原点矩与中心矩
- 格式:pdf
- 大小:108.12 KB
- 文档页数:2
矩在物理、数学以及图像处理中的意义一、物理意义:(点表示质量)1、零点矩:总质量;2、一阶矩:重心;3、二阶矩:转动惯量。
二、矩的数学意义:1、矩:一组点组成的模型的特定的数量测度,定义在实数域的实函数相对于值C的n阶矩为:归一化n阶中心矩或者说标准矩,是n阶中心矩除以标准差σn,归一化n阶中心矩为:2、一阶矩:就是期望值、平均数;4、二阶矩:就是方差;5、三阶(中心)矩:随机变量的偏态(衡量分布不对称性),表示偏斜度。
注:①任何对称分布的随机变量的偏态为0;②偏态:6、四阶(中心)矩:峰度加3。
注:①一般随机变量的峰度定义为其四阶矩与方差平方的比值减3,减3是为了让正态分布峰度为0,这也被称为超值峰度;②峰度:7、混合矩:多个变量的矩,如协方差,协偏度,协峰度。
协方差只有一个,协峰度和协偏度存在多个。
8、样本矩:通过样本来估计,不需要先估计其概率分布;(均值)注:①对于任何样本大小,原始样本矩的期望值等于群体的k阶矩。
②矩通常通过样本矩估计※中心转换:∵∴三、在图像处理中的意义:1、背景知识:①图像被概括为具有几个较低阶矩的函数。
面积(二值图)或灰度和(灰度图):M00②质心:③唯一性定理:如果f(x ,y)是分段连续并且仅在x y平面的有限部分中具有非零值,则存在所有阶的矩,并且矩序列M pq由f(x, y)唯一确定。
反之中心矩M pq唯一确定f(x, y)。
④图像看成概率密度计算:2、图像矩:图像像素强度的某个特定加权平均(矩),或是这样的矩的函数,通常选一些具有吸引力的特性或解释。
3、原点矩:对于一个二维连续函数f(x,y),第(p+q)个点的矩被定义为像素强度为I(x, y)的灰度图,原点矩为:4、中心矩:若是数字图像,则等式变为5、三阶以下中心矩依次为:∴注:中心矩具有平移不变性。
k阶原点距和k阶中心距各是说明什么数字特征在数学的概率领域中有一类数字特征叫矩.(X^k为X的k次方)原点矩:对于正整数k,如果E|X^k|<无穷,称Vk=E(X^k) 为随机变量X的k阶原点矩.X的数学期望是X的一阶原点矩,即E(x)=v1.k阶矩定义:设X为随机变量,c为常数,k为正整数,如果E[|X-c|^c]<无穷大,则称E[(X -c)^k]为X关于点c的k阶矩.c=0时,称其为X的k阶原点矩;c=E[X]时,称为k阶中心矩.原点矩顾名思义,是随机变量到原点的距离(这里假设原点即为零点)。
中心矩则类似于方差,先要得出样本的期望即均值,然后计算出随机变量到样本均值的一种距离,与方差不同的是,这里所说的距离不再是平方就能构建出来的,而是k次方。
这也就不难理解为什么原点矩和中心矩不是距离的“距”,而是矩阵的“矩”了。
仅凭本人目前的所学,我认为通过随机试验得出的各种结果虽然都假定为实值单值函数,但它们完全有可能是空间分布,即不在一个平面上。
那么这是的距离就类似于一个向量的模了,于是在空间的范围内也能比较出大小来了。
我们都知道方差源于勾股定理,这就不难理解原点矩和中心矩了。
还能联想到力学中的力矩也是“矩”,而不是“距”。
力矩在物理学里是指作用力使物体绕着转动轴或支点转动的趋向。
力矩也是矢量,它等于力乘力臂。
由此可见数学和物理关系非同一般!二阶中心距,也叫作方差,它告诉我们一个随机变量在它均值附近波动的大小,方差越大,波动性越大。
方差也相当于机械运动中以重心为转轴的转动惯量。
(The moment of iner tia.)三阶中心距告诉我们一个随机密度函数向左或向右偏斜的程度。
在均值不为零的情况下,原点距只有纯数学意义。
A1,一阶矩就是 E(X),即样本均值。
具体说来就是A1=(西格玛Xi)/n ----(1)A2,二阶矩就是 E(X^2)即样本平方均值 ,具体说来就是 A2=(西格玛Xi^2)/n-----(2)Ak,K阶矩就是 E(X^k)即样本K次方的均值,具体说来就是 Ak=(西格玛Xi^k)/n,-----(3)用样本的K阶矩代替总体的K阶矩来估计总体中未知参数的方法。
opencv中的图像矩(空间矩,中⼼矩,归⼀化中⼼矩,Hu矩)严格来讲矩是概率与统计中的⼀个概念,是随机变量的⼀种数字特征。
设 x 为随机变量,C为常数,则量E[(x−c)^k]称为X关于C点的k阶矩。
⽐较重要的两种情况如下:1.c=0,这时a_k=E(X^k)称为X的k阶原点矩;2.c=E(X),这时µ_k=E[(X−EX)^k]称为X的k阶中⼼矩⼀阶原点矩就是期望,⼀阶中⼼矩µ_1=0,⼆阶中⼼矩µ_2就是X的⽅差Var(X)。
在统计学上,⾼于4阶的矩极少使⽤,µ_3可以去衡量分布是否有偏,µ_4可以衡量分布(密度)在均值拘谨的陡峭程度。
对于数学来说⼀阶原点矩就是期望。
⼆阶中⼼矩就是随机变量的的⽅差. 在统计学上,⾼于4阶的矩极少使⽤。
三阶中⼼距可以去衡量分布是否有偏。
四阶中⼼矩可以去衡量分布在均值附近的陡峭程度如何。
那针对⼀幅图像,我们把像素的坐标看成是⼀个⼆维随机变量(X, Y),那么⼀副灰度图可以⽤⼆维灰度图密度函数来表⽰,因此可以⽤矩来描述灰度图像的特征。
空间矩的实质为⾯积或者质量。
可以通过⼀阶矩计算质⼼/重⼼。
重⼼(中⼼centers):Hu矩class Moments{public :Moments();Moments(double m00, double m10, double m01, double m20, double m11,double m02, double m30, double m21, double m12, double m03 );Moments( const CvMoments& moments );operator CvMoments() const ;// spatial moments 空间矩double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;// central moments 中⼼矩double mu20, mu11, mu02, mu30, mu21, mu12, mu03; // central normalized moments 中⼼归⼀化矩double nu20, nu11, nu02, nu30, nu21, nu12, nu03;}#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>using namespace cv;using namespace std;//定义窗⼝名字的宏#define WINDOW_NAME1 "【原始图】"#define WINDOW_NAME2 "【图像轮廓】"//全局变量的声明Mat g_srcImage, g_grayImage;int g_nThresh = 100;int g_nMaxThresh = 255;RNG g_rng(12345);Mat g_cannyMat_output;vector<vector<Point> > g_vContours;vector<Vec4i>g_vHierarchy;//全局函数声明void on_ThreshChange(int, void*);//main()函数int main(){//改变console字体颜⾊system("color 1E");//读⼊原图,返回3通道图像数据g_srcImage = imread("E:\\VS2015Opencv\\vs2015\\project\\picture\\01.jpg", 1);//源图像转化为灰度图像并平滑cvtColor(g_srcImage, g_grayImage, COLOR_BGR2GRAY);blur(g_grayImage, g_grayImage, Size(3, 3));//创建新窗⼝namedWindow(WINDOW_NAME1, WINDOW_AUTOSIZE);imshow(WINDOW_NAME1, g_srcImage);//创建滚动条并进⾏初始化createTrackbar("阈值:", WINDOW_NAME1, &g_nThresh, g_nMaxThresh, on_ThreshChange);on_ThreshChange(0, 0);waitKey(0);return 0;}void on_ThreshChange(int, void *){//使⽤canny检测边缘Canny(g_grayImage, g_cannyMat_output, g_nThresh, g_nThresh * 2, 3);//找到轮廓findContours(g_cannyMat_output, g_vContours, g_vHierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));//计算矩vector<Moments> mu(g_vContours.size());for (unsigned int i = 0; i < g_vContours.size(); i++){mu[i] = moments(g_vContours[i], false);}//计算中⼼矩vector<Point2f>mc(g_vContours.size());for (unsigned int i = 0; i < g_vContours.size(); i++){mc[i] = Point2f(static_cast<float>(mu[i].m10 / mu[i].m00), static_cast<float>(mu[i].m01 / mu[i].m00));}//绘制轮廓Mat drawing = Mat::zeros(g_cannyMat_output.size(), CV_8UC3);for (unsigned int i = 0; i < g_vContours.size(); i++){//随机⽣成颜⾊值Scalar color = Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255), g_rng.uniform(0, 255));//绘制外层和内层轮廓drawContours(drawing, g_vContours, i, color, 2, 8, g_vHierarchy, 0, Point());//绘制圆circle(drawing, mc[i], 4, color, -1, 8, 0);}//显⽰到窗⼝中namedWindow(WINDOW_NAME2, WINDOW_AUTOSIZE);imshow(WINDOW_NAME2, drawing);//通过m00计算轮廓⾯积和Opencv函数⽐较printf("\t输出内容:⾯积和轮廓长度\n");for (unsigned int i = 0; i < g_vContours.size(); i++){printf(">通过m00计算出轮廓[%d]的⾯积:(M_00) = %.2f \n Opencv函数计算出⾯积 = %.2f,长度:%.2f \n\n", i, mu[i].m00, contourArea(g_vContours[i]), arcLength(g_vContours[i], true)); Scalar color = Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255), g_rng.uniform(0, 255));drawContours(drawing, g_vContours, i, color, 2, 8, g_vHierarchy, 0, Point());circle(drawing, mc[i], 4, color, -1, 8, 0);}}本⽂参考:。
概率论与数理统计复习概率论与数理统计复习一、概率论的基本概念:1、事件的运算律:交换律:,;结合律:,;分配律:,;德·摩根法则:,;减法运算:。
2、概率的性质:性质1;性质2(有限可加性)当个事件两两互不相容时,;性质3对于任意一个事件,;性质4当事件满足时,,;性质5对于任意两个随机事件,;性质6对于任意一个事件;性质7(广义加法法则)对于任意两个事件,。
3、条件概率:在已知发生的条件下,事件的概率为:()。
注意:所有概率的性质对条件概率依然适用,但使用公式必须在同一条件下进行。
4、全概率公式与贝叶斯公式:设个事件构成样本空间的一个划分,是一个事件,当()时,全概率公式:;贝叶斯公式:当时,,。
应用全概率公式和贝叶斯公式计算事件的概率或其在已知条件下的条件概率时,关键的问题是找到一个完备事件组,使得能且仅能与之一同时发生,然后运用古典概型、概率的加法和乘法法则计算出和,,并套用全概率公式或贝叶斯公式即可。
若一个较复杂的事件是由多种“原因”产生的样本点构成时,多考虑用全概率公式,而这些样本点就构成一个完备事件组;若已知试验结果而要追查“原因”时,往往使用贝叶斯公式,这些“原因”的全体即是所求的完备事件组。
5、随机事件的独立性:事件独立性的结论:(1)事件与独立;(2)若事件与独立,则与,与,与中的每一对事件都相互独立;(3)若事件与独立,且,,则,;(4)若事件相互独立,则;(5)若事件相互独立,则。
注意:(1)事件相互独立只要求满足,而事件互斥(互不相容)只要求,这两个概念前一个与事件的概率有关,后一个与事件有关,两者之间没有必然的联系;(2)如果事件相互独立,则与不相关,反之一般不成立。
(3)对于任意个随机事件,相互独立则两两独立,反之未必;(4)对于任意个相互独立的随机事件,它们中任意一部分事件的运算结果(和、差、积、逆等)与其他一部分事件或它们的运算结果都相互独立,如:与,与,与都相互独立;6、贝努利概型与二项概率公式:设一次试验中事件发生的概率为,则重贝努利试验中,事件恰好发生次的概率为,。
第五周随机变量函数的分布及随机变量的数字特征
5.4原点矩与中心矩
随机变量的原点矩与中心矩
定义()n E X 称为随机变量X 的n 阶(原点)矩;()()n E X E X ⎡⎤-⎢⎥⎣⎦称为随机变量X 的n 阶中心矩。
期望()E X 即为随机变量X 的1阶原点矩;
方差()()()2Var X E X E X ⎡⎤=-⎢⎥⎣⎦
即为随机变量X 的2阶中心矩。
期望和方差都是特殊的矩。
期望为随机变量X 的1阶原点矩,方差为随机变量X 的2阶中心矩。
*************************************************************
例5.4.1若连续型随机变量X 的概率密度函数为23,01,()0,
.x x f x ⎧<<=⎨⎩其他试求随机变量X 的3阶矩()3
E X 和3阶中心矩()()3E X E X ⎡⎤-⎢⎥⎣⎦。
解X 的n 阶原点矩()n E X ()n x f x dx +∞
-∞=⎰1203n x x dx =⋅⎰120333
n x dx n +==+⎰故31()2E X =,()34
E X =。
X 的3阶中心矩为()()3E X E X ⎡⎤-⎢⎥⎣⎦()3()x E X f x dx +∞-∞⎡⎤=-⋅⎣⎦⎰3120334x x dx ⎛⎫=- ⎪⎝⎭⎰1
3220927271341664160x x x x dx ⎛⎫=-+-=- ⎪⎝⎭⎰。
***********************************************************************。