9.2 一元一次不等式
锦囊妙计
构造不等式解文字叙述题的方法 首先要读懂题意, 抓住表示不等关系的关 键词和数量关系, 构造 不等式, 再根据不等式的 基本性质求解.
9.2 一元一次不等式
题型八 利用一元一次不等式解决实际问题
例题8 某次知识竞赛共有20道题, 每一题答 对得10分, 答错或不答 都扣5分. 小明得分要超过 90分, 他至少要答对多少道题?
9.2 一元一次不等式
题型四 根据一元一次不等式的整数解求待定字母的取值范围
例题4 若关于x的不等式k-2x> 0的正整数解为1, 2, 3, 则k的取值 范围 是 6<k≤8 .
9.2 一元一次不等式
锦囊妙计
利用整数解求待定字母取值范围的方法 (1)先表示出不等式的解集, 再根据整数解 构造出含待定字母的不等式 组, 最后确定待定 字母的取值范围. (2)因为数轴具有直观的特点, 所以可以借 助数轴来确定待定字母的取 值范围.
题型三 根据一元一次不等式的解集求待定字母的值
例题3 在实数范围内规定新运 算“△”, 其规则是a△b=2a- b.若 不等式x△k≥1的解集在数轴上的表 示如图9-2-5所示, 则k的 值是 -3 .
图9-2-5
9.2 一元一次不等式
9.2 一元一次不等式
锦囊妙计
求不等式中待定字母的解题策略 (1)已知一个不等式的解集与其他不等式的 解集的关系, 在确定其中所 含字母的取值时, 注 意字母对不等式解集的影响. (2)化简整理后, 若未知数的系数含有字母, 则需要分类讨论;若未知数 的系数不含有字母, 则不需要讨论, 直接由两不等式解集间的关系 求待 定字母的值或取值范围. (3)若x>a与x>b的解集相同, 则a=b;若 x>a的解是x>b的解, 则a≥b, 不要误认为a=b, 这里实质是x>b的解集包含x>a的解集.