19.3课题学习选择方案(1--4)
- 格式:ppt
- 大小:1.73 MB
- 文档页数:52
19.3课题学习选择方案知识要点基础练知识点1利用函数图象选择方案1.星期一早晨,小明从家出发匀速步行去学校,到校后发现忘穿校服了,立即原路原速返回,小明的爸爸在小明出发20 min时发现儿子没有穿校服,立即骑车去学校送校服,途中碰到返回的小明,小明与爸爸之间的路程y(m)与小明出发的时间x(min)之间的函数关系如图所示,则小明爸爸的速度为(D)A.100 m/minB.120 m/minC.150 m/minD.200 m/min知识点2利用表格选择方案2.甲、乙、丙、丁四人一起到商店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是(D)A.甲B.乙C.丙D.丁知识点3利用函数解析式选择方案3.小林购买一部手机想入网,中国联通130网的收费标准是月租费30元,每月来电显示6元,本地电话费每分钟0.4元;中国电信“神州行”储值卡收费标准是本地电话费每分钟0.6元,月租费、来电显示费全免.小林的亲戚朋友都在本地,他想拥有来电显示服务,且估计他每月通话时间都在3 h以上,则小林更省钱的选择方案是(A)A.中国联通B.“神州行”储值卡C.一样D.无法确定4.李明到超市购买2B 铅笔和橡皮,2B 铅笔每支0.8元,橡皮每块1.2元.李明同学拿了10元钱,则可供他选择的购买方案有 7 种.(要求两样都买,余下的钱少于0.8元)综合能力提升练5.为了使学生能读到更多优秀书籍,某书店在出售图书的同时,推出一项租书业务:每租看1本书,若租期不超过3天,则收租金1.50元,从第4天开始每天另收0.40元,那么1本书租看7天归还,应收租金 3.1 元.6.张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)求y 与x 之间的函数解析式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元,甲、乙两种文具各购买了多少个?解:(1)由题意得y=2(100-x )=-2x+200.(2)由题意得{y =-2x +200,5x +3y =540,解得{x =60,y =80. 答:购买甲种文具60个,乙种文具80个.拓展探究突破练7.某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价之间的关系如下表:(1)设商店所获利润为y (单位:元),购进篮球的个数为x (单位:个),请写出y 与x 之间的函数关系式.(不要求写出x 的取值范围)(2)若要使商店的进货成本在4300元以内,且全部销售完后所获利润不低于1400元,请你列举出商店所有的进货方案,并求出最大利润.解:(1)设商店所获利润为y 元,购进篮球x 个,则购进排球(60-x )个,根据题意得y=(105-80)x+(70-50)(60-x )=5x+1200,∴y 与x 之间的函数关系式为y=5x+1200.(2)设购进篮球x 个,则购进排球(60-x )个,根据题意得{5x +1200≥1400,80x +50(60-x )≤4300,解得40≤x ≤1303. ∵x 取整数,∴x=40,41,42,43,共有四种方案.方案一:购进篮球40个,排球20个;方案二:购进篮球41个,排球19个;方案三:购进篮球42个,排球18个;方案四:购进篮球43个,排球17个.∵在y=5x+1200中,k=5>0,∴y 随x 的增大而增大,∴当x=43时,可获得最大利润,最大利润为5×43+1200=1415元.。
19.3 课题学习选择方案基础知识:1、某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算().A.计时制B.包月制C.两种一样 D.不确定2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是().A.①②③④ B.①③④ C.①②④ D.①②③3、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买1件时,售价约为3元,其中正确的说法有.(填序号)4、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L,又知单开进水管10min可以把容器注满,若同时打开进、出水管,20min可以把满容器的水放完,现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是:()A. B. C. D.5、我区某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.4小时C.4.8小时D.5小时6、关于x的一次函数)2()73(-+-=axay的图像与y轴的交点在x轴的上方,则y随x的增大而减小,则a的取值范围是。
19.3 课题学习选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版课题背景本课题为初二数学教学内容,主要讨论学生们在教学过程中,如何针对不同的问题,在多种可行方案中做出最优选择。
教学目标•了解并掌握选择方案的基本概念与思想方法。
•培养学生分析问题、解决问题的能力,增强其综合应用知识的能力。
•培养学生合作探讨的意识和能力,提高学生的团队合作精神。
•提高学生对数学学科的兴趣,增强学生的自主学习能力和创造力。
教学内容选择方案的基本概念选择方案是指在多种可行方案(包括选择、排列、组合等)中,选取一种科学、符合要求、优良的方案的过程。
选择方案一般需要考虑多种因素,如成本、时间、可行性、安全等。
选择方案的思想方法一般情况下,选择方案需要遵循以下几个步骤:1.明确目标和要求:选择方案的第一步就是明确目标和要求,以便选择出最优方案。
明确目标和要求需要结合实际情况,根据情况合理确定要求。
例如,考虑购买电脑时,需要先确定使用目的和购买预算,再选择性价比高、质量可靠等因素来确定要求。
2.收集情报资料:为了作出最优选择方案,需要充分收集相关情报和资料。
情报资料可以来自多个方面,如熟人介绍、网上搜索、问卷调查等。
例如,考虑购买电脑时,可以通过互联网搜索、问卷调查等方式收集相关资料。
3.分析和比较方案:收集到情报和资料后,需要对比分析多个可行方案。
对比分析需要综合考虑多种因素,如性价比、质量、售后服务等。
例如,考虑购买电脑时,需要比较多家电脑品牌的产品性价比、质量、售后服务等。
4.作出最终决策:在分析比较多个方案后,需要作出最终决策。
决策可以根据目标和要求,选取最优方案。
例如,考虑购买电脑时,在研究分析多个品牌的电脑产品性价比、质量、售后服务等因素后,做出最终决策选择最优方案。
实例分析以下是一个具体实例,以帮助学生了解和掌握选择方案的思想方法。
实例:如何选择健康的午餐?游客到一个小城市旅游,到处都是美食,但是游客不能放纵自己吃大餐或者垃圾食品。
19.3课题学习选择方案一、教学目标1.核心素养:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.2.学习目标(1)巩固一次函数知识,进一步明确一次函数与不等式相结合的实际问题处理方法.灵活运用变量之间的关系建立函数模型.(2)让学生通过“选择上网收费方式”,提高运用函数知识解决实际问题的能力.(3)让学生通过“怎样租车”,提高运用函数知识解决实际问题的能力.3.学习重点(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.4.学习难点如何构建一次函数模型.二、教学设计(一)课前设计1.预习任务任务1:预习教材P102-104页,了解上宽带网有几种收费方式,思考影响收费的因素有哪些?任务2:思考租车数量由什么决定,租车费用与哪些因素有关?(二)课堂设计2.知识回顾(1)形如y=kx+b(k,b是常数且k≠0)的函数,y是x的一次函数.(2)一次函数y=kx+b中,当k>0时,y随x的增大而增大.当k<0时,y随x 的增大而减小.(3)一元一次方程kx+b=0可看作是直线y=kx+b与x轴交点的横坐标.(4)一元一次不等式kx+b>0可看作是直线y=kx+b与x轴交点上方图象对应的x的值.3.问题探究问题探究一怎样选取上网收费方式请认真学习课本P102-103页“问题1”的内容,边学习边思考下列问题:【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一1.选择方案的依据是什么?【答】根据省钱原则选择方案2.要比较三种收费方式的费用,需要做什么?【答】分别计算每种方案的费用.3.怎样计算费用?【答】费用=月使用费+超时费超时费=超时使用价格×超时使用时间4.在A,B,C三种上网收费方式中,上网费用是变量的方式有__________,上网费用的多少与__________有关;上网费用是常量的方式是__________.【答】方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数.方案C费用固定.活动二 1.设上网时间为x h,A,B,C三种方式的收费y1,y2,y3各怎样表示?(注意考虑自变量x的取值范围)2.怎样比较y1,y2,y3的大小?分析:对于这个复杂的问题,我们画函数的图象,借助图象的直观性来解决.【详解】结合图象可知:(1)若y 1=y 2,即3t -45=50,解方程,得t =3123(2)若y 1<y 2,即3t -45<50,解不等式,得t <3123(3)若y 1>y 2,即3t -45>50,解不等式,得t >3123(4)若y 2=y 3,即3t -100=120,解方程,得t =7313(5)若y 2>y 3,即3t -100>120,解不等式,得t >7313综上所述:当上网时间不超过31小时40分,选择方案A 最省钱;当上网时间为31小时40分至73小时20分,选择方案B 最省钱;当上网时间超过73小时20分,选择方案C 最省钱.问题探究二怎样租车思考与讨论:阅读教材P103----P104,【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一 1.影响最后的租车费用的因素有哪些?【答】主要影响因素是甲,乙两种车所租辆数.2.汽车所租辆数又与哪些因素有关?【答】与乘车人数有关.3.如何由乘车人数确定租车辆数呢?【答】(1)要保证240名师生都有车坐,汽车总数不能小于6辆;(2)要使每辆汽车上至少有1名教师,汽车总数不能大于6辆.所以共需租6辆车.活动二在汽车总数确定后,租车费用与租车的种类有关.如果租甲类车x 辆,能求出租车费用y=.在这个函数中,y 随x 的增大而.要求y 的最小值,就要先求x 的取值范围,怎样求x 的取值范围?【详解】设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则y=400x+280(6-x)化简得y=120x+1680.(1)为使240名师生有车坐,则45x+30(6-x)≥240;(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300.解得:4≤x≤316据实际意义可取4或5;因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值为2160.所以,租甲种车4辆,乙种车2辆.结论:在涉及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.3.课堂总结【知识梳理】基础知识思维导图【重难点突破】(1)本节的问题,其实质是运用一次函数选择最佳方案,一是用一次函数的图像性质;二是多变量的问题.(2)用一次函数解决生活中的方案选择问题需要根据题意列出函数解析式及图像,分三种情况:函数值相等、大于、小于,结合方程、不等式进行说明,在此基础上选择合理方案.(3)将实际问题抽象概括成函数模型体现建模思想,其步骤:审清题意---建立数学模型---数学方法解决问题----验证结果.4.随堂检测:参见ppt巩固练习提升题。
人教版数学八年级下册《19.3 课题学习——选择方案》教案一. 教材分析人教版数学八年级下册《19.3 课题学习——选择方案》这一节主要让学生学会如何从多个方案中选择最优方案。
通过引入实际问题,让学生运用概率知识、列举法等方法,解决实际选择问题。
教材以案例的形式呈现,让学生在解决问题的过程中,掌握选择方案的方法和技巧。
二. 学情分析学生在学习本节内容前,已经掌握了概率基础知识,能够理解并运用列举法。
但如何在实际问题中灵活运用这些知识,选择最优方案,对学生来说还较为困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.让学生理解选择方案的概念,掌握选择方案的方法和技巧。
2.培养学生运用概率知识、列举法解决实际问题的能力。
3.培养学生独立思考、合作交流的能力。
四. 教学重难点1.重点:选择方案的方法和技巧。
2.难点:如何将所学知识应用于实际问题中,灵活选择最优方案。
五. 教学方法1.案例教学法:通过引入实际问题,让学生在解决问题的过程中掌握选择方案的方法。
2.引导发现法:教师引导学生发现问题的解决方法,培养学生的独立思考能力。
3.合作交流法:分组讨论,让学生在合作中发现问题、解决问题,提高学生的沟通能力。
六. 教学准备1.准备相关案例材料,用于引导学生解决实际问题。
2.准备多媒体教学设备,用于展示案例和引导学生思考。
七. 教学过程1.导入(5分钟)利用多媒体展示一个实际问题:某商场举行抽奖活动,奖品有电视机、洗衣机、电风扇和玩具。
奖品设置如下:一等奖:电视机,概率为1/10;二等奖:洗衣机,概率为2/10;三等奖:电风扇,概率为3/10;四等奖:玩具,概率为4/10。
提问:如果你参加这次抽奖活动,你希望获得哪个奖项?为什么?2.呈现(10分钟)引导学生分析问题,让学生认识到选择最优方案的重要性。
呈现教材中的案例,让学生了解选择方案的方法和技巧。
19.3课题学习选择方案1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;(重点)2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.(难点)一、情境导入某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价基础上打八折优惠,乙旅行社则推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮忙分析出如何选择旅行社更划算吗?二、合作探究探究点:运用一次函数解决方案选择性问题【类型一】利用一次函数解决自变量是非负实数的方案选择问题小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦·时,请你帮助他们选择哪种灯可以省钱?解析:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元.根据“费用=灯的售价+电费”,分别列出y1、y2与x的函数解析式;然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.解:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元,由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.①当使用两灯费用相等时,y1=y2,即0.005x+60=0.03x+3,解得x=2280;②当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280;③当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.本题中两种灯的照明效果是一样的.使用寿命也相同(3000小时以上),所以买节能灯可以省钱.方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.【类型二】利用一次函数解决自变量是非负整数的方案选择问题某灾情发生后,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答的车辆数为y .求y 与x 的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.解析:(1)装运生活用品的车辆为(20-x -y )辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x 的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.解:(1)根据题意,装运食品的车辆为x 辆,装运药品的车辆为y 辆,那么装运生活用品的车辆数为(20-x -y )辆,则有6x +5y +4(20-x -y )=100,整理得,y =-2x +20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x ,20-2x ,x ,由题意得⎩⎪⎨⎪⎧x ≥5,20-2x ≥4,解得5≤x ≤8.因为x为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆;(3)设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16000-480x .因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需x 最大,则x =8.故选方案四,W 最小=16000-480×8=12160(元).答:选方案四,最少总运费为12160元.方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最佳方案.【类型三】 利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题已知A 、B 两地的路程为240千米.某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费项目及收费标准表货运收费项目及收费标准表:(1)汽车的速度为______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围),当x 为何值时,y 汽>y 火(总费用=运输费+冷藏费+固定费用);(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解析:(1)根据图①上两点的坐标分别为(2,120),(2,200),直接得出两车的速度即可;(2)根据图表得出货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.解:(1)60 100(2)根据题意得y 汽=240×2x +24060×5x+200=500x +200;y火=240×1.6x +240100×5x +2280=396x +2280.若y 汽>y 火,得出500x +200>396x +2280.解得x >20,当x >20时,y 汽>y 火;(3)上周货运量x =(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题. 三、板书设计1.利用一次函数解决自变量是非负实数的方案选择问题2.利用一次函数解决自变量是非负整数的方案选择问题3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.。
人教版八下数学学霸笔记整理19.3 课题学习选择方案1.做一件事情,有时有不同的实施方案.比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数.2.解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.解决这类问题要读懂题意,注意数形结合求解.1.规律方法:利用函数模型解决选择方案问题,关键是把实际问题抽象成函数问题,建立函数模型(当前是一次函数模型),通过解决函数问题进行方案选择.2.解题技巧:当有多个变量时,必须利用题目所给出的条件或限制,把其余变量用其中的一个变量表示,然后列出一次函数解析式,根据一次函数的性质解答相关问题.要特别注意实际问题中各个变量的取值范围,必须使所有的相关变量都有意义和符合题目的要求,而不是只有所列函数解析式中自变量有意义.[典例精析]【例1】某住宅楼新开盘需要印制一批彩色宣传单,该楼盘管理者在网上浏览到两种供应该规格的宣传单的方案:①从广告公司直接购买,宣传单的单价为0.2元;②从租赁处租赁印刷机器自己印刷,租赁费用为5 000元,且每印刷一张宣传单,还需要成本0.12元.(1)请分别写出从广告公司直接购买宣传单的费用y1(元)与需要这种宣传单的张数x(张)之间的函数关系式及租赁印刷机器印刷制作宣传单的费用y2(元)与需要这种宣传单的张数x(张)之间的函数关系式;(2)如果你是该楼盘的管理者,你会采用哪种宣传单供应的方案?分析:(1)分别根据:总费用(直接购买)=宣传单的单价×宣传单数量、总费用(租赁设备)=宣传单的单价×宣传单数量+租赁设备费用,可得函数关系式;(2)由(1)中两个函数关系式分类讨论得关于x的不等式,求解可得.解:(1)y1=0.2x,y2=0.12x+5 000.(2)若y1<y2,则0.2x<0.12x+5 000,解得x<62 500,∴当x<62 500时,采用从广告公司直接购买宣传单便宜;若y1=y2,则0.2x=0.12x+5 000,解得x=62 500,∴当x=62 500时,采用从广告公司直接购买宣传单与租赁印刷机器印刷制作宣传单费用相等,均可;若y1>y2,则0.2x>0.12x+5 000,解得x>62 500,∴当x>62 500时,采用租赁印刷机器印刷制作宣传单便宜.解题总结:这类问题是一次函数和一元一次不等式的综合应用,要将现实生活中的事件与数学思想联系起来,读懂题意,找出题目蕴含的数量关系解决问题.【例2】受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1 200千克.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800千克,乙养殖场每天最多可调出900千克,从两养殖场调运鸡蛋到超市的路程和运费如下表:(1)若某天调运鸡蛋的总运费为2 670元,则从甲、乙两养殖场各调运了多少千克鸡蛋?(2)设从甲养殖场调运鸡蛋x千克,总运费为W元,试写出W与x的函数关系式,怎样安排调运才能使每天的总运费最省?分析:(1)设从甲养殖场调运鸡蛋x千克,从乙养殖场调运鸡蛋y千克,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x千克鸡蛋,则从乙养殖场调运了(1 200-x)千克鸡蛋,根据题意列方程组得到300≤x ≤800,总运费 W=200×0.012x+140×0.015×(1 200-x )=0.3x+2 520(300≤x ≤800),根据一次函数的性质得到W 随x 的增大而增大,于是得到当 x=300时,W 最小=2 610元.解:(1)设从甲养殖场调运鸡蛋x 千克,从乙养殖场调运鸡蛋y 千克,根据题意,得{200×0.012x +140×0.015y =2 670,x +y =1 200.解得{x =500,y =700.∵500<800,700<900,∴符合条件.∴从甲、乙两养殖场分别调运了500千克,700千克鸡蛋.(2)从甲养殖场调运了x 千克鸡蛋,则从乙养殖场调运了(1 200-x )千克鸡蛋,根据题意,得 {x ≤800,1 200-x ≤900.解得300≤x ≤800. W=200×0.012x+140×0.015×(1 200-x )=0.3x+2 520(300≤x ≤800),∵W 随x 的增大而增大,∴当x=300时,W 最小=2 610元.此时 1 200-x=900.∴每天从甲养殖场调运300千克鸡蛋,从乙养殖场调运900千克鸡蛋,才能使每天的总运费最省.解题总结:利用二元一次方程组与一次函数解决问题,关键是理解题意,抓住其中的等量关系.。
方式B:y2=50x3100,(50)x x≤≤⎧⎨->⎩,(050);方式C:y3=120(x≥0).提问:用什么方法比较函数y1,y2,y3 的大小呢?学生独立思考, 有的学生可能会用不等式或方程考虑,但发现由于y1,y2 是分段函数,用不等式或方程比较麻烦,此时教师引导学生还可以借助函数图象来分析问题和解决问题.教师解析:(1)设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C 上网费用为y3元,则y1=y2=y3=120(x≥0).问题转化为比较y1,y2,y3 的大小.(2)引导学生画出函数的图象:由函数图象可知:(1)函数y1=3x-45与函数y2=50的图象的交点横坐标满足:3x-45=50,故交点的横坐标为x=31,(2)函数y2=3x-100与函数y3=120的图象的交点横坐标满足:3x-100=120, 故交点的横坐标为x=73.由数形结合思想可知:当上网时间不超过31小时40分钟时,选择方式A最省钱;当上网时间为31小时40分钟至73小时20分钟时,选择方案B最省钱;当上网时间超过73小时20分钟时,选择方案C最省钱.引导学生写出详细的解答过程:解:设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C 上网费用为y3元,则y1=y2=y3=120(x≥0).(1)令y1=y2,即3x-45=50,解方程,得x=31.(2)令y2=y3,即3x-100=120,解方程,得x=73.画出函数的图象如下图:结合函数的图象可知:当上网时间不超过31小时40分时,选择方案A最省钱;当上网时间为31小时40分至73小时20分时,选择方案B最省钱;当上网时间超过73小时20分时,选择方案C最省钱.2.怎样租车问题二:某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示 :甲种客车乙种客车载客量(人/辆) 45 30租金(元/辆) 400 280(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.引导学生阅读教师给出的材料,并思考下列问题:(1)租车的方案有几种?(2)如果单独租甲种车需要多少辆?单独租乙种车需要多少辆?(3)如果甲、乙两种车都租,你能确定租车的车辆范围吗?(4)要保证240名师生有车坐,则汽车总数不能小于.要使每辆汽车上至少有1名教师,则汽车总数不能大于.综合起来可知汽车总数为.学生根据教师所提出的问题进行思考,利用分类讨论的数学思想进行求解.解:(1)要保证240名师生有车坐,由甲种客车每辆载客45人可知汽车总数不能小于6;要使每辆汽车上至少有1名教师,有6名教师可知汽车总数不能大于6.综合起来可知汽车总数为6.(2)若单独租甲种车,需要费用:400×6=2400(元),不满足总费用2300元的限额. 若租甲、乙两种车,设租用x辆甲种客车,则租用(6-x)辆乙种客车,则车费y与 x 的函数关系式为y=400x+280(6-x)=120x+1680.由题意可知x应满足:_____________________________________.解这个不等式组,得4≤x≤.∵x为正整数,∴x=4或5.综上可知:共有两种方案:方案一:租4辆甲种客车,2辆乙种客车,y=120×4+1680=2160(元).方案二:租5辆甲种客车,1辆乙种客车,y=120×5+1680=2280(元).故应选择方案一,它的费用最少,为2160元.三、课堂小结1.本节课学习了用一次函数解决实际问题的基本思路:2.本节课渗透的数学思想方法.(建立数学模型、数形结合、分类讨论)3.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数.解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.四、板书设计1.怎样选取上网收费方式例12.怎样租车例2作业设计必做教材第105页活动1.选做教材第105页活动2.教学反思。
19.3课题学习选择方案(1)教学设计及说明一、教学内容及内容解析:本节内容选择了贴近生活实际的一个方案(怎样解决上网收费方式)。
在此之前学生已经学习了一元一次方程、二元一次方程组、一元一次不等式的解法和应用,一次函数的图像和性质,一次函数与一元一次方程、二元一次方程组、一元一次不等式之间的关系等相关知识。
由于本节内容具有较强的实际背景,分析实际背景中所包含的变量及其对应关系较复杂,且方法多,即可用学过的方程不等式又可用刚学过的函数知识,又要选择最优化的方案,因此是对以前知识的综合应用和升华。
目的是提高综合应用所学知识分析和解决实际问题的能力,从而体会一次函数在分析和解决实际问题中的重要作用,进一步感受建立数学模型重要性。
在授课过程中,采用了师生共同发现问题,提出问题,利用函数、数形结合以及分类讨论的思想方法解决问题,并用发现的方法解决问题的教学主线,解决了选择方案中的一次函数问题和简单分段函数的问题,为高中学习分段函数奠定基础。
二、教学目标及目标解析:根据学生实际和教材特点制定如下目标:1、进一步巩固一次函数的相关知识,初步学会从数学的角度提出问题,理解问题,并能综合运用所学知识和技能解决问题,发展应用意识。
2、能根据一次函数的性质,用代数法和图像法解决选择方案的问题,培养学生分析问题解决问题的能力与优化方案的意识,渗透数学建模的思想方法。
3、通过解决实际问题体会数学与生活的联系,激发学生学习数学的兴趣。
在数学学习中学会独立思考及与他人合作学习共同获得经验。
4、将所学的知识应用到解决实际问题中去选择合适的方案,体会数学的实用价值,帮助学生获得生活经验,并树立正确的人生观和价值观。
教学重点:建立数学模型,利用代数法和图像法解决选择方案的实际问题。
教学难点:从实际问题中抽象出分段函数模型,并用方程、不等式知识或借助函数图像的性质进行综合分析问题,从而解决实际生活中方案选择问题。
三、教学问题诊断分析:初中生活泼好动,注意力易分散,抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。
人教版数学八年级下册19.3《课题学习选择方案》说课稿1一. 教材分析人教版数学八年级下册19.3《课题学习选择方案》这一节的内容,主要让学生了解和掌握如何运用概率知识解决实际问题。
通过实例分析,让学生学会如何列出事件的可能性,并计算出概率,从而做出最优选择。
这部分内容与生活实际紧密相连,旨在培养学生的实际问题解决能力。
二. 学情分析学生在学习这一节内容前,已经掌握了概率的基本知识,如事件的确定性和不确定性,以及概率的计算方法。
但学生在解决实际问题时,可能会遇到难以判断事件是否独立的情况,因此,如何在实际问题中正确运用概率知识,是本节课需要解决的问题。
三. 说教学目标1.让学生掌握运用概率知识解决实际问题的方法。
2.培养学生分析问题、解决问题的能力。
3.提高学生运用数学知识解决生活实际问题的意识。
四. 说教学重难点1.教学重点:如何运用概率知识解决实际问题。
2.教学难点:判断事件是否独立,以及如何在实际问题中运用概率知识。
五. 说教学方法与手段1.采用案例分析法,让学生在实例中学会运用概率知识。
2.采用问题驱动法,引导学生主动思考、探究问题。
3.利用多媒体辅助教学,直观展示实例,提高学生的学习兴趣。
六. 说教学过程1.导入:通过一个简单的概率问题,引发学生对运用概率知识解决实际问题的兴趣。
2.新课导入:介绍课题学习的内容,让学生明确本节课的目标。
3.案例分析:分析具体实例,引导学生运用概率知识解决问题。
4.讨论交流:让学生分小组讨论,分享各自解决问题的方法。
5.总结提升:对所学内容进行总结,引导学生掌握解决实际问题的方法。
6.课堂练习:布置一些实际问题,让学生独立解决,巩固所学知识。
七. 说板书设计板书设计如下:课题:选择方案1.事件的可能性与概率–确定性事件:必然发生,概率为1–可能性事件:发生与否不确定,概率介于0和1之间–不可能事件:一定不发生,概率为02.独立事件的概率–独立事件:一个事件的发生不影响另一个事件的发生概率–非独立事件:一个事件的发生影响另一个事件的发生概率3.实际问题解决方法–判断事件是否独立–列出事件的可能性–计算概率,做出最优选择八. 说教学评价1.学生对概率知识的掌握程度。