正弦稳态响应.
- 格式:ppt
- 大小:470.50 KB
- 文档页数:22
电路在正弦激励下非正弦稳态的响应田社平1,孙盾2,张峰1(1上海交通大学电子信息与电气工程学院 上海 200240;2浙江大学电气工程学院 杭州 310027)摘要:基于作者的教学实践,讨论了电路在正弦激励下产生非正弦稳态的响应的各种情况。
零状态动态电路存在正弦稳态响应的充要条件为,响应的象函数Y (s )存在且仅存在一对共轭虚极点,而Y (s )的其它极点均位于复平面的开左半平面上。
通过实例说明了在正弦激励下产生非正弦稳态的响应的情形。
电路本文的讨论对丰富正弦稳态电路分析的教学内容,加深学生对相关知识的理解,具有良好的助益。
关键词:正弦激励;非正弦稳态响应;电路 中图分类号: TM13 文献标识码 ANon-sinusoidal Steady-state Response of Circuit with Sinusoidal ExcitationTIAN She-ping 1, SUN Dun 2, ZHANG Feng 1(1School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong Univ., Shanghai 200240, China; 2College ofElectrical and Electronic Eng ,Zhejiang Univ.,Hangzhou 310027,China )Abstract: Based on the teaching practice, various situations of non-sinusoidal steady-state response of circuit with sinusoidal excitation are discussed. The necessary and sufficient condition for the existence of sinusoidal steady-state response in a zero-state dynamic circuit is that the Laplace transform of the response which is Y (s ) exists and has only one pair of conjugate virtual poles, while the other poles of Y (s ) lie on the left open plane of the complex plane. Several examples are given to illustrate the non-sinusoidal steady-state response with sinusoidal excitation. The discussion is helpful to enrich the teaching content of sinusoidal steady-state circuit analysis and deepen students' understanding of relevant knowledge.Key words: sinusoidal excitation; non-sinusoidal steady-state response; circuit 处于正弦稳态的电路称为正弦稳态电路。
第八章 相量法求解电路的正弦稳态响应,在数学上是求非齐次微分方程的特解。
引用相量法使求解微分方程特解的运算变为复数的代数运运算,从儿大大简化了正弦稳态响应的数学运算。
所谓相量法,就是电压、电流用相量表示,RLC 元件用阻抗或导纳表示,画出电路的相量模型,利用KCL,KVL 和欧姆定律的相量形式列写出未知电压、电流相量的代数方程加以求解,因此,应用相量法应熟练掌握:(1)正弦信号的相量表示;(2)KCL,KVL 的相量表示;(3)RLC 元件伏安关系式的相量形式;(4)复数的运算。
这就是用相量分析电路的理论根据。
8-1 将下列复数化为极坐标形式:(1)551j F --=;(2)342j F +-=;(3)40203j F +=;(4)104j F =;(5)35-=F ;(6)20.978.26j F +=。
解:(1)a j F =--=551θ∠25)5()5(22=-+-=a13555arctan -=--=θ(因1F 在第三象限)故1F 的极坐标形式为 135251-∠=F(2) 13.1435)43arctan(3)4(34222∠=-∠+-=+-=j F (2F 在第二象限)(3) 43.6372.44)2040arctan(40204020223∠=∠+=+=j F(4) 9010104∠==j F(5) 180335∠=-=F(6) 19.7361.9)78.220.9arctan(20.978.220.978.2226∠=∠+=+=j F注:一个复数可以用代数型表示,也可以用极坐标型或指数型表示,即θθj ae a ja a F =∠=+=21,它们相互转换的关系为:2221a a a += 12arctan a a =θ和 θcos 1a a = θsin 2a a =需要指出的,在转换过程中要注意F 在复平面上所在的象限,它关系到θ的取值及实部1a 和虚部2a 的正负。
8-2 将下列复数化为代数形式:(1) 73101-∠=F ;(2) 6.112152∠=F ;(3) 1522.13∠=F ;(4) 90104-∠=F ;(5) 18051-∠=F ;(6) 135101-∠=F 。
电路相量法相量法是线性电路正弦稳态分析的一种简单有效的方法。
应用相量法,需要运用复数的运算。
复数F的代数形式F=a+jb式中j = □为虚单位(在数学中常用i表示,在电路中已用i表示电流,故改用j)复数F的实部为Re[F]=a,虚部为Im[F] = bRe: Real Part;复数的实部Im: Imaginary Part;复数的虚部cos: cosine;余弦函数sin: sine;正弦函数arg: argument of a complex number 复数的辐角一个复数F在复平而上可以用一条从原点0指向F对应坐标点的有向线段(向量)表示复数F的三角形式F = |F|(cos 0 + j sin0)=|F| cos 0 + j|F| sin 0 =a+jb |F|为复数的模(值),6为复数的辐角,即6 = argF° 8可以用弧度或度表示。
|F| = Va2+b20=tan_1(I)根据欧拉公式e j0 = cos 0 + sin 0则复数的三角形式可转变为指数形式 F = |F|』° 指数形式有时改写为极坐标形式F = |F|Z0复数的相加和相减用代数形式进行,设:Fi=ai + jb「F2 = a2 + jb2则F i ± F2 = (a i+ jb J ± (a2 + jb2)=(a1± a2)+j(b x± b2)复数相乘用指数形式比较方便FiF2 = |Fje 怏IF2I』叭=iFjlFzl』©"』所以|F1F2| = |F1||F2| arg(F1F2)=arg(F1)+arg(F2) 复数乘积的模等于各复数模的积,英辐角等于个复数辐角的和复数相除的运算为可=區页=芮内一%Fi = IF1Iarg(寻)=arg(Fi) 一arg(F2)+jF1F2' 02茫/&/FfFt复数e^0 = 1Z0是一个模等于1,辐角为6的复数。
第9章 正弦稳态电路的频率响应9.1 网络函数【网络函数(传递函数)】 网络函数又称为传递函数。
图9-1-1所示正弦稳态下的线性时不变电路,只有一个激励()E j ω 和一个响应()R j ω ,称为单输入――单输出网络,网络函数()H j ω定义为def()()()Rj H j E j ωωω= 由于激励()Ej ω 和响应()R j ω 均可以是端口电压或电流,且可以位于不同端口,也可以位于同一个端口,因此,网络函数有6种类型。
网络函数取决于电路的结构,参数和激励的角频率。
图9-1-1 单输入――单输出网络【频率响应】 正弦稳态电路的响应随激励角频率的变化规律,称为电路的频率响应。
网络函数()H j ω能反映线性时不变电路的频率响应,通常将()H j ω写成极坐标形式,即()()()H j H j j ωωϕω=∠【幅频特性】 ()H j ω表征响应的幅值随激励角频率的变化规律,称为幅频响应,亦称幅频特性。
【相频特性】 ()j ϕω表征响应的相角随激励角频率的变化规律,称为相频响应,亦称相频特性。
【例9-1-1】 试确定图9-1-2所示电路的电流增益()()()o s Ij H j I j ωωω= 。
sI0.5Fo图9-1-2 例9-1-1 图解 由分流关系可得42(1)12420.5s sj I I j I j jωωωω+==++- 因此()(1)arctan 22osI H j j I ωωω==+=9.2 谐振电路的频率响应【谐振】 至少包含一个电感和一个电容元件的无源一端口网络,当其端口等效阻抗(或导纳)呈现纯电阻性时,称电路发出了谐振,或电路工作在揩振状态。
【谐振电路】 谐振电路对信号频率具有选择性,广泛应用于通信系统中。
最简单的揩振电路为RLC 串联谐振电路和RLC 并联揩振电路。
9.2.1 RLC 串联揩振电路【RLC 串联谐振角频率】 图9-2-1所示为RLC 串联电路。