配位化学精简版
- 格式:pptx
- 大小:558.85 KB
- 文档页数:70
第1章配位化学导论配位化学(coordination chemistry)是无机化学的一个重要分支学科。
配位化合物(coordination compounds)(有时称络合物complex)是无机化学研究的主要对象之一。
配位化学的研究虽有近二百年的历史,但仅在近几十年来,由于现代分离技术、配位催化及化学模拟生物固氮等方面的应用,极大地推动了配位化学的发展。
它已广泛渗透到有机化学、分析化学、物理化学、高分子化学、催化化学、生物化学等领域,而且与材料科学、生命科学以及医学等其他科学的关系越来越密切。
目前,配位化合物广泛应用于工业、农业、医药、国防和航天等领域。
1.1 配位化学发展简史历史上记载的第一个配合物是普鲁士蓝。
它是1704年由柏林的普鲁士人迪斯巴赫(Diesbach)制得,它是一种无机颜料,其化学组成为Fe4[Fe(CN)6]3·nH2O。
但是对配位化学的了解和研究的开始一般认为是1798年法国化学家塔萨厄尔(B.M.Tassaert)报道的化合物CoCl3·6NH3,他随后又发现了CoCl3·5NH3、CoCl3·5NH3·H2O、CoCl3·4NH3以及其他铬、铁、钴、镍、铂等元素的其他许多配合物,这些化合物的形成,在当时难于理解。
因为根据经典的化合价理论,两个独立存在而且都稳定的分子化合物CoCl3和NH3为什么可以按一定的比例相互结合生成更为稳定的“复杂化合物”无法解释,于是科学家们先后提出多种理论,例如,布隆斯特兰德(W.Blomstrand)在1869年、约尔更生(S.M.Jørgensen)在1885年分别对“复杂化合物”的结构提出了不同的假设(如“链式理论”等),但由于这些假设均不能圆满地说明实验事实而失败。
1893年,年仅27岁的瑞士科学家维尔纳(A.Werner)发表了一篇研究分子加合物的论文“关于无机化合物的结构问题”,改变了此前人们一直从平面角度认识配合物结构的思路,首次从立体角度系统地分析了配合物的结构,提出了配位学说,常称Werner配位理论,其基本要点如下:(1) 大多数元素表现有两种形式的价,即主价和副价;(2) 每一元素倾向于既要满足它的主价又要满足它的副价;(3) 副价具有方向性,指向空间的确定位置。
配位化学知识点总结一、配位化学的基本概念配位化学是研究金属离子(或原子)与配体之间形成的配位化合物的结构、性质和反应的化学分支。
首先,我们来了解一下什么是配体。
配体是能够提供孤对电子与中心金属离子(或原子)形成配位键的分子或离子。
常见的配体有水分子、氨分子、氯离子等。
而中心金属离子(或原子)则具有空的价电子轨道,可以接受配体提供的孤对电子。
配位键是一种特殊的共价键,由配体提供孤对电子进入中心金属离子(或原子)的空轨道而形成。
配位化合物则是由中心金属离子(或原子)与配体通过配位键结合形成的具有一定空间结构和化学性质的化合物。
二、配位化合物的组成配位化合物通常由内界和外界两部分组成。
内界是配位化合物的核心部分,由中心金属离子(或原子)与配体紧密结合而成。
例如,在Cu(NH₃)₄SO₄中,Cu(NH₃)₄²⁺就是内界。
外界则是与内界通过离子键结合的其他离子。
在上述例子中,SO₄²⁻就是外界。
中心金属离子(或原子)的化合价与配体的化合价之和等于配位化合物的总化合价。
配位数指的是直接与中心金属离子(或原子)结合的配体的数目。
常见的配位数有 2、4、6 等。
三、配位化合物的结构配位化合物具有特定的空间结构。
常见的配位几何构型有直线型、平面三角形、四面体、八面体等。
例如,配位数为 2 时,通常形成直线型结构;配位数为 4 时,可能是平面正方形或四面体结构;配位数为 6 时,多为八面体结构。
这些结构的形成取决于中心金属离子(或原子)的电子构型和配体的大小、形状等因素。
四、配位化合物的命名配位化合物的命名有一套严格的规则。
先命名外界离子,然后是内界。
内界的命名顺序为:配体名称在前,中心金属离子(或原子)名称在后。
配体的命名顺序遵循先无机配体,后有机配体;先阴离子配体,后中性分子配体。
对于同类配体,按配体中原子个数由少到多的顺序命名。
如果配体中含有多种原子,先列出阴离子配体,再列出中性分子配体。
配位化学知识点总结配位化学是无机化学的一个重要分支,它研究的是金属离子或原子与配体之间通过配位键形成的配合物的结构、性质和反应。
以下是对配位化学知识点的总结。
一、配位化合物的定义与组成配位化合物,简称配合物,是由中心原子(或离子)和围绕它的配体通过配位键结合而成的化合物。
中心原子通常是金属离子或原子,具有空的价电子轨道,能够接受配体提供的电子对。
常见的中心原子有过渡金属离子,如铜离子(Cu²⁺)、铁离子(Fe³⁺)等。
配体是能够提供孤对电子的分子或离子。
配体可以分为单齿配体和多齿配体。
单齿配体只有一个配位原子,如氨(NH₃);多齿配体则有两个或两个以上的配位原子,如乙二胺(H₂NCH₂CH₂NH₂)。
在配合物中,中心原子和配体组成内界,内界通常用方括号括起来。
方括号外的离子则称为外界。
例如,Cu(NH₃)₄SO₄中,Cu(NH₃)₄²⁺是内界,SO₄²⁻是外界。
二、配位键的形成配位键是一种特殊的共价键,是由配体提供孤对电子进入中心原子的空轨道形成的。
配位键的形成条件是中心原子有空轨道,配体有孤对电子。
例如,在 Cu(NH₃)₄²⁺中,氨分子中的氮原子有一对孤对电子,铜离子的价电子层有空轨道,氮原子的孤对电子进入铜离子的空轨道,形成配位键。
三、配合物的命名配合物的命名遵循一定的规则。
对于内界,先列出中心原子的名称,然后依次列出配体的名称。
配体的命名顺序是先阴离子,后中性分子;先简单配体,后复杂配体。
在配体名称之间用“·”隔开,配体的个数用一、二、三等数字表示。
如果有多种配体,用罗马数字表示其价态。
例如,Co(NH₃)₅ClCl₂命名为氯化一氯·五氨合钴(Ⅲ)。
四、配合物的空间结构配合物的空间结构取决于中心原子的杂化轨道类型和配体的空间排列。
常见的杂化轨道类型有 sp、sp²、sp³、dsp²、d²sp³等。
1 配位化学导论总结1. 配位化学1)定义:金属或金属离子同其他分子或离子相互结合的化学。
2)基础:无机化学 3)重要性:与其他学科互相渗透的交叉性学科 4) 发展:● 近代配位化学: “键理论”等理论无法全面说明形成机理与成键方式. ● 现代配位化学理论:建立:1893年,瑞士化学家维尔纳提出了现代的配位键、配位数和配位化合物结构的基本概念,并用立体化学观点成功地阐明了配合物的空间构型和异构现象。
2. 配合物的基本概念1) 定义:由具有接受孤对电子或多个不定域电子的空位原子或离子(中心体)与可以给出孤对电子或多个不定域电子的一定数目的离子或分子(配体)按一定的组成和空间构型所形成的物种称为配位个体,含有配位个体的化合物成为配合物。
2) 组成: 内界、外界、中心体、配体、配位原子3) 配体分类:4) 中心原子的配位数:● 定义:单齿配体:配位数等于内界配体的总数。
多齿配体:各配体的配位原子数与配体个数乘积之和。
● 影响中心原子的配位数因素:A 、按配体所含配位原子的数目分两种:B 、根据键合电子的特征分为三种:3. 配合物的分类4. 配合物的命名原则是先阴离子后阳离子,先简单后复杂。
一、简单配合物的命名:(1)先无机配体,后有机配体cis - [PtCl2(Ph3P)2] 顺-二氯 二•(三苯基磷)合铂(II)(2) 先列出阴离子,后列出阳离子,中性分子(的名称)K[PtCl3NH3] 三氯•氨合铂(II)酸钾(3) 同类配体(无机或有机类)按配位原子元素符号的英文字母顺序排列。
[Co(NH3)5H2O]Cl3 三氯化五氨•一水合钴(III)中心离子对配位数的影响配体对配位数的影响1、按中心原子数目分为:2、按配合物所含配体种类分为:3、按配体的齿数分类:4、按配合物地价键特点分类:(4) 同类配体同一配位原子时,将含较少原子数的配体排在前面。
[Pt(NO2)(NH3)(NH2OH)(Py)]Cl 氯化硝基•氨•羟氨•吡啶合铂(II)(5) 配位原子相同,配体中所含的原子数目也相同时,按结构式中与配原子相连的原子的元素符号的英文顺序排列。
第一章配位化学的基本概念一、什么是配位化合物二、配合物的组成三、配合物的命名四、配合物的异构现象一、什么是配位化合物1. 配合物的形成1.1 铜氨络离子的形成•向氯化铜溶液中逐滴加入NH3·H2O溶液,首先得到蓝色Cu(OH)2沉淀。
•继续向溶液中加入NH3·H2O溶液,Cu(OH)2沉淀则逐渐溶解,溶液变为深蓝色•向溶液中加入95%乙醇,则可以得到深蓝色沉淀,抽滤后,取少量沉淀,用水溶解,加入过量NaOH (10%)溶液,溶液无明显变化CuSO4 + 2NH3·H2O → Cu(OH)2↓ + 2NH4+NH3·H2O——-——→ [Cu(NH3)4]SO4(深蓝色) + 4H2O[Cu(NH3)4]SO4 ——配位化合物[Cu(NH3)4]2+ ——配离子(1)定义:具有孤对电子的离子或分子和具有空轨道的原子或离子组成的化合物。
二、配合物的组成内界: 中心体(原子或离子)与配位体,以配位键成键外界:与内界电荷平衡的相反离子(1)中心离子(或原子):提供空的价电子轨道①过渡金属阳离子。
②某些非金属元素:如[SiF6]2-中的Si(IV) 。
③中性原子:如Ni(CO)4和Fe(CO)5中的Ni 和Fe(2)配体的分类按配体所含配位原子的数目分:单齿配体:只含一个配位原子的配体(NH3,H2O等)多齿配体:含有两个或两个以上的配位原子的配体(3)配位数:直接与中心原子结合的配位原子的数目。
①若为单齿配体,配位数=配位体数。
例:[Ag(NH3)2]+ 、[Cu(NH3)4]2+、[CoCl3(NH3)3]和[Co(NH3)6]3+的配位数分别为2、4、6和6。
②若为多齿配体,配位数≠配位体数。
例:[Cu(en)2]2+的配位数为4,Cu-edta的配位数为6。
一般中心原子的配位数为2,4,6,8。
最常见的4,6。
而5,7或更高配位数则较少见。
(4)配离子的电荷:中心原子和配体电荷的代数和。