第七章-弯曲应力(2)
- 格式:ppt
- 大小:949.50 KB
- 文档页数:24
第七章弯曲应力7.1预备知识一、基本概念 1、二、重点与难点 1、 2、 3、三、解题方法要点 1、 2、7.2典型题解一、计算题长为l 的矩形截面梁,在自由端作用一集中力F ,已知h=0.18m ,b=0.12m,y=0.06m,a =2m,F=1.5kN ,求C 截面上K 点的正应力。
解:先算出C 截面上的弯矩m N m N Fa M C ⋅⨯-=⨯⨯-=-=331032105.1截面对中性轴(即水平对称轴)的惯性矩为4433310583.01218.012.012m m m bh I z -⨯=⨯==将C M 、z I 及y 代入正应力公式(7—7)。
代入时,C M 、y 均不考虑正负号而以绝对值代入,则MPa Pa m mm N y I M z C K09.31009.306.010583.01036443=⨯=⨯⨯⋅⨯=⋅=-σ C 截面的弯矩为负,K 点位于中性轴上边,所以K 点的应力为拉应力。
在我国法定计量单位制中,应力的单位为Pa 在计算梁的正应力时,弯矩用N.m 、y 用m 、惯性矩用m 4,则算得的应力单位即为Pa 。
二、计算题一矩形珙面的简支木梁,梁上作用有均布荷载,已知:l =4m ,b=140mm,h=210mm,q=2kN/m ,弯曲时木木材的许用正应力[]σ=10MPa ,试校核该梁的强度。
解:梁中的最大正应力发生在跨中弯矩最大的截面上,最大弯矩为m N m m N ql M ⋅⨯=⨯⨯⨯==32232m ax 1044/1028181弯曲截面系数为3222210103.021.014.0616m m m bh W z -⨯=⨯⨯==最大正应力为[]σσ<=⨯=⨯⋅⨯==-MPa Pa m m N W M z 88.31088.310103.01046323max max所以满足强度要求。
二、计算题就计算题一,求梁能承受的最大荷载(即求m ax q )。
解:根据强度条件,梁能承受的最大弯矩为[]σz W M =m ax 跨中最大弯矩与荷载q 的关系为2m ax 81ql M = 所以[]281ql W z =σ 从而得[]m kN m N mPam lW q z /15.5/51504101010103.088226322==⨯⨯⨯⨯==-σ即梁能承受的最大荷载为m kN q /15.5m ax =。
材料力学弯曲应力材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,而弯曲应力是材料在受到弯曲载荷时所产生的应力。
弯曲应力的研究对于工程结构设计和材料选用具有重要意义。
本文将从弯曲应力的概念、计算公式、影响因素等方面进行详细介绍。
弯曲应力是指在材料受到弯曲载荷作用下,横截面上的应力分布情况。
在弯曲过程中,材料上部受到压应力,下部受到拉应力,而中性面则不受应力影响。
根据梁的理论,弯曲应力与弯矩、截面形状以及材料性质有关。
在工程实践中,我们通常使用梁的弯曲应力公式来计算弯曲应力的大小。
梁的弯曲应力公式可以表示为:\[ \sigma = \frac{M \cdot c}{I} \]其中,σ为弯曲应力,M为弯矩,c为截面中性轴到受拉或受压纤维的距离,I为截面的惯性矩。
从公式中可以看出,弯曲应力与弯矩成正比,与截面形状和材料性质有关,截面越大,惯性矩越大,弯曲应力越小。
影响弯曲应力的因素有很多,主要包括载荷大小、截面形状、材料性质等。
首先是载荷大小,当外力作用在梁上时,产生的弯矩大小将直接影响弯曲应力的大小。
其次是截面形状,截面形状不同将导致截面惯性矩不同,进而影响弯曲应力的大小。
最后是材料性质,材料的弹性模量、屈服强度等参数也会对弯曲应力产生影响。
在工程实践中,我们需要根据具体的工程要求和材料性质来选择合适的截面形状和材料类型,以使得结构在受到弯曲载荷时能够满足强度和刚度的要求。
同时,还需要合理设计结构,减小弯曲应力集中的区域,避免出现应力集中而导致的破坏。
综上所述,弯曲应力是材料在受到弯曲载荷时产生的应力,其大小与弯矩、截面形状和材料性质有关。
在工程实践中,我们需要根据具体的工程要求和材料性质来计算和分析弯曲应力,以保证结构的安全可靠。
同时,合理设计结构和选择合适的材料也是降低弯曲应力的重要手段。
希望本文对于弯曲应力的理解和应用能够有所帮助。
第七章压力容器中的薄膜应力、弯曲应力与二次应力章小结本章介绍了容器承压时器壁内存在的三种性质不同的应力,即一次薄膜应力,一次弯曲应力和边界应力。
这三种应力在容器的强度计算中将不同程度的涉及。
其中一次薄膜应力是最基本的,在下一章中容器强度计算的讨论基本上是以薄膜应力为基础展开的,所以在三种应力中,薄膜应力是必须掌握的重点。
一次弯曲应力虽然也是十分重要的,但是在压力容器中以弯曲为主的受压元件较少,所以从强度计算的数量来说远少于薄膜应力。
二次应力由于它的产生原因不同于一次应力,而且又是考虑容器强度问题时不能回避的应力,所以对于二次应力的产生原因、性质特点、限制条件我们都作了定性的分析讨论。
通过这种讨论应该了解在什么情况下以及为什么可以不考虑二次应力而在另外一些情况下又为什么必须考虑二次应力。
有了这个基础,才能够理解下一章将要讨论的压力容器强度计算与结构设计中对一些问题的处理。
7.1 回转壳体中的薄膜应力1.容器是化工生产所用各种设备外部壳体的总称。
2.容器一般是由筒体、封头、法兰、支座、接管及人孔等元件构成。
筒体和封头是容器的主体。
3.压力容器壳体除平板形封头外都是回转壳体。
4.以任何直线或平面曲线为母线,绕其同平面曲线为母线,绕其同平面内的轴线旋转一周后形成的曲面,称为回转曲面。
5.过球形壳体上任何一点和球心,不论从任何方向将球形壳体截开两半,都不可以利用受力平衡条件求得截面上的薄膜应力为σ=pD/4δ。
6.与圆筒形壳体相比,球形壳体上的薄膜应力只有圆筒形壳体上最大薄膜应力值得一半。
7.圆锥形壳体中间面的母线虽然也是直线,但它不是平行于回转轴,而是与回转轴相交,其交角称为圆锥形壳体的半锥角。
正是由于这个缘故,圆锥形壳体中面上沿其母线上各点的回转半径不相等。
因此,圆锥形壳体上的薄膜应力从大端到小端是不一样的。
7.2边界区内二次应力1.筒体与封头在连接处所出现的这种自由变形的不一致,必然导致在这个局部的边界地区产生相互约束的附加内力,即边界应力。
第七章_压力容器中的薄膜应力、弯曲应力和二次应力第七章压力容器中的薄膜应力、弯曲应力和二次应力在压力容器设计中,薄膜应力、弯曲应力和二次应力是三种主要的应力类型,对容器的结构和稳定性有着至关重要的影响。
了解和掌握这三种应力的性质和计算方法,对于设计者来说是至关重要的。
一、薄膜应力薄膜应力是一种主要的应力类型,通常发生在压力容器表面。
它是由容器内外的压力差引起的。
在压力容器设计中,薄膜应力是必须考虑的重要因素之一。
它可以通过薄膜应力强度因子进行计算,这个强度因子通常由经验公式和实验数据确定。
对于圆形平盖和球形封头,薄膜应力的计算公式可以分别简化为对圆板和球壳的薄膜应力计算公式。
对于其他更复杂的形状,如椭圆或锥形,则需要使用更复杂的公式进行计算。
二、弯曲应力弯曲应力通常发生在压力容器的部分区域,例如在容器壁的局部区域或连接处。
这种应力是由于容器内外的压力差和容器结构的自重引起的。
弯曲应力的计算通常需要考虑多种因素,如材料的弹性模量、泊松比、压力以及容器的几何形状和尺寸等。
在压力容器设计中,弯曲应力可以通过有限元分析等方法进行计算和评估。
这种方法可以更准确地模拟容器的实际结构和载荷条件,从而得到更精确的弯曲应力结果。
三、二次应力二次应力是由于局部区域的薄膜应力和弯曲应力的组合而产生的。
它通常发生在压力容器的某些特定区域,如连接处或容器壁的局部区域。
二次应力的计算需要考虑多种因素,如材料的弹性模量、泊松比、压力以及容器的几何形状和尺寸等。
在压力容器设计中,二次应力的计算通常需要通过有限元分析等方法进行。
这种方法可以更准确地模拟容器的实际结构和载荷条件,从而得到更精确的二次应力结果。
同时,二次应力的分布和大小也需要通过实验进行验证和校核。
四、设计建议在压力容器设计中,为了降低薄膜应力、弯曲应力和二次应力对容器结构的影响,以下一些建议可以作为参考:1.优化容器的几何形状和尺寸:通过改变容器的几何形状和尺寸,可以降低应力集中程度,从而降低薄膜应力、弯曲应力和二次应力的大小。