转子磁链观测检测转子磁链的目的是(1)生成单位矢量,进行直接矢量
- 格式:doc
- 大小:165.50 KB
- 文档页数:2
矢量控制与直接转矩控制技术区别WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
太原科技大学题目:直接转矩控制专业:电气工程班级:研1403姓名:安顺林学号:S2*******直接转矩控制摘要直接转矩控制系统具有宽调速范围、高稳速精度、快动态响应控制等优点,是交流调速领域中一种新颖的控制算法。
直接转矩控制技术采用空间矢量分析的方法,直接在定子坐标系下计算并控制交流电动机的转矩和磁链,计算所得的转矩和磁链分别与给定值进行施密特调节产生脉冲信号,对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。
本文从异步机数学模型出发,系统阐述了异步机直接转矩控制基本理论,详细分析了空间电压矢量与定子磁链、电动机转矩的关系。
针对异步机的特点,分析讨论了空间矢量调制的直接转矩控制及实现方法,包括参考矢量的生成及空间电压矢量调制的方法。
关键字直接转矩控制,异步电动机一直接转矩控制系统介绍1.1 异步电动机调速系统的发展状况在异步电动机调速系统中变频调速技术是目前应用最广泛的调速技术,也是最有希望取代直流调速的调速方式。
就变频调速而言,其形式也有很多。
传统的变频调速方式是采用v/f控制。
这种方式控制结构简单,但由于它是基于电动机的稳态方程实现的,系统的动态响应指标较差,还无法完全取代直流调速系统。
1971年,德国学者EBlaschke提出了交流电动机的磁场定向矢量控制理论,标志着交流调速理论有了重大突破。
所谓矢量控制,就是交流电动机模拟成直流电动机来控制,通过坐标变换来实现电动机定子电流的励磁分量和转矩分量的解藕,然后分别独立调节,从而获得高性能的转矩特性和转速响应特性。
矢量控制主要有两种方式:磁场定向矢量控制和转差频率矢量控制。
无论采用哪种方式,转子磁链的准确检测是实现矢量控制的关键,直接关系到矢量控制系统性能的好坏。
一般地,转子磁链检测可以采用直接法或间接法来实现。
直接法就是通过在电动机内部埋设感应线圈以检测电动机的磁链,这种方式会使简单的交流电动机结构复杂化,降低了系统的可靠性,磁链的检测精度也不能得到长期的保证。
电力拖动自动控制系统复习题及答案一、基础题1、反馈控制系统的作用是:抵抗扰动,服从给定。
2、带比例放大器的反馈控制闭环调速系统是有静差的调速系统,采用比例积分(PI)调节器的闭环调速系统是无静差的调速系统。
3、实际上运算放大器的开环放大系数并不是无穷大,特别是为了避免零点飘移而采用准IP调节器。
4、对于调速系统,最重要的动态性能是抗扰性能,主要是抗负载扰动和抗电网电压扰动的性能。
5、调速系统的动态指标以抗扰性能为主,而随动系统的动态指标则以动态跟随性能为主。
6、超调量的表达式为:δ=(Cmax-C∞)/C∞×100%。
7、在基频以下,磁通恒定时转矩也恒定,属于恒转矩调速性质,而在基频以上,转速升高时转矩降低,属于恒功率调速。
8、当电动机由三相平衡正弦电压供电时,磁链幅值一定时,u S 的大小与电压角频率δ1 成正比,其方向则与磁链矢量正交。
9、调速系统的动态性能就是抵抗扰动的能力。
10、抗扰性能是反馈控制系统最突出的特征之一。
11、转速反馈闭环调速系统的精度信赖于给定和反馈检测精度。
12、比例调节器的输出只取决于输入偏差量的现状;而积分调节器的输出则包含了输入偏差量的全部历史。
13、在起动过程中转速调节器ASR经历了快速进入饱和、饱和、退饱和、三种情况。
14、自动控制系统的动态性能指标包括:跟随性能指标和扰动性能指标。
15、动态降落的表达式为:(△Cmax/Cb) ×100%。
16、基频以上变频调速属于恒功率调速。
17、异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。
18、两种最基本的直流调速方式为:调压调速方式和弱磁调速方式。
19、在典型II型系统性能指标和参数的关系分析中,引入了h,h 是斜率为–20dB/dec的中频段的宽度,称作中频宽。
20、Ws*+W =W1* 是转差频率控制系统突出的特点或优点。
21、异步电机的数学模型由电压方程、磁链方程、转矩方程和运动方程组成。
第七章异步电动机动态模型调速系统内容提要:异步电动机具有非线性、强耦合、多变量的性质,要获得良好的调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。
矢量控制和直接转矩控制是两种基于动态模型的高性能的交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电动机模型,然后按照直流电动机模型设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的符号,根据当前定子磁链矢量所在的位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。
两种交流电动机调速系统都能实现优良的静、动态性能,各有所长,也各有不足之处。
本章第8.1节首先导出异步电动机三相动态数学模型,并讨论其非线性、强耦合、多变量性质,然后利用坐标变换加以简化,得到两相旋转坐标系和两相静止坐标系上的数学模型。
第8.2节讨论按转子磁链定向的基本原理,定子电流励磁分量和转矩分量的解耦作用,讨论矢量控制系统的多种实现方案。
第8.3节介绍无速度传感器矢量控制系统及基于磁通观测的矢量控制系统。
第8.4节讨论定子电压矢量对转矩和定子磁链的控制作用,介绍基于定子磁链控制的直接转矩控制系统。
第8.5节对上述两类高性能的异步电动机调速系统进行比较,分析了各自的优、缺点。
第8.6节介绍直接转矩控制系统的应用实例。
8.1交流异步电动机动态数学模型和坐标变换基于稳态数学模型的异步电动机调速系统虽然能够在一定范围内实现平滑调速,但对于轧钢机、数控机床、机器人、载客电梯等动态性能高的对象,就不能完全适用了。
要实现高动态性能的调速系统和伺服系统,必须依据异步电动机的动态数学模型来设计系统。
8.1.1三相异步电动机数学模型在研究异步电动机数学模型时,常作如下的假设:(1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿气隙按正弦规律分布;(2)忽略磁路饱和,各绕组的自感和互感都是恒定的;(3)忽略铁心损耗;(4)不考虑频率变化和温度变化对绕组电阻的影响。
矢量控制与直接转矩控制技术区别文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
NANCHANG UNIVERSITY题目:直接转矩系统仿真学院:信息工程学院系自动化专业班级:控制科学与工程学生姓名:刘涛学号:************ 任课教师:***日期:2014年5月18日直接转矩控制技术仿真分析1直接转矩控制的基本原理及特点与规律直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
1.1直接转矩控制系统原理与特点如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号*T,在*T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得转速和磁链系统实现解耦。
因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。
图1-1直接转矩控制系统图的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链s保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。
在直接转矩控制技术中,其基本控制方法就是通过电压空间矢量来控制定子磁链的旋转速度,控制定子磁链走走停停,以改变定子磁链的平均旋转速度的大小,从而改变磁通角的大小,以达到控制电动机转矩的目的。
直接转矩控制作为一种交流调速的控制技术具有以下特点:①直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,直接控制电机的磁链和转矩。
它不需要将交流电动机和直流电动机做比较等效简化,不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型,它省掉了矢量旋转变换等复杂的变换与计算。
因此,它所需要的信号处理工作特别简单,所用的信号使观察者对于交流电动机的物理过程能够做出直接和明确的判断。
摘要:直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
在控制思想上与矢量控制不同的是直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有结构简单、转矩响应快以及对参数鲁棒性好等优点。
本文对直接转矩控制原理进行了简介,以及目前应用直接转矩控制的产品介绍。
关键词:直接转矩控制,异步电机目录1直接转矩控制的基本原理及特点与规律 (3)1.1直接转矩控制系统原理与特点 (3)1.2直接转矩系统的控制规律和反馈系统 (5)2 直接转矩控制的基本原理和仿真模型 (7)2.1直接转矩控制的基本原理 (7)2.2直接转矩控制的仿真模型总图 (8)3 三相异步电机的数学模型 (8)4 磁链信号和转矩信号产生 (10)4.1定子磁链的观测控制 (10)4.2 电磁转矩的有效控制 (12)总结 (13)参考文献 (14)1直接转矩控制的基本原理及特点与规律直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
1.1直接转矩控制系统原理与特点如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号*T,在*T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得转速和磁链系统实现解耦。
因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。
图1-1直接转矩控制系统图的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链s保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。
矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量 (转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等.这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制.采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。
1。
机电能量转换:时间内磁能的变化,由绕组A和B中变压器电动势从电源所吸收的全部电能加之运动电动势从电源所吸收电能的一半所组成;由运动电动势吸收的另外一半电能成为转换功率,成为机械功率.产生感应电动势是耦合场从电源吸收电能的必要条件,产生运动电动势是通过耦合场实现机电能量转换的关键。
转子在耦合场中运动产生电磁转矩,运动电动势和电磁转矩构成一对机电耦合项,是机电能量转换的核心部分。
2.磁阻转矩:。
当转子凸极轴线与定子绕组轴线重合,此时气隙磁导最大,定义此时定子绕组的自感为直轴电感;当转子交轴与定子绕组轴线重合,此时气隙磁导最小,定义此时定子绕组的自感为交轴电感;因此在转子旋转过程中,定子绕组的自感将发生变化。
由于转子运动使气隙磁导发生变化而产生的电磁转矩称为磁阻转矩。
转子励磁产生的电磁转矩称为励磁转矩。
3.直流电机电磁转矩:主磁极基波磁场轴线定义为d(直)轴,d轴反时针旋转90定义为q(交)轴。
直流电动机的电枢绕组又称为换向器绕组,其特征:电枢绕组本来是旋转的,但在电刷和换向器的作用下,电枢绕组产生的基波磁场轴线在空间却固定不动。
在动态分析中,常将换向器绕组等效为一个单线圈,若电刷放在几何中性线上,单线圈的轴线就被限定在q轴,称为q轴线圈。
因q轴磁场在空间是固定的,当q轴磁场变化时会在电枢绕组内感生变压器电动势;同时它又在旋转,在d轴励磁磁场作用下,还会产生运动电动势,q轴线圈为能表示出换向器绕组这种产生运动电动势的效应,它应该也是旋转的。
这种实际旋转而在空间产生的磁场却静止不动的线圈具有伪静止特性,称为伪静止线圈,它完全反映了换向器绕组的特征,可以由其等效和代替实际的换向器绕组。
电磁转矩,控制不变,改变即改变,线性控制良好。
转子产生运动电动势,不断吸收电能,同时将电能转换为机械能,此时转子成为了能量转换的“中枢”,因此称为电枢。
4。
三相异步电机电磁转矩:其运行原理是①定子三相绕组通入三相对称正弦电流,②将会在气隙中产生正弦分布的两极旋转磁场,当转子静止不动时,由电磁感应原理,定子旋转磁场将在转子绕组中感生出三相对称正弦电流,其同样会在气隙中产生两极旋转磁场,旋转速度和方向与定子旋转磁场相同,但存在相位差,③定、转子旋转磁场相互作用产生电磁转矩,若其大于负载转矩,转子将开始旋转,而转子速度总是小于定子旋转磁场速度,否则转子绕组不会感生电流,电磁转矩也将消失,所以称为异步电机。
矢量控制与直接转矩控制技术矢量控制实现的基本原理就是通过测量与控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流与转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体就是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 与产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值与相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式与有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机就是指转子定子同时通电,异步机就就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样就是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点就是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都就是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式就是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置就是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想就是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)与转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)与转矩电流的指令值与检测值达到一致,并输出转矩,从而实现矢量控制。
通俗地解释转子磁链?矢量控制?关于矢量控制,通俗理解是:1. 先把电机想像成2块飞速旋转磁铁,定子磁铁和转子磁铁。
进一步可以引申为定子磁场和转子磁场。
2. 电机的电磁转矩与定子磁场强度、转子磁场强度、2块磁铁之间的夹角的正弦成正比。
关于这一点不难理解,两块磁铁对齐的时候(0度,sin0=0;),不存在电磁转矩;两块磁铁相差90度的时候(sin90=1;),电磁转矩达到顶峰;3. 接下来控制的目标就是:1)稳定其中的一个旋转磁场的强度(恒定磁场); 2)控制磁铁之间角度为90度(磁场定向FOC);3)控制另一个磁场(受控磁场)的强度以达到控制电磁转矩大小(力矩控制)。
4. 关于坐标变换的物理意义(以同步电机为例):1)在电机不失步的情况下,可以认为两个磁极之间相对静止,最多在夹角0~90度之间移动。
2)既然交流电产生的是一个旋转磁场,那么自然可以把它想像成一个直流电产生的恒磁场,只不过这个恒磁场处于旋转当中。
3)如果恒磁场对应的直流电流产生的磁场强度,与对应交流电产生的磁场强度相等,就可以认为两者等同。
4)坐标变换基于以上认知,首先认为观察者站在恒定定磁场上并随之运转,观察被控磁场的直流电线圈电流及两个磁场之间的夹角。
5)实际的坐标变化计算出的结果有两个,直轴电流Id和交轴电流Iq。
通过Id和Iq可以算出两者的矢量和(总电流),及两个磁场之间的夹角。
6)直轴电流Id是不出力的,交轴电流Iq是产生电磁转矩关键因素。
5. 对于交流同步隐极电动机:1)其转子磁场是恒定的。
2)转子的当前磁极位置用旋转编码器实时检测。
3)定子磁极(旋转磁场)的位置从A相轴线为起点,由变频器所发的正弦波来决定。
4)实际上先有定子磁场的旋转,然后才有转子磁场试图与之对齐而产生的跟随。
5)计算出转子磁场与A相轴线之间的偏差角度。
6)通过霍尔元件检测三相定子电流,以转子磁场与A相轴线之间的偏差角度作为算子(相当于观察者与转子磁场同步旋转),通过坐标变换分解出定子旋转磁场中与转子磁极对齐的分量(直轴电流Id),产生转矩的分量(交轴电流Iq)。
转子磁链控制原理(一)转子磁链控制原理引言转子磁链控制是一种常用于电机驱动系统中的控制方法。
它通过改变电机转子上的永磁体磁链的大小和方向,实现对电机速度、力矩和位置的精确控制。
本文将从浅入深地介绍转子磁链控制的原理及其在电机控制领域的应用。
什么是磁链?磁链是指单位时间内通过单位面积的磁通量。
在电机中,磁链是由永磁体产生的磁场在转子上形成的环状磁场。
它决定了电机的磁场强度和转子受力的大小。
传统控制方法的不足传统的电机控制方法如直流电阻调速和感应电机矢量控制,都存在一定的局限性。
直流电阻调速方法简单直观,但无法实现高性能的电机控制。
而感应电机矢量控制方法虽然能够实现较高的控制精度,但它会引起许多参数不确定性和计算复杂性,且效果受电机参数变化的影响较大。
转子磁链控制通过控制转子磁链的大小和方向,实现对电机速度、力矩和位置的精确控制。
它的基本原理如下:1.通过在转子上安装感应线圈,测量转子磁链的大小和方向;2.利用电流反馈控制方法,使转子上的永磁体磁链保持在所需的大小和方向;3.根据转子磁链的变化,调整电机的控制信号,实现对电机运行状态的精确控制。
转子磁链控制的优势转子磁链控制方法在电机控制领域具有许多优势:•高控制精度:通过精确控制转子磁链的大小和方向,可以实现电机的高精度控制,提供更加稳定的运行性能。
•可调节性强:转子磁链控制方法可以根据具体需求灵活调整控制参数,适配不同的工作场景,提供更大的控制调节范围。
•抗干扰能力强:由于转子磁链控制方法对电机参数变化的容忍度较高,可以有效降低外部干扰对电机控制的影响。
•响应速度快:由于转子磁链控制方法通过直接改变磁链大小和方向实现控制,响应速度较快,减小了控制延迟。
转子磁链控制方法在众多电机控制领域都有广泛的应用:•电机驱动系统:转子磁链控制被广泛应用于各种电机驱动系统,如直流电机、交流电机等。
它可以提供高精度的速度和力矩控制,满足不同工作场景的需求。
•机器人控制:转子磁链控制方法可以实现机器人关节的精确控制,提供更高的运动精度和稳定性。
磁链计算模型分析详解1引言异步电机按转子磁场定向的矢量控制系统中,转子磁链的准确估计至关重要。
如果转子磁链的估计不准确,转子磁场定向控制系统应有的优点,即实现转矩和磁通的解耦控制将无法实现。
由于直接检测转子磁链的方法受到工艺和技术方面的限制,在实际的控制系统中,多采用间接计算转子磁链的方法,即利用直接测得的电压、电流或转速等信号,借助于转子磁链计算模型,实时计算磁链的幅值和相位。
转子磁链模型可以从电动机数学模型中推导出来,也可以利用状态观测器或状态估计理论得到闭环的观测模型。
闭环方式的观测模型,因计算比较复杂,理论研究尚不十分成熟,实际使用较少,多用比较简单的计算模型。
在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种[1]。
采用电压模型法,由于存在电压积分问题,结果在低速运行时,模型运算困难。
采用电流模型法时,由于存在一阶滞后环节,在动态过程中难以保证控制精度。
通常的组合模型法是考虑在不同的速度范围采用不同的计算模型,主要是解决好过渡问题[2]。
该方法用到两个计算模型,计算复杂,且过渡处理造成成本增加。
而本文却是直接通过对两个模型的计算方程进行组合处理,消除了电压模型中的积分环节和电流模型法中的一阶延时环节,得到一个新的磁链计算模型,并将其结合矢量控制系统进行仿真研究,结果表明该模型具有较好的动态性能。
2 常用转子磁链计算模型2.1 两相静止坐标系下转子磁链的电压模型根据定子电流和定子电压的检测值来估算转子磁链,所得出的模型叫做电压模型。
在两相静止αβ坐标系下由定子电压方程可以得出[3][4]:(1)转子磁链方程为:(2)由上式得到转子电流αβ分量:(3)用式(3)把式(1)中的i rα和i rβ置换掉,整理后得:(4)将漏磁系数代入其中,并对等式两侧取积分,即得转子磁链的电压模型为:(5)由以上分析易知,电压模型法实际上是一个纯积分器,而纯积分器的累积误差和漂移问题都会导致系统失稳。
转子磁链观测
检测转子磁链的目的是:
(1)生成单位矢量,进行直接矢量控制;(2)进行磁链的闭环控制或补偿控制,使磁链的控制更加精确。
直接检测气隙磁链必须在制造电机时预先在某相绕组平面内间隔90 ۫电角度埋入两个磁通传感器,对使用者很不方便。
而采用电机以外的其他传感器间接检测磁链,即采用磁链观测器观测磁链则增加了使用电机的主动性,所以受到人们的重视[2,5]。
电流模型转子磁链观测器是通过检测定子电流和转子旋转速度而计算出转子磁链的一种观测方法。
计算公式如下所示:
21222
2
12221()11()1m m i T L T p i T L T p ααβββαψωψψωψ⎧
=-⎪+⎪⎨
⎪=+⎪+⎩
(2-14) 电流模型观测器的优点是在整个速度范围内均可以对转子磁链进行观测,但
观测的精度与转子绕组参数的测量(或计算)的准确程度关系很大,而且存在随温度变化和集肤效应随频率的变化,这对精确地观测磁链带来困难。
电压模型转子磁通观测器是通过检测异步电动机定子电压和定子电流而计算出转子磁通的一种观测方法,实现方法如图2-7所示。
以下公式给出了在两相静止坐标系下转子磁通的计算公式。
()()()()
2
111
1122111
11
2m m
L dt u
i i R L L L dt u
i i R L L ααααββββσψσψ⎧
=--⎪⎪⎨
⎪=--⎪⎩
⎰⎰ (2-15)
电压模型转子磁链观测器易于实现,因为只需要电压互感器和电流互感器,电路简单,但电压模型磁链观测器一步只能在额定转速的10%以上使用,因为在10%以下的转速范围内,电机的定子电压变得很小,真实值被积分误差和检测误差所淹没,难以保证精度。
因此,通常在高速段采用电压模型观测器,而在低速段才使用电流模型观测器。
图2-7电压模型磁链观测器
电压型转子磁链观测器由于使用了纯积分环节,存在直流偏差和初始值问题,为了克服这些问题,在积分环节后串连一个一阶高通滤波器,写出表达式如下:
()()2111112211111211c
m c c
m c L T p u i i R L p L T L T p u i i R L p L T ααααββββσψσψ⎧⎛⎫=--⎪
⎪+⎪⎝⎭
⎨
⎛⎫⎪=-- ⎪⎪+⎝⎭⎩
(2-16) 考虑到
()1121112r
m
L p p e u i i R L L σψ=
--= (2-17) 那么
222211111c c c c c P e T T P p p T T T ψψψ+⎛⎫==+
⎪+++⎝⎭
(2-18) 上式中第一项是磁链观测值,第二项是真值与观测值之间的误差,c T 的选取应该使误差项减小,即选取较大的c T 值;同时c T 太大,对漂移值的抑制作用减弱,而且磁通观测器的动态响应速度变慢,所以实际选取时要综合考虑各种因素。
高性能调速系统中,一般需要设计对误差值进行补偿,以求达到满意的结果。
2221
ˆ11c c c e
T p p
T T ψ
ψ=+
++ (2-19) 2ˆψ
即是计算补偿量的磁链估计值,通过另外的磁链观测器给出。
根据选取2ˆψ的方法分类,可以将控制方法分成两类:(1)基于转子磁通指令值(2)有限补偿
的改进电压型转子磁通观测器。
转子磁通指令值补偿首先由日本学者T.Ohtani 提出,其补偿量αβψ
r ˆ为转子磁通指令值,
*+++=
αβαβ
αβψψr c c r c r p
T p T e T 111 (2-20)
相应的观测器结构如图2-8所示。
αβ
r
图2-8用转子磁链指令值计算补偿量。