怎样分配机组出力都无法使每条线路上的潮流绝对值超过限值的百分比小于相对安全裕度,则必须在用电侧拉闸限电。
调整分配预案后,一些通过竞价取得发电权的发电容量不能出力;而一些在竞价中未取得发电权的发电容量要在低于对应报价的清算价上出力。
因此,发电商和网方将产生经济利益冲突。
网方应该为因输电阻塞而不能执行初始交易结果付出代价,网方在结算时应该适当地给发电商以经济补偿,由此引起的费用称之为阻塞费用。
网方在电网安全运行的保证下应当同时考虑尽量减少阻塞费用。
现在需要完成的工作如下:1、某电网有8台发电机组,6条主要线路,附件1中表1和表2的方案0给出了各机组的当前出力和各线路上对应的有功潮流值,方案1~32给出了围绕方案0的一些实验数据,试用这些数据确定各线路上有功潮流关于各发电机组出力的近似表达式。
2、设计一种简明、合理的阻塞费用计算规则,除考虑电力市场规则外,还需注意:在输电阻塞发生时公平地对待序内容量不能出力的部分和报价高于清算价的序外容量出力的部分。
3、假设下一个时段预报的负荷需求是982.4MW,附件1中的表3、表4和表5分别给出了各机组的段容量、段价和爬坡速率的数据,试按照电力市场规则给出下一个时段各机组的出力分配预案。
4、按照表6给出的潮流限值,检查得到的出力分配预案是否会引起输电阻塞,并在发生输电阻塞时,根据安全且经济的原则,调整各机组出力分配方案,并给出与该方案相应的阻塞费用。
5、假设下一个时段预报的负荷需求是1052.8MW,重复3~4的工作。
二、问题的分析市场交易-调度中心在一个时段内的工作流程如图1所示。
首先根据电力市场交易规则及负荷预报需求确定下一时段各机组出力的分配预案,再通过计算各线路潮流值判断是否会出现输电阻塞。
若出现,则按输电阻塞管理原则对预案进行调整。
图1 市场交易-调度中心工作流程图根据功率的叠加原理,各线路上有功潮流应为各发电机组出力的线性组合,考虑对所有实验数据采用最小二乘法进行线性拟合,从而得到各线路有功潮流关于各发电机组出力的近似表达式。
得到分配预案后,代入近似表达式便可计算各线路上的潮流值。
为保证电网的安全,每条线路潮流的绝对值超过潮流限值的百分比应尽量小。
若使各线路中潮流超出的百分比中最大的值尽量小,就可保证所有线路上潮流超出的百分比较小,即电网相对较为安全。
在电网安全运行的保证下应当同时考虑尽量减少阻塞费用。
阻塞费用分为两个部分:一是对序内容量不能出力部分的补偿;二是对报价高于清算价的序外容量出力部分的补偿。
以每个机组各自的报价作为其边际成本,则该机组单位出力的绝对盈利为清算价与报价的差值,因此,补偿的主要目的是解决由于方案调整导致的获利变化的问题。
该阻塞管理问题归结为在一定约束条件下的最优化问题。
优化目标为使潮流超出现值的百分比尽量小,同时尽可能减少阻塞费用。
三、基本假设1、机组当前出力是对机组在当前时段结束时刻实际出力的预测值;2、每个时段的负荷预报和机组出力分配计划的参照时刻均为该时段结束时刻;3、机组在单位时间内能增加或减少的出力相同,出力值为爬坡速率;4、各个发电机组出力相互独立,即出力不受其他机组影响。
四、定义符号说明1、名词解释电力市场:电力的买方和卖方相互作用以决定其电价和电量的过程(见[1]第4页);边际成本:在一定的时期内,增加一个单位产量所需支付的成本;序内容量:在电力市场中通过竞价取得发电权的发电容量;序外容量:在竞价中未取得发电权的发电容量;爬坡速率:机组在单位时间内能增加或减少的出力值;最终报价:进行结算时,机组分配到的出力对应的报价。
2、符号说明x:第i个机组的出力值;单位:兆瓦,记作MWix':调整后第i个机组的出力值;单位:MWiv:第i个机组的爬坡速率;单位:MW/分钟il:第j条线路的有功潮流值;单位:MWjA:第j条线路的初始潮流值;单位:MWjL:第j条线路的潮流限值;单位:MWja:第j条线路的潮流的安全裕度;jp:分配预案中第i个机组的最终报价;单位:元/ MWhip':调整方案后第i个机组的最终报价;单位:元/ MWhi+f:对第i个序外容量的补偿;单位:元i-f:对第i个序内容量的补偿;单位:元iX:负荷预报;单位:MWP:清算价;单位:元/ MWhT : 时段长,T 为15分钟;五、模型的建立1、建模前的准备1)有功潮流近似表达式的确定每条线路上的有功潮流取决于电网结构和各发电机组的出力,问题所研究的电网有8台发电机组,6条主要线路,附件1中的表1和表2的方案0给出了各机组的当前出力和各线路上对应的潮流值,方案1~32给出了围绕方案0的一些实验数据。
根据功率的叠加原理,我们认为各线路上有功潮流应为各发电机组出力的线性组合,随机抽取几组方案进行检验,得到以下图形:线路1受机组1的影响 线路2受机组2的影响线路3受机组4的影响 线路5受机组7的影响图2 对实验方案的分析从图形中我们发现,有功潮流受到各机组的影响近似成线性关系,因此假设有功潮流关于各个机组出力的函数关系式为j i i ji j A x k l +=∑=81其中j l 表示第j 条线路上的潮流值,ji k 表示第j 条线路受第i 台机组影响的比例系数,i x 表示第i 台机组的出力,j A 表示第j 条线路对应的初始潮流值。
对应每一条线路,根据表1表2 中的数据可列出关于未知数ji k (i=1,2,…,8)的32个方程的超定方程组,在Matlab 下编程求解方程组(源程序见附件2),得到结果如下:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----+⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0466.00655.00120.01247.00867.00257.00929.00412.00209.00099.00332.01199.00781.00647.02050.01565.00001.00528.00607.02428.01028.00620.01275.00478.02376.00003.00346.00694.00547.00826.054321654321x x x x x l l l l l l +⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--8481.1201334.1336116.779928.1083521.1314775.1100004.00092.00763.02012.00985.00015.01664.00039.01452.00028.00186.0122.00003.00700.00057.00024.01127.01216.0876x x x2)阻塞费用计算规则的设计当改变根据电力市场交易规则得到的各机组出力分配预案时,一些通过竞价取得发电权的发电容量(称序内容量)不能出力;而一些在竞价中未取得发电权的发电容量(称序外容量)要在低于对应报价的清算价上出力。
以机组的最终报价作为其边际成本,则该机组单位出力的绝对盈利为清算价与报价的差值,因此,补偿的主要目的是解决由于方案调整导致获利变化的问题。
我们设计的阻塞费用计算规则如下:① 对于序内容量:由于方案的调整,使得一些机组的出力值减少,减少部分的获利值消失。
为解决这部分冲突,网方赔偿该机组应得的获利值,有调整量调整前报价)(清算价补偿费用⨯-=即 )()(i i i i x x p P f '-⨯-=-② 对于序外容量:方案调整后,一些机组由于出力增加,其边际成本(报价)也随之增加,但由于清算价保持不变,机组不得不在低于其报价的清算价上出力,导致了获利损失。
因此,网方对调整的出力部分造成的损失应给予补偿,有调整量清算价)(调整后报价补偿费用⨯-=即 )()(i i i i x x P p f -'⨯-'=+总的阻塞费用即为∑=-++=81)(i i i f f f2、约束条件的讨论1)爬坡速率由假设1,在当前时段,市场交易-调度中心预测出各机组结束时刻的实际出力,即当前出力值,由于爬坡速率的约束,当前出力在时段长15分钟内改变的值有限,有T v x x i i i -=0min , T v x x i i i +=0max其中,对于第i 个机组,0i x 为当前的出力值,m in i x 为其下一时段出力值的下限,max i x 为其下一时段出力值的上限, i v 为爬坡速率,T 为时段长。