正弦信号激励下系统的稳态响应_例3
- 格式:ppt
- 大小:121.50 KB
- 文档页数:1
目录04-05A (1)04-05B (4)05-06A (7)05-06B (10)06-07A (14)07-08A (16)07-08B (19)08-09(A) (22)08-09(B) (25)09-10(A) (28)09-10(B) (30)04-05A一、填空(每空2 分,共20分)(1) LTI 表示 。
(2)⎰∞∞-=-dt t t t f )()(0δ 。
(3) 无失真传输的频域条件为 。
(4) )]([)(t u et u at-*= 。
(5) 设)(0t f 是周期脉冲序列)(t f (周期为T 1)中截取的主值区间,其傅里叶变换为)(0w F ,n F 是)(t f 傅里叶级数的系数。
则n F = 。
(6) 设)3)(2(6)(+++=s s s s H ,=+)0(h 。
(7) 设)(t f 是带限信号,πω2=m rad/s ,则对)12(-t f 进行均匀采样的奈奎斯特采样间隔为 。
(8) 某连续系统的系统函数jw jw H -=)(,则输入为tj et f 2)(=时系统的零状态响应=)(t r zs 。
(9) 周期序列)873cos()(ππ-=n A n x ,其周期为 。
(10) 信号)(t f 的频谱如图如示,则其带宽为 。
二、选择题(将正确的答案的标号填在括号内,每小题2分,共20分)(1) 能正确反映)()(n u n 与δ关系的表达式是( )。
A. ∑∞=-=0)()(k k n n u δ B. ∑∞=-=1)()(k k n n u δC. ∑∞==)()(k k n u δ D. )1()()(+--=n u n u n δ(2) 下列叙述正确的是( )。
A. 各种离散信号都是数字信号B. 数字信号的幅度只能取0或1C. 将模拟信号采样直接可得数字信号D. 采样信号经滤波可得模拟信号(3) 下列系统中,属于线性时不变系统的是( )A. )1()(t e t r -=B. ∑∞-∞==m m x n y )()(C. ⎰∞-=td e t r 5)()(ττ D. )443sin()()(ππ+=n n x n y (4) 关于因果系统稳定性的描述或判定,错误的是( )A. 系统稳定的充要条件是所有的特征根都必须具有负实部。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
第1章 1信号与系统的基本概念11.信号、信息与消息的差别?信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2.什么是奇异信号?函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。
例如:单边指数信号 (在t =0点时,不连续),单边正弦信号 (在t =0时的一阶导函数不连续)。
较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。
3.单位冲激信号的物理意义及其取样性质?冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。
它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰ 4.什么是单位阶跃信号?单位阶跃信号也是一类奇异信号,定义为:10()00t u t t >⎧=⎨<⎩它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。
5.线性时不变系统的意义同时满足叠加性和均匀性以及时不变特性的系统,称为线性时不变系统。
即:如果一个系统,当输入信号分别为1()x t 和2()x t 时,输出信号分别是1()y t 和2()y t 。
当输入信号()x t 是1()x t 和2()x t 的线性叠加,即:12()()()x t ax t bx t =+,其中a 和b 是任意常数时,输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+; 且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。
其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性; 如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。
信号与系统(程耕国)下册课后习题答案6.2 精选例题例 1 设一个LTI 离散系统的初始状态不为零,当激励为)()(1n u n f =时全响应为)(121)(1n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=,当激励为)()(2n u n f -=时全响应为)(121)(2n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=。
(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,求系统的全响应)(3n y 。
(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,求系统的全响应)(4n y 。
(3)求该系统的单位序列响应)(n h 。
解:设系统的初始状态保持不变,当激励为)()(1n u n f =时系统的零输入响应和零状态响应分别为)(n y x 、)(n y f 。
依题意,有:)(121)()()(1n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+= ○1根据LTI 系统的性质,当激励为)()(2n u n f -=时全响应为)(121)(()(2n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=-=) ○2联立式○1、○2,可解得:⎪⎪⎩⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(12121)()(2121(1111n u n y n u n y n n f n n x )同样,根据LTI 系统的基本性质,不难得到:(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,系统的全响应为:)(4)()(3n y n y n y f x +=)(121214)(21211111n u n u n n n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(421321511n u n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,系统的全响应为:)2(4)(2)(4-+=n y n y n y f x)2(121214)(21211111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=--++n u n u n n n n(3)由于)1()()(--=n u n u n δ,所以该系统的单位序列响应为:)1()()(--=n y n y n h f f)1(12121)(1212111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++n u n u n n n n 例2 一个LTI 连续系统对激励)(sin )(t tu t f =的零状态响应)(t y f 如例2图所示,求该系统的冲激响应)(t h 。
T2-1 判断下列方程式所描述的系统的性质:线性或非线性,定常或时变,动态或静态。
(1)()()()t u dt t y d t t y =+22232; (3)()[]21)(t u t y =; (4)())(3)(t u t y =+dtt dy t sin ω;(7)在图T2-1中去掉一个理想二极管后,情况如何?解:先区别几组概念(线性和非线性;定常和时变;动态和静态) 线性系统(即系统变量间的关系):多项式形式,各项变量的幂指数为1; 非线性系统:多项式形式,各项变量的幂指数不全为1; 定常系统:系统参数与时间无关;时变系统:系统参数与时间有关; 静态系统:输入到输出没有过渡过程; 动态系统:输入到输出有过渡过程。
(笔者认为在判断系统静态或动态的时候,我们可以看多项式里面有没T2-2 已知动态系统对输入信号u(t)的响应,试判断下列三个系统是否为线性的:(1)()⎰+=td u x t y 02)(0)(ττ;(2)()⎰+=td u x t y 0)(03)(ττ;(3)()⎰+--+=tt td u ex e t y 0)(0)(τττ。
解:先分清()0x 和()t u 这两个量:()0x 为状态变量(初始状态或初始条件);()t u 为输入变量。
零状态线性和零输入线性的判定方法:(I) 当()00=x 时,为零状态,对应的输出称为零状态响应,此时看输出()t y 与输入()t u 的关系是否满足线性,若满足,则为零状态线性;(II) 当()00=t u 时,为零输入,对应的输出称为零输入响应,此时看输出()t y 与初始状态()0x 的关系是否满足线性,若满足,则为零输入线性;T2-3 有一线性动态系统,分别用0≥t 时的输入()()()[],,0,,,321τ∈t t u t u t u 对其进行试验。
它们的初始状态都相同,且(),00≠x 三种试验中所得输出若为()()()。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。