19.3课题学习--选择方案
- 格式:ppt
- 大小:2.04 MB
- 文档页数:25
简介本文档旨在讨论19.3课题学习选择方案,以帮助学生理解如何选择适合自己的课题,并制定合理的学习计划。
问题陈述在进行课题学习之前,学生需要明确以下几个问题: 1. 课题的背景和意义是什么? 2. 我的兴趣和专长领域是哪些? 3. 该课题是否适合我?是否能够在该课题上取得有意义的研究成果? 4. 学习该课题对我未来的发展有何帮助?解决方案1. 研究课题背景和意义在选择课题时,了解研究课题的背景和意义非常重要。
学生可以通过文献阅读、查阅相关资料或与导师进行交流,深入了解该课题的重要性和对现有知识的补充。
2. 确定个人兴趣和专长领域学生应考虑自己的兴趣和专长领域,选择与之相关的课题。
这样能够提高学生对课题的热情和主动性,并有助于学生在该领域发展自己的专业能力。
3. 评估课题的适合程度在选择课题时,学生需要评估该课题是否适合自己。
可以从以下几个方面进行评估: - 与自己的兴趣和专长领域是否相关。
- 是否具备足够的时间和资源来进行深入研究。
- 是否符合学校或导师的要求和规定。
4. 考虑课题的学习和发展影响选择一个合适的课题对学生的学习和发展有着重要影响。
学生应考虑以下几个方面: - 该课题是否能帮助学生锻炼和提高自己的研究能力。
- 该课题是否能为学生提供未来发展所需的专业技能和知识。
- 该课题是否与学生未来的职业规划和目标一致。
实施计划1. 了解课题学生可以通过以下途径了解课题: - 阅读相关文献和研究资料。
- 参加学术研讨会或学术讲座。
- 与导师进行交流和讨论。
2. 制定学习计划学生应制定合理的学习计划,包括以下内容: - 课题学习的时间安排:合理安排学习时间,确保有足够的时间进行研究和实验。
- 学习目标和里程碑:明确学习目标,设定达到目标的里程碑,并制定相应的计划和时间表。
- 学习资源的获取:确定所需的学习资源,包括书籍、文献、实验设备等,并尽早获取和准备。
3. 学习和实践根据学习计划,学生应根据所制定的里程碑进行学习和实践。
19.3 课题学习选择方案基础知识:1、某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算().A.计时制B.包月制C.两种一样 D.不确定2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是().A.①②③④ B.①③④ C.①②④ D.①②③3、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买1件时,售价约为3元,其中正确的说法有.(填序号)4、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L,又知单开进水管10min可以把容器注满,若同时打开进、出水管,20min可以把满容器的水放完,现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是:()A. B. C. D.5、我区某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.4小时C.4.8小时D.5小时6、关于x的一次函数)2()73(-+-=axay的图像与y轴的交点在x轴的上方,则y随x的增大而减小,则a的取值范围是。
19.3课题学习选择方案一、教学目标1.核心素养:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.2.学习目标(1)巩固一次函数知识,进一步明确一次函数与不等式相结合的实际问题处理方法.灵活运用变量之间的关系建立函数模型.(2)让学生通过“选择上网收费方式”,提高运用函数知识解决实际问题的能力.(3)让学生通过“怎样租车”,提高运用函数知识解决实际问题的能力.3.学习重点(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.4.学习难点如何构建一次函数模型.二、教学设计(一)课前设计1.预习任务任务1:预习教材P102-104页,了解上宽带网有几种收费方式,思考影响收费的因素有哪些?任务2:思考租车数量由什么决定,租车费用与哪些因素有关?(二)课堂设计2.知识回顾(1)形如y=kx+b(k,b是常数且k≠0)的函数,y是x的一次函数.(2)一次函数y=kx+b中,当k>0时,y随x的增大而增大.当k<0时,y随x 的增大而减小.(3)一元一次方程kx+b=0可看作是直线y=kx+b与x轴交点的横坐标.(4)一元一次不等式kx+b>0可看作是直线y=kx+b与x轴交点上方图象对应的x的值.3.问题探究问题探究一怎样选取上网收费方式请认真学习课本P102-103页“问题1”的内容,边学习边思考下列问题:【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一1.选择方案的依据是什么?【答】根据省钱原则选择方案2.要比较三种收费方式的费用,需要做什么?【答】分别计算每种方案的费用.3.怎样计算费用?【答】费用=月使用费+超时费超时费=超时使用价格×超时使用时间4.在A,B,C三种上网收费方式中,上网费用是变量的方式有__________,上网费用的多少与__________有关;上网费用是常量的方式是__________.【答】方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数.方案C费用固定.活动二 1.设上网时间为x h,A,B,C三种方式的收费y1,y2,y3各怎样表示?(注意考虑自变量x的取值范围)2.怎样比较y1,y2,y3的大小?分析:对于这个复杂的问题,我们画函数的图象,借助图象的直观性来解决.【详解】结合图象可知:(1)若y 1=y 2,即3t -45=50,解方程,得t =3123(2)若y 1<y 2,即3t -45<50,解不等式,得t <3123(3)若y 1>y 2,即3t -45>50,解不等式,得t >3123(4)若y 2=y 3,即3t -100=120,解方程,得t =7313(5)若y 2>y 3,即3t -100>120,解不等式,得t >7313综上所述:当上网时间不超过31小时40分,选择方案A 最省钱;当上网时间为31小时40分至73小时20分,选择方案B 最省钱;当上网时间超过73小时20分,选择方案C 最省钱.问题探究二怎样租车思考与讨论:阅读教材P103----P104,【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一 1.影响最后的租车费用的因素有哪些?【答】主要影响因素是甲,乙两种车所租辆数.2.汽车所租辆数又与哪些因素有关?【答】与乘车人数有关.3.如何由乘车人数确定租车辆数呢?【答】(1)要保证240名师生都有车坐,汽车总数不能小于6辆;(2)要使每辆汽车上至少有1名教师,汽车总数不能大于6辆.所以共需租6辆车.活动二在汽车总数确定后,租车费用与租车的种类有关.如果租甲类车x 辆,能求出租车费用y=.在这个函数中,y 随x 的增大而.要求y 的最小值,就要先求x 的取值范围,怎样求x 的取值范围?【详解】设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则y=400x+280(6-x)化简得y=120x+1680.(1)为使240名师生有车坐,则45x+30(6-x)≥240;(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300.解得:4≤x≤316据实际意义可取4或5;因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值为2160.所以,租甲种车4辆,乙种车2辆.结论:在涉及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.3.课堂总结【知识梳理】基础知识思维导图【重难点突破】(1)本节的问题,其实质是运用一次函数选择最佳方案,一是用一次函数的图像性质;二是多变量的问题.(2)用一次函数解决生活中的方案选择问题需要根据题意列出函数解析式及图像,分三种情况:函数值相等、大于、小于,结合方程、不等式进行说明,在此基础上选择合理方案.(3)将实际问题抽象概括成函数模型体现建模思想,其步骤:审清题意---建立数学模型---数学方法解决问题----验证结果.4.随堂检测:参见ppt巩固练习提升题。
人教版数学八年级下册《19.3 课题学习——选择方案》教案一. 教材分析人教版数学八年级下册《19.3 课题学习——选择方案》这一节主要让学生学会如何从多个方案中选择最优方案。
通过引入实际问题,让学生运用概率知识、列举法等方法,解决实际选择问题。
教材以案例的形式呈现,让学生在解决问题的过程中,掌握选择方案的方法和技巧。
二. 学情分析学生在学习本节内容前,已经掌握了概率基础知识,能够理解并运用列举法。
但如何在实际问题中灵活运用这些知识,选择最优方案,对学生来说还较为困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.让学生理解选择方案的概念,掌握选择方案的方法和技巧。
2.培养学生运用概率知识、列举法解决实际问题的能力。
3.培养学生独立思考、合作交流的能力。
四. 教学重难点1.重点:选择方案的方法和技巧。
2.难点:如何将所学知识应用于实际问题中,灵活选择最优方案。
五. 教学方法1.案例教学法:通过引入实际问题,让学生在解决问题的过程中掌握选择方案的方法。
2.引导发现法:教师引导学生发现问题的解决方法,培养学生的独立思考能力。
3.合作交流法:分组讨论,让学生在合作中发现问题、解决问题,提高学生的沟通能力。
六. 教学准备1.准备相关案例材料,用于引导学生解决实际问题。
2.准备多媒体教学设备,用于展示案例和引导学生思考。
七. 教学过程1.导入(5分钟)利用多媒体展示一个实际问题:某商场举行抽奖活动,奖品有电视机、洗衣机、电风扇和玩具。
奖品设置如下:一等奖:电视机,概率为1/10;二等奖:洗衣机,概率为2/10;三等奖:电风扇,概率为3/10;四等奖:玩具,概率为4/10。
提问:如果你参加这次抽奖活动,你希望获得哪个奖项?为什么?2.呈现(10分钟)引导学生分析问题,让学生认识到选择最优方案的重要性。
呈现教材中的案例,让学生了解选择方案的方法和技巧。
19.3课题学习选择方案1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;(重点)2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.(难点)一、情境导入某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价基础上打八折优惠,乙旅行社则推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮忙分析出如何选择旅行社更划算吗?二、合作探究探究点:运用一次函数解决方案选择性问题【类型一】利用一次函数解决自变量是非负实数的方案选择问题小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦·时,请你帮助他们选择哪种灯可以省钱?解析:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元.根据“费用=灯的售价+电费”,分别列出y1、y2与x的函数解析式;然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.解:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元,由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.①当使用两灯费用相等时,y1=y2,即0.005x+60=0.03x+3,解得x=2280;②当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280;③当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.本题中两种灯的照明效果是一样的.使用寿命也相同(3000小时以上),所以买节能灯可以省钱.方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.【类型二】利用一次函数解决自变量是非负整数的方案选择问题某灾情发生后,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答的车辆数为y .求y 与x 的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.解析:(1)装运生活用品的车辆为(20-x -y )辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x 的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.解:(1)根据题意,装运食品的车辆为x 辆,装运药品的车辆为y 辆,那么装运生活用品的车辆数为(20-x -y )辆,则有6x +5y +4(20-x -y )=100,整理得,y =-2x +20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x ,20-2x ,x ,由题意得⎩⎪⎨⎪⎧x ≥5,20-2x ≥4,解得5≤x ≤8.因为x为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆;(3)设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16000-480x .因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需x 最大,则x =8.故选方案四,W 最小=16000-480×8=12160(元).答:选方案四,最少总运费为12160元.方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最佳方案.【类型三】 利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题已知A 、B 两地的路程为240千米.某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费项目及收费标准表货运收费项目及收费标准表:(1)汽车的速度为______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围),当x 为何值时,y 汽>y 火(总费用=运输费+冷藏费+固定费用);(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解析:(1)根据图①上两点的坐标分别为(2,120),(2,200),直接得出两车的速度即可;(2)根据图表得出货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.解:(1)60 100(2)根据题意得y 汽=240×2x +24060×5x+200=500x +200;y火=240×1.6x +240100×5x +2280=396x +2280.若y 汽>y 火,得出500x +200>396x +2280.解得x >20,当x >20时,y 汽>y 火;(3)上周货运量x =(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题. 三、板书设计1.利用一次函数解决自变量是非负实数的方案选择问题2.利用一次函数解决自变量是非负整数的方案选择问题3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.。
19.3课题学习选择方案1. 引言课题学习是学校课程中的一项重要组成部分,它旨在帮助学生更深入地理解和掌握所学的知识。
本文将针对19.3课题学习的选择方案进行讨论和总结,从教师和学生角度出发,提出一套全面、有效的选择方案。
2. 教师角度教师在课题学习的选择方案中起着重要的指导作用。
以下是教师在选择19.3课题学习时应考虑的几个方面:2.1 学科相关性选择与所授学科相关的课题,可以更好地帮助学生巩固和拓展所学的知识。
教师应确保选取的课题与已经教授的知识内容有较强的关联性,避免选取过于分散的课题。
2.2 学生兴趣在考虑学科相关性的基础上,教师还应关注学生的兴趣。
选取能引起学生兴趣的课题,有助于激发学生的学习积极性。
教师可以通过与学生的交流和调查了解学生的兴趣爱好,并据此选取适合的课题。
2.3 知识深度和广度课题学习应旨在帮助学生深入理解和掌握知识,教师在选择课题时应考虑其知识深度和广度。
课题不应过于简单和肤浅,同时也不宜过于复杂和深奥。
教师可以根据学生的学习水平和能力,选取合适的课题。
3. 学生角度学生在19.3课题学习过程中扮演着主体的角色,他们的理解和参与程度直接影响着学习效果。
以下是学生在选择课题学习时应考虑的几个方面:3.1 兴趣和热爱学生应根据自己的兴趣和热爱选择课题,这样能更好地培养学习的兴趣和动力。
选择感兴趣的课题,学生会更加主动地参与学习,提高学习效果。
3.2 目标和发展需求学生在选择课题时应考虑自身的目标和发展需求。
他们可以思考自己希望在课题学习中达到什么目标,以及这个课题对自己的专业发展是否有帮助。
学生可以从个人的角度出发,选取与自身发展需求相契合的课题。
3.3 学科相关性选择与所学学科相关的课题有助于学生更好地理解和应用所学的知识。
学生可以根据自己已经学习的知识,选取与之相关的课题。
学科相关性可以帮助学生更好地整合已有的知识,提高学习的连贯性。
4. 选择方案的制定在教师和学生的角度上述考虑因素后,可以根据实际情况制定一个选择方案。
八年级下册第十九章第三节选择方案课时练习一.填空题1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.①②C.①③D.②③答案:A知识点:一次函数的图像解析:解答:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.分析:易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.2. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x <12)B. y=-21x+12(0<x <24) C. y=2x-24(0<x <12) D. y=21x-12(0<x <24) 答案:B.知识点:根据实际问题列一次函数表达式解析:解答:由题意得:2y+x=24,故可得:y=-21x+12(0<x <24). 故选B分析:根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.3. 有甲、乙两个大小不同的水桶,容量分别为x 、y 公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x 、y 的关系式是( )A.y=20-x B .y=x+10 C .y=x+20 D .y=x+30答案:D知识点:根据实际问题列一次函数表达式解析:解答:设甲、乙两个水桶中已各装了m 、n 公升水,由“若将甲中的水全倒入乙后,乙只可再装20公升的水”得:y=m+n+20;由“若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水”得:x=m+n-10.两式相减得:y-x=30,y=x+30.故选D .分析:设甲、乙两个水桶中已各装了m 、n 公升水,由题意可得:y=m+n+20,x=m+n-10.则y=x+30.4.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A.B.C.D.答案:A知识点:一次函数的性质一次函数的图像解析:解答:由图知蓄水池上宽下窄,深度h和放水时间t的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A正确.B斜率一样,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D排除.故选A.分析:由于蓄水池不规则,上面宽,下面窄,因此在相同时间内上半部分下降缓慢,图象比较平稳.下半部分下降快,图象比较陡,据此即可解答.5. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.6. 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A .20kgB .25kgC .28kgD .30kg答案:A知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设y 与x 的函数关系式为y=kx+b ,由题意可知 ⎩⎨⎧+=+=bk b k 5090030300 所以k=30,b=-600,所以函数关系式为y=30x-600,当y=0时,即30x-600=0,所以x=20.故选A .分析:根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x 对应的值即可.7. 三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.4答案:D知识点:一次函数的图像解析:解答:由图可知:甲、乙的起始时间分别为0h 和2h ;因此甲比乙早出发2小时; 在3h-4h 这一小时内,甲的函数图象与x 轴平行,因此在行进过程中,甲队停顿了一小时; 两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h.这四个同学的结论都正确,故选D.分析:本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.8. 小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P 的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h答案:D知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h.设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h .故选D .分析:由已知图象上点分别设出两人的速度,写出函数关系式,求出两人的速度.9. 的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A .23B .24C .25D .26答案:B知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设号数为x ,用水量为y 千克,直线解析式为y=kx+b .根据题意得⎩⎨⎧+=+=b k b k 15151018 解得:⎪⎩⎪⎨⎧=-=2453b k所以直线解析式为y=-53x+24, 当y=10时,有-53x+24=10,解之得x=2331, 根据实际情况,应在24号开始送水.故选B .分析:根据两天的用水量易求直线解析式,当函数值为10时自变量的值即为开始送水的号数.10. 如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )A.小于3t B.大于3t C.小于4t D.大于4t答案:D知识点:一次函数的性质一次函数的图像解析:解答:盈利时收入大于成本,即l1>l2,在图上应是l1在上面,在交点右边的部分满足条件.故选D.分析:从图象得出,当x>4t时,盈利收入大于成本,即l1>l2.11. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.12. 2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:由题意知,y与x的函数关系为分段函数.y= 2x(0≤x<4)和y= 4.5x-10(x≥4).故选C.分析:根据题意列出x与y之间的函数关系式,根据函数的特点解答即可.13. 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:根据题意可知s=400-100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.分析:先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.14. 在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是()A.B.C.D.答案:B知识点:一次函数的性质一次函数的图像解析:解答:根据题意:计划第1年先植树1.5万亩,即函数图象左端点为(1,1.5).以后每年比上一年增加1万亩,即第二年的植树量为2.5万亩,即x=2时,y=2.5.故选B.分析:根据题意先找出函数图象的最低点,再找出点(2,2.5)在图象上的函数即可.15. 学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225 245 (280)原鞋码(x)35 39 (46)A.270 B.255 C.260 D.265答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:由题中的表格知,y是x的一次函数,可设y与x的关系为y=kx+b,由题意得⎩⎨⎧+=+=bk b k 3924535225 解得⎩⎨⎧==505b k ∴y 与x 之间的函数关系式为y=5x+50,当x=43时,y=265.故选D .分析:由表格可知,给出了3对对应值,销售原鞋码每增加4,新鞋码增加20,即销售量与销售单价是一次函数关系,设y=kx+b ,把表中的任意两对值代入即可求出y 与x 的关系.二.填空题16. 为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y 与该排排数x 之间的函数关系式为____(x 为1≤x≤60的整数)答案:y=39+x知识点:根据实际问题列一次函数表达式解析:解答:根据题意得y=40+(x-1)×1=x+39(x 为1≤x≤60的整数).分析:根据“第一排40人,后面每一排都比前一排都多站一人”可列出y 与x 之间的关系式y=40+(x-1)×1,整理即可求解,注意x 的取值范围是1到60的整数.17. 如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差____km/h .(2012答案:4知识点:一次函数的性质 一次函数的图像 解析:解答:根据图象可得:∵甲行驶距离为100千米时,行驶时间为5小时,乙行驶距离为80千米时,行驶时间为5小时,∵甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时); 故这两人骑自行车的速度相差:20-16=4(千米/时); 故答案为:4.分析:根据图中信息找出甲,乙两人行驶的路程和时间,进而求出速度即可.18. 一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示.当 0≤x≤1时,y 关于x 的函数解析式为y=60x ,那么当1≤x≤2时,y 关于x 的函数解析式为____.答案:y=100x-40知识点:一次函数的性质 一次函数的图像解析:解答::∵当时0≤x≤1,y 关于x 的函数解析式为y=60x , ∴当x=1时,y=60.又∵当x=2时,y=160,当1≤x≤2时,将(1,60),(2,160)分别代入解析式y=kx+b 得, ⎩⎨⎧=+=+160260b k b k解得⎩⎨⎧-==40100b k由两点式可以得y 关于x 的函数解析式y=100x-40.分析:由图象可知在前一个小时的函数图象可以读出一个坐标点,再和另一个坐标点就可以写出函数关系式.19. 利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克____元. 品种水果糖 花生糖 软 糖 单价(元/千克) 10 12 16 重量(千克) 334答案:13知识点:一次函数的性质解析:解答:3种糖果的总价=10×3+12×3+16×4=130,总重量=3+3+4=10,所以单价为13. 分析:单价=总价÷总重量.所以必须求出三种糖的总价格和总重量,然后进行解答. 20. 如图所示中的折线ABC 为甲地向乙地打长途电话需付的电话费y (元)与通话时间t (分钟)之间的函数关系,则通话8分钟应付电话费____元.答案:13知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像 解析:解答:由图象可得,点B (3,2.4),C (5,4.4), 设射线BC 的解析式为y=kt+b (t≥3), 则⎩⎨⎧=+=+4.454.23b k b k解得⎩⎨⎧-==6.01b k所以,射线BC 的解析式为y=t-0.6(t≥3), 当t=8时,y=8-0.6=7.4元. 故答案为:7.4.分析:根据图形写出点B 、C 的坐标,然后利用待定系数法求出射线BC 的解析式,再把t=8代入解析式进行计算即可得解. 三.解答题21. 张勤同学的父母在外打工,家中只有年迈多病的奶奶.星期天早上,李老师从家中出发步行前往张勤家家访.6分钟后,张勤从家出发骑车到相距1200米的药店给奶奶买药,停留14分钟后以相同的速度按原路返回,结果与李老师同时到家.张勤家、李老师家、药店都在东西方向笔直大路上,且药店在张勤家与李老师家之间.在此过程中设李老师出发t (0≤t≤32)分钟后师生二人离张勤家的距离分别为S 1、S 2.S 1与t 之间的函数关系如图所示,请你解答下列问题:(1)李老师步行的速度为____(2)求S 2与t 之间的函数关系式,并在如图所示的直角坐标系中画出其函数图象; (3)张勤出发多长时间后在途中与李老师相遇?答案:(1)50米/分.(2)当0≤t≤6时,S 2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)张勤出发5.2分钟后在途中与李老师相遇.知识点:一次函数的性质,一次函数的图像根据实际问题列一次函数表达式,解析:解答:(1)李老师步行的速度为1600÷32=50米/分;故答案为:50米/分.(2)根据题意得:当0≤t≤6时,S2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)S 1=-50t+1600,由S 1=S 2得,200t-1200=-50t+1600, 解得t=11.2,可得t-6=11.2-6=5.2(分)则张勤出发5.2分钟后在途中与李老师相遇. 分析:(1)根据速度=时间路程,再结合图形,即可求出李老师步行的速度; (2)根据题意分0≤t≤6,6<t≤12,12<t≤26,26<t≤32四种情况进行讨论,即可得出S 2与t 之间的函数关系式;(3)由S 1=S 2得,200t-1200=-50t+1600,然后求出t 的值即可;22. 某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 答案: (1)甲材料每千克15元,乙材料每千克25元; (2)共有三种方案,如下表:A (件) 20 21 22B (件)302928(3)当m=22时,总成本最低,此时W=-200×22+55000=50600元.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答::(1)设甲材料每千克x 元,乙材料每千克y 元,则⎩⎨⎧=+=+1053240y x y x解得⎩⎨⎧==2515y x所以甲材料每千克15元,乙材料每千克25元;(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000, 由题意:-100m+40000≤38000,解得m≥20, 又∵50-m≥28,解得m≤22, ∵20≤m≤22,∵m 的值为20,21,22, 共有三种方案,如下表: A (件) 20 21 22 B (件)302928(3)设总生产成本为W 元,加工费为:200m+300(50-m ),则W=-100m+40000+200m+300(50-m )=-200m+55000,∵W 随m 的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元.分析:(1)设甲材料每千克x 元,乙材料每千克y 元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组⎩⎨⎧=+=+1053240y x y x ,解方程组即可得到甲材料每千克15元,乙材料每千克25元; (2)设生产A 产品m 件,生产B 产品(50-m )件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B 产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m 为整数,则m 的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W 元,加工费为:200m+300(50-m ),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m )=-200m+55000,根据一次函数的性质得到W 随m 的增大而减小,然后把m=22代入计算,即可得到最低成本.23. 某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元. (1)分别求出0≤x≤200和x >200时,y 与x 的函数表达式; (2)小明家5月份交纳电费117元,小明家这个月用电多少度?答案: (1)y=0.7x-30;(2)210度.知识点:一次函数的性质 根据实际问题列一次函数表达式,解析:解答:(1)当0≤x≤200时,y 与x 的函数表达式是y=0.55x ; 当x >200时,y 与x 的函数表达式是 y=0.55×200+0.7(x-200), 即y=0.7x-30;(2)因为小明家5月份的电费超过110元, 所以把y=117代入y=0.7x-30中,得x=210. 答:小明家5月份用电210度.分析:(1)0≤x≤200时,电费y 就是0.55乘以相应度数;x>200时,电费y=0.55×200+超过200的度数×0.7;(2)把117代入x>200得到的函数求解即可.24. 某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?答案:(1)A种商品销售30件,B种商品销售70件.(2)应购进A种商品50件,B种商品150件,可获得最大利润为2750元.知识点:一次函数的性质一次函数的图像根据实际问题列一次函数表达式一次函数与二元一次方程(组)解析:解答:(1)设A种商品销售x件,则B种商品销售(100-x)件.依题意,得10x+15(100-x)=1350解得x=30.∵100-x=70.答:A种商品销售30件,B种商品销售70件.(2)设A种商品购进a件,则B种商品购进(200-a)件.依题意,得0≤200-a≤3a解得50≤a≤200设所获利润为w元,则有w=10a+15(200-a)=-5a+3000∵-5<0,∵w随a的增大而减小.∵当a=50时,所获利润最大W最大=-5×50+3000=2750元.200-a=150.答:应购进A种商品50件,B种商品150件,可获得最大利润为2750元.分析:(1)设A 种商品销售x 件,B 种商品销售y 件,根据“销售A ,B 两种商品共100件,获利润1350元”列出二元一次方程组求解即可;(2)设A 种商品购进a 件,则B 种商品购进(200-a )件,根据“B 种商品的件数不多于A 种商品件数的3倍”列出不等式即可求得结果.25. 在社会主义新农村建设中,衢州某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成? 答案: (1)乙工程队每天修公路120米; (2)y 甲=60x ,y 乙=120x-360;(3)该项工程由甲、乙两工程队一直合作施工,需9天完成.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答:(1)由图得:720÷(9-3)=120(米) 答:乙工程队每天修公路120米. (2)设y 乙=kx+b ,则⎩⎨⎧=+=+720903b k b k解得:⎩⎨⎧-==360120b k所以y 乙=120x-360, 当x=6时,y 乙=360, 设y 甲=k 1x ,∵y 乙与y 甲的交点是(6,360) ∵把(6,360)代入上式得: 360=6k 1,k 1=60, 所以y 甲=60x ;(3)当x=15时,y 甲=900,所以该公路总长为:720+900=1620(米), 设需x 天完成,由题意得: (120+60)x=1620, 解得:x=9,答:该项工程由甲、乙两工程队一直合作施工,需9天完成.分析:(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数;(2)根据函数的图象运用待定系数法即可求出y 与x 之间的函数关系式;(3)先求出该公路总长,再设出需要x 天完成,根据题意列出方程组,求出x ,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.。