概率论与数理统计 --- 第四章{随机变量的数字特征} 第四节:矩协方差矩阵
- 格式:ppt
- 大小:338.50 KB
- 文档页数:6
第4章 随机变量的数字特征教学要求1.理解随机变量的数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,掌握用数字特征的定义、常用计算公式及基本性质计算具体分布的数字特征.2.掌握利用随机变量X 的概率分布求其函数)(X g 的数字期望[])(X g E ,掌握利用随机变量X 和Y 的联合分布求其函数),(Y X g 的数学期望[]),(Y X g E .3.理解X 与Y 不相关的概念,掌握X 与Y 独立和不相关的关系与判定方法.4.掌握六个常用分布的数学期望和方差,理解二维正态分布中5个参数的意义.5.了解原点矩、中心矩、协方差矩阵的概念.6.了解n 维正态随机变量的四个性质.教学重点数学期望、方差的概念与性质及其应用,用数字特征(数学期望、方差、标准差、协方差、相关系数)的定义、常用计算公式及性质计算具体分布的数字特征.教学难点协方差、相关系数概念的理解.课时安排本章安排6课时.教学内容和要点一、 数学期望1.离散型随机变量数学期望2.连续型随机变量数学期望3.随机变量的函数数学期望4.常用分布的数学期望5.数学期望的性质二、 方差1.方差的概念2.方差的计算3.常用分布的方差4.方差的性质5.随机变量的标准化三、协方差和相关系数1.协方差的定义与性质2.相关系数的定义与性质四、矩与协方差矩阵1.矩与协方差矩阵的概念2. n 维正态分布主要概念1.数学期望(离散型随机变量的数学期望、连续型随机变量的数学期望、随机变量函数的数学期望)2.方差 、标准差3.标准化随机变量4.协方差5.相关系数X Y不相关6.,7.矩8.协方差矩阵。
第四章 随机变量的数字特征1. 把刻画随机变量某些方面特征的数值称为随机变量的数字特征,如期望、方差、协方差、相关系数等。
2. 随机变量的期望反映了随机变量取值的集中位置。
离散型随机变量的期望设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…若级数∑ix i p i 绝对收敛(即级数∑i丨x i 丨p i 收敛),则定义X 的数学期望(简称均值或期望)为E (X )=∑ix i p i注:当X 的可能取值为有限多个x 1,x 2,…,x n 时,E (X )=∑=ni 1x i p i 当X 的可能取值为可列多个x 1,x 2,…,x n ,…时,E (X )=∑∞=1i x i p i三种重要离散型随机变量的数学期望:3. 离散型随机变量函数的数学期望 设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…令Y =g (X ),若级数∑∞=1k g (x k )p k 绝对收敛,则随机变量Y 的数学期望为E (Y )= E[g (X )] =∑∞=1k g (x k )p k4. 连续型随机变量的期望三种重要连续型随机变量的数学期望:5. 连续型随机变量函数的数学期望2017.4单解:6. 二维随机变量的期望二维随机变量函数的期望7. 期望的性质(1)常数的期望等于这个常数,即E (C )=C ,其中C 为常数证明 常数C 作为随机变量,它只可能取一个值C ,即P {X =C }=1,所以E (C )=C ⋅1=C(2)常数与随机变量X 乘积的期望等于该常数与随机变量X 的期望的乘积,即E (C X )=C ⋅E (X ) (3)随机变量和的期望等于随机变量期望之和,即E (X +Y )= E (X )+ E (Y ) 推广:E (C 1X +C 2Y )= C 1E (X )+ C 2E (Y ),其中C 1,C 2为常数 一般地,设X 1,X 2,…,X n ,为n 个随机变量,则有E (∑=ni iX 1)=∑=ni iX E 1)(E (∑=ni ii X C 1)=∑=ni iiX E C 1)( 其中C i(i=1,2,…)为常数(4)两个相互独立的随机变量乘积的期望等于期望的乘积,即若X ,Y 是相互独立的随机变量,则E (XY )= E (X )E (Y )由数学归纳法可证得:当X1,X2,…,X n相互独立时有E(X1,X2,…,X n)= E(X1)E(X2)…E(X n)2018.4单解:指数分布的期望值为 1,故E(X)= E(Y)=21,所以E(X Y)= E(X)E(Y)=412018.4计解:(1)平均收益率E(X)=1%×0.1+2%×0.2+3%×0.1+4%×0.3+5%×0.2+6%×0.1=3.6%(2)预期利润10×3.6%=0.36万元2017.10单解:E(-3X +2)=-3 E(X)+2=-3×51+2=572017.4填解:E(X+Y)= E(X)+ E(Y)=20×0.1+2=48. 方差反映了随机变量偏离中心——期望的平均偏离程度。