配位化学-中科院总结(1-3章)
- 格式:ppt
- 大小:274.00 KB
- 文档页数:28
配位化学知识点总结一、配位化学的基本概念配位化学是研究金属离子(或原子)与配体之间形成的配位化合物的结构、性质和反应的化学分支。
首先,我们来了解一下什么是配体。
配体是能够提供孤对电子与中心金属离子(或原子)形成配位键的分子或离子。
常见的配体有水分子、氨分子、氯离子等。
而中心金属离子(或原子)则具有空的价电子轨道,可以接受配体提供的孤对电子。
配位键是一种特殊的共价键,由配体提供孤对电子进入中心金属离子(或原子)的空轨道而形成。
配位化合物则是由中心金属离子(或原子)与配体通过配位键结合形成的具有一定空间结构和化学性质的化合物。
二、配位化合物的组成配位化合物通常由内界和外界两部分组成。
内界是配位化合物的核心部分,由中心金属离子(或原子)与配体紧密结合而成。
例如,在Cu(NH₃)₄SO₄中,Cu(NH₃)₄²⁺就是内界。
外界则是与内界通过离子键结合的其他离子。
在上述例子中,SO₄²⁻就是外界。
中心金属离子(或原子)的化合价与配体的化合价之和等于配位化合物的总化合价。
配位数指的是直接与中心金属离子(或原子)结合的配体的数目。
常见的配位数有 2、4、6 等。
三、配位化合物的结构配位化合物具有特定的空间结构。
常见的配位几何构型有直线型、平面三角形、四面体、八面体等。
例如,配位数为 2 时,通常形成直线型结构;配位数为 4 时,可能是平面正方形或四面体结构;配位数为 6 时,多为八面体结构。
这些结构的形成取决于中心金属离子(或原子)的电子构型和配体的大小、形状等因素。
四、配位化合物的命名配位化合物的命名有一套严格的规则。
先命名外界离子,然后是内界。
内界的命名顺序为:配体名称在前,中心金属离子(或原子)名称在后。
配体的命名顺序遵循先无机配体,后有机配体;先阴离子配体,后中性分子配体。
对于同类配体,按配体中原子个数由少到多的顺序命名。
如果配体中含有多种原子,先列出阴离子配体,再列出中性分子配体。
配位化学知识点总结配位化学是化学的一个重要分支,它探讨的是化学中的配位作用,即两个或多个分子相互作用形成复合物。
在高分子材料、医药、冶金、土木工程和环境科学等领域应用广泛。
配位化学的基础知识和技能是化学专业学生和研究人员必备的求生技能之一。
本文将介绍配位化学的基本概念、重要原则以及主要应用。
一、配位化学的基本概念1. 配位体在化学中,配位体是指通过给体原子与金属中心之间的化学键与金属形成配合物的分子或离子。
著名的例子有氨、水、五硝基吡啶、乙二胺等。
2. 配位作用配位作用是指配位体的给体原子利用孤对电子与金属中心形成协同共振化学键的过程。
配位能力取决于给体原子的化学性质。
一般来说,仅具有孤对电子的原子或离子能够作为配位体。
在配位作用中,给体原子发生了电子的向金属中心的迁移,原子中的孤对电子与金属中心的未配对电子形成共价键。
3. 配位数配位数是一个复合物中与离子或分子互相作用的中心原子数量。
通常,金属离子具有高配位数,而范德瓦尔斯复合物和氢键配合物具有较低的配位数。
二、配位化学的重要原则1. 八面体配位八面体配位是指配合物中金属中心周围八个空间位置上配位体的均匀分布,也是最常见的配位几何形态之一。
一些典型的八面体配位化合物包括六氟合铁酸钾和硫脲铜硫脲。
2. 方阵配位方阵配位是一种由四个配位体组成的四面体形态的配位体,常见的方阵配位化合物包括四氟合镍和四氯合钴。
3. 配体场理论配体场理论是解释元素化学、配位化学和配位化合物性质的一种理论。
该理论通过将配位体组合成简单的场点,进而表征复合物的化学键结构和物理性质。
三、配位化学的主要应用1. 工业催化工业化学中的催化剂往往是由配位化合物构成,钯的催化反应、铂的催化脱氢和钨的催化氧化反应都是利用了配位体的协同作用完成的。
例如,五氯甲基钌配合物和卟啉钴配合物在氧气氧化和n 桥苯甲基乙烯二醇转移反应中均被用作催化剂。
2. 生物学知识生物配合物(例如血红蛋白和维生素B12)中的重要化学反应是由于配位体与活性中心原子之间的化学反应所形成的。
配位化学知识点总结配位化学是无机化学的一个重要分支,它研究的是金属离子或原子与配体之间通过配位键形成的配合物的结构、性质和反应。
以下是对配位化学知识点的总结。
一、配位化合物的定义与组成配位化合物,简称配合物,是由中心原子(或离子)和围绕它的配体通过配位键结合而成的化合物。
中心原子通常是金属离子或原子,具有空的价电子轨道,能够接受配体提供的电子对。
常见的中心原子有过渡金属离子,如铜离子(Cu²⁺)、铁离子(Fe³⁺)等。
配体是能够提供孤对电子的分子或离子。
配体可以分为单齿配体和多齿配体。
单齿配体只有一个配位原子,如氨(NH₃);多齿配体则有两个或两个以上的配位原子,如乙二胺(H₂NCH₂CH₂NH₂)。
在配合物中,中心原子和配体组成内界,内界通常用方括号括起来。
方括号外的离子则称为外界。
例如,Cu(NH₃)₄SO₄中,Cu(NH₃)₄²⁺是内界,SO₄²⁻是外界。
二、配位键的形成配位键是一种特殊的共价键,是由配体提供孤对电子进入中心原子的空轨道形成的。
配位键的形成条件是中心原子有空轨道,配体有孤对电子。
例如,在 Cu(NH₃)₄²⁺中,氨分子中的氮原子有一对孤对电子,铜离子的价电子层有空轨道,氮原子的孤对电子进入铜离子的空轨道,形成配位键。
三、配合物的命名配合物的命名遵循一定的规则。
对于内界,先列出中心原子的名称,然后依次列出配体的名称。
配体的命名顺序是先阴离子,后中性分子;先简单配体,后复杂配体。
在配体名称之间用“·”隔开,配体的个数用一、二、三等数字表示。
如果有多种配体,用罗马数字表示其价态。
例如,Co(NH₃)₅ClCl₂命名为氯化一氯·五氨合钴(Ⅲ)。
四、配合物的空间结构配合物的空间结构取决于中心原子的杂化轨道类型和配体的空间排列。
常见的杂化轨道类型有 sp、sp²、sp³、dsp²、d²sp³等。
1 配位化学导论总结1. 配位化学1)定义:金属或金属离子同其他分子或离子相互结合的化学。
2)基础:无机化学 3)重要性:与其他学科互相渗透的交叉性学科 4) 发展:● 近代配位化学: “键理论”等理论无法全面说明形成机理与成键方式. ● 现代配位化学理论:建立:1893年,瑞士化学家维尔纳提出了现代的配位键、配位数和配位化合物结构的基本概念,并用立体化学观点成功地阐明了配合物的空间构型和异构现象。
2. 配合物的基本概念1) 定义:由具有接受孤对电子或多个不定域电子的空位原子或离子(中心体)与可以给出孤对电子或多个不定域电子的一定数目的离子或分子(配体)按一定的组成和空间构型所形成的物种称为配位个体,含有配位个体的化合物成为配合物。
2) 组成: 内界、外界、中心体、配体、配位原子3) 配体分类:4) 中心原子的配位数:● 定义:单齿配体:配位数等于内界配体的总数。
多齿配体:各配体的配位原子数与配体个数乘积之和。
● 影响中心原子的配位数因素:A 、按配体所含配位原子的数目分两种:B 、根据键合电子的特征分为三种:3. 配合物的分类4. 配合物的命名原则是先阴离子后阳离子,先简单后复杂。
一、简单配合物的命名:(1)先无机配体,后有机配体cis - [PtCl2(Ph3P)2] 顺-二氯 二•(三苯基磷)合铂(II)(2) 先列出阴离子,后列出阳离子,中性分子(的名称)K[PtCl3NH3] 三氯•氨合铂(II)酸钾(3) 同类配体(无机或有机类)按配位原子元素符号的英文字母顺序排列。
[Co(NH3)5H2O]Cl3 三氯化五氨•一水合钴(III)中心离子对配位数的影响配体对配位数的影响1、按中心原子数目分为:2、按配合物所含配体种类分为:3、按配体的齿数分类:4、按配合物地价键特点分类:(4) 同类配体同一配位原子时,将含较少原子数的配体排在前面。
[Pt(NO2)(NH3)(NH2OH)(Py)]Cl 氯化硝基•氨•羟氨•吡啶合铂(II)(5) 配位原子相同,配体中所含的原子数目也相同时,按结构式中与配原子相连的原子的元素符号的英文顺序排列。
绪论导课:配位化学一般是指金属和金属离子同其他分子或离子相互反应的化学。
它是在无机化学的基础上发展起来的一门独立的、同时也与化学各分支学科以及物理学、生物学等相互渗透的具有综合性的学科。
配位化学所涉及的化合物类型及数量之多、应用之广,使之成为许多化学分支的汇合口。
现代配位化学几乎渗透到化学及相关学科的各个领域,例如分析化学、有机金属化学、生物无机化学、结构化学、催化活性、物质的分离与提取、原子能工业、医药、电镀、燃料等等。
因此,配位化学的学习和研究不但对发展化学基础理论有着重要的意义,同时也具有非常重要的实际意义。
一、配位化学的任务配位化学是研究各类配合物的合成、结构、性质和应用的一门新型学科。
配合物的合成是重点,结构与性质研究是难点,研究方法是关键。
应用是落脚点。
二、配位化学的学科基础配位化学的学科基础是无机化学,分析化学、有机化学、物理化学和结构化学。
配位化学已成为许多化学分支的汇合口。
配位化学是许多新兴化学学科的基础。
如:超分子化学,酶化学,蛋白质化学,生物无机化学,材料化学,化学生物学,药物化学,高分子化学等。
三、配位化学的研究方法1、合成方法:要求掌握有机和无机化学的合成技术,特别是现今发展起来的水热技术、微波技术、微乳技术、超临界技术等。
2、结构研究:元素分析、紫外光谱、红外光谱、质谱、核磁共振、荧光光谱、X-衍射等。
3、性质研究:电位滴定、循环伏安、磁天平、变温磁化率、交流磁化率、电子顺磁共振、光电子能谱、E-扫描、催化性质、凝胶电泳、园二色谱、核磁共振研究与细胞及DNA 的作用。
4、应用:催化反应用于有机合成、金属酶的模拟、分子识别、金属药物、非线性光学材料、分子磁体、介孔材料、分子机器等。
四、配位化学的学习方法1、课前预习:在上课以前,把下一次课的内容先粗略的看一次,把自己看不懂的内容做上记号,有时间再认真的看一次,如果仍看不懂,做好记录,等待课堂解决。
2、上课:根据课前预习的难度,对较难理解的部分认真听讲,理解教师的分析思路,学习思考问题和解决问题的方法。