碳酸盐岩测井解释
- 格式:ppt
- 大小:11.06 MB
- 文档页数:96
碳酸盐岩气藏储量参数测井评价方法
王庆如;李敬功
【期刊名称】《岩性油气藏》
【年(卷),期】2013(025)006
【摘要】碳酸盐岩油气藏所蕴藏的油气储量和产量均超过油气总产量的一半,因此对其开展储量参数评价研究具有较强的现实意义.由于碳酸盐岩储层具有岩性复杂、储集空间类型多样、次生孔隙变化明显和非均质性强等特征,导致在储量计算中难
以评价孔隙度和渗透率.以某海上碳酸盐岩气田为例,基于常规测井资料,从岩性识别、储层孔渗参数计算和裂缝识别等方面对双重介质储层进行了测井综合研究.结果表明:常规测井资料能有效识别碳酸盐岩储层的岩性和裂缝,能定量计算双重介质储层
原生(基质)孔隙、溶蚀收缩(次生)孔隙、裂缝的孔隙度和渗透率,并且能建立裂缝定量判别标准.该项研究可在缺少钻井取心和成像测井等资料的情况下为双重介质储
层研究提供借鉴.
【总页数】6页(P98-102,111)
【作者】王庆如;李敬功
【作者单位】中海石油(中国)有限公司油气储量办公室,北京100010;中海石油(中国)有限公司油气储量办公室,北京100010
【正文语种】中文
【中图分类】TE344
【相关文献】
1.测井精细解释在碳酸盐岩气藏储量计算中的应用 [J], 司马立强;夏宏泉;范翔宇;刘之的
2.测井在碳酸盐岩气藏储量计算中的应用 [J], 司马立强;梁从军
3.复杂碳酸盐岩气藏储层参数测井地质综合研究(上) [J], 吴继余
4.千米桥碳酸盐岩油气藏测井定量评价方法及应用效果分析 [J], 孙广伯;张凤敏;徐柒忠;彭红波
5.碳酸盐岩非均质气藏参数的辨识方法及其在天然气储量计算中的应用 [J], 赵敏;袁玉衡
因版权原因,仅展示原文概要,查看原文内容请购买。
碳酸盐岩测井解释曲线模板篇一:测井曲线代码大全测井曲线代码RD、RS—深、浅侧向电阻率RDC、RSC—环境校正后的深、浅侧向电阻率VRD、VRS—垂直校正后的深、浅侧向电阻率DEN—密度DENC—环境校正后的密度VDEN—垂直校正后的密度CNL—补偿中子CNC—环境校正后的补偿中子VCNL—垂直校正后的补偿中子GR—自然伽马GRC—环境校正后的自然伽马VGR—垂直校正后的自然伽马AC—声波VAC—垂直校正后声波PE—有效光电吸收截面指数VPE—垂直校正后的有效光电吸收截面指数SP—自然电位VSP—垂直校正后的自然电位CAL—井径VCAL—垂直校正后井径KTh—无铀伽马GRSL—能谱自然伽马U—铀Th—钍K—钾WCCL—磁性定位TGCN—套管中子TGGR—套管伽马R25—2.5米底部梯度电阻率VR25—环境校正后的2.5米底部梯度电阻率DEV—井斜角AZIM—井斜方位角TEM—井温RM—井筒钻井液电阻率POR2—次生孔隙度POR—孔隙度PORW—含水孔隙度PORF—冲洗带含水孔隙度PORT—总孔隙度PERM—渗透率SW-含水饱和度SXO—冲洗带含水饱和度SH—泥质含量CAL0—井径差值HF—累计烃米数PF—累计孔隙米数DGA—视颗粒密度SAND,LIME,DOLM,OTHR—分别为砂岩,石灰岩,白云岩,硬石膏含量VPO2—垂直校正次生孔隙度VPOR—垂直校正孔隙度VPOW—垂直校正含水孔隙度VPOF—垂直校正冲洗带含水孔隙度VPOT—垂直校正总孔隙度VPEM—垂直校正渗透率VSW-垂直校正含水饱和度VSXO—垂直校正冲洗带含水饱和度VSH—垂直校正泥质含量VCAO—垂直校正井径差值VDGA—垂直校正视颗粒密度VSAN,VLIM,VDOL,VOTH—分别为垂直校正砂岩,石灰岩,白云岩,硬石膏含量岩石力学参数PFD1—破裂压力梯度POFG—上覆压力梯度PORG—地层压力梯度POIS—泊松比TOUR—固有剪切强度UR—单轴抗压强度YMOD—杨氏模量SMOD—切变模量BMOD—体积弹性模量CB—体积压缩系数BULK—出砂指数MACMAC—偶极子阵列声波XMAC-Ⅱ—交叉偶极子阵列声波DTC1—纵波时差DTS1—横波时差DTST1—斯通利波时差DTSDTC-纵横波速度比TFWV10-单极子全波列波形TXXWV10-XX偶极子波形TXYWV10- XY偶极子波形TYXWV10- YX偶极子波形TYYWV10- YY偶极子波形WDST-计算各向异性开窗时间WEND-计算各向异性关窗时间DTSF-计算的快横波时差DTSS-计算的慢横波时差固井CCL—磁性定位CBL—声幅VDL—声波变密度(二维)AC—声波CAL—裸眼井径GR—自然伽马主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
第7章裂缝性碳酸盐岩储层测井评价裂缝性碳酸盐岩储层是一种具有特殊地质构造的岩层,其中存在着许多裂缝和孔隙,这对储层的测井评价提出了很大的挑战。
本章将介绍裂缝性碳酸盐岩储层的测井评价方法和技术,以及评价结果的解释。
首先,针对裂缝性碳酸盐岩储层中存在的裂缝和孔隙,测井评价需要选取适合的测井曲线来确定其物性参数。
常用的测井曲线包括自然伽马、电阻率、声波速度和中子密度等。
自然伽马曲线可以用来确定岩石的含油气性质,裂缝和孔隙的存在会导致自然伽马值的变化;电阻率曲线可以用来确定岩石的孔隙度和渗透率,裂缝和孔隙的存在会降低电阻率值;声波速度曲线可以用来确定岩石的密度和泊松比,裂缝和孔隙的存在会导致声波速度值的变化;中子密度曲线可以用来确定岩石的孔隙度和岩石密度,裂缝和孔隙的存在会导致中子密度值的变化。
通过对这些测井曲线的分析和对比,可以对裂缝性碳酸盐岩储层的物性参数进行评价。
其次,针对裂缝性碳酸盐岩储层中存在的裂缝和孔隙,测井评价还需要进行定量解释。
例如,可以使用裂缝密度和孔隙度来定量评价储层的裂缝和孔隙发育程度。
裂缝密度可以通过自然伽马曲线、电阻率曲线和声波速度曲线来估算,而孔隙度可以通过电阻率曲线和中子密度曲线来估算。
同时,还可以使用各种方法,如裂缝识别方法、孔隙连通性评价方法等,来定量评价裂缝性碳酸盐岩储层的裂缝和孔隙特征。
最后,针对裂缝性碳酸盐岩储层的测井评价结果,需要进行解释和分析,以制定合理的开发方案。
根据测井评价结果,可以确定裂缝性碳酸盐岩储层的含油气性质、储量和产能等参数,为储层的开发提供科学依据。
同时,还可以针对不同位置的裂缝和孔隙特征,采用不同的开发方法和措施,以最大程度地提高储层的产能。
综上所述,裂缝性碳酸盐岩储层的测井评价需要选取适合的测井曲线来确定其物性参数,通过定量的方法来评价裂缝和孔隙的特征,最后对评价结果进行解释和分析,制定合理的开发方案。
这些方法和技术的应用可以为裂缝性碳酸盐岩储层的开发提供有力的支持。
测井解释原理一:储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。
必须具备两个条件:(1)孔隙性(孔隙、洞穴、裂缝)具有储存油气的孔隙、孔洞和裂缝等空间场所。
(2)渗透性(孔隙连通成渗滤通道)孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。
储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。
储集层的分类•按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。
•按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。
碎屑岩储集层•1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。
•2、组成:–矿物碎屑(石英、长石、云母)–岩石碎屑(由母岩类型决定)–胶结物(泥质、钙质、硅质)•3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。
•4、有关的几个概念–砂岩:骨架由硅石组成的岩石都称为砂岩。
骨架成份主要为SiO 2–泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。
–砂泥岩剖面:由砂岩和泥岩构成的剖面。
碳酸盐岩储集层•1、定义:–由碳酸盐岩石构成的储集层。
•2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩•3、特点:–储集空间复杂有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等)次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)–物性变化大:横向纵向都变化大•4 、分类按孔隙结构:•孔隙型:与碎屑岩储集层类似。
•裂缝型:孔隙空间以裂缝为主。
裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。
•孔洞型:孔隙空间以溶蚀孔洞为主。
孔隙度可能较大、但渗透率很小。
•洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。
•裂缝-孔洞型:裂缝、孔洞同时存在。
碳酸盐岩储集空间的基本类型砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主;碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。
碳酸盐岩储层测井评价方法
王建国;杨涛
【期刊名称】《测井与射孔》
【年(卷),期】2003(006)004
【摘要】碳酸盐岩储层评价不同于砂泥岩剖面的测井评价,是由于它有着不同的地质因素。
其中与测井信息最密切相关的因素是地层的岩石骨架,岩石中的空隙空间结构,空隙中的流体性质及分布特征。
因此它们是测井评价的地质基础。
而这些地质因素对各种测井信息的影响状况,则是测井评价的物理基础。
本文从测井资料在碳酸盐岩地层评价中的实际应用出发,着重讨论了碳酸盐岩地层测井数据采集、有效储层划分、储层流体性质判别、储层参数计算、测井评价技术的发展。
文中给出的一个实例正是碳酸盐岩储层测井评价方法的应用。
【总页数】5页(P28-31,46)
【作者】王建国;杨涛
【作者单位】胜利测井公司
【正文语种】中文
【中图分类】P631.81
【相关文献】
1.碳酸盐岩储层测井评价方法综合研究 [J], 徐敬领;王贵文;王亚静;秦宇星
2.YD 油田碳酸盐岩储层测井评价方法 [J], 方翔;尚希涛;王潇
3.基于产能刻度测井碳酸盐岩储层品质评价方法 [J], 林发武;周凤鸣;刘得芳;陈晶
莹;殷秋丽
4.沉积微相约束的孔隙型碳酸盐岩储层测井评价方法—以中东地区Ahdab油田上白垩统Khasib组为例 [J], 薛宗安;
5.基于电成像测井的致密碳酸盐岩储层有效性评价方法 [J], 陈义祥; 任小锋; 牟瑜; 陈惠; 俞保财; 姚海林; 刘李春
因版权原因,仅展示原文概要,查看原文内容请购买。
普光气田碳酸盐岩储层测井解释方法X强文明,谭海芳,秦昌伟,魏霞,毛 军(中原石油勘探局地球物理测井公司,河南濮阳 457001) 摘 要:普光气田目的层段飞仙关组-长兴组海相碳酸盐岩地层发育气层,储层类型以孔隙-孔洞型为主,局部发育裂缝。
针对这些储层特征,参考地质资料、微电阻率扫描成像资料,总结出了利用常规测井资料识别储层储集空间类型的方法;并在碳酸盐岩储层孔隙度参数求取中,采用光电吸收截面指数(Pe 值),准确确定储层中岩性成分,为求取孔隙度参数提供了保障;在识别储层流体性质方面,通过实践经验总结出了交会图法、纵横波速度比值法等多种识别流体的方法,同时在核磁共振资料识别流体性质方面也做了大量的工作,在实际生产中显示出了很好的应用效果。
关键词:碳酸盐岩;储集空间;流体性质;孔隙度;核磁共振 中图分类号:P 631.8+4 文献标识码:A 文章编号:1006—7981(2012)11—0134—04 普光气田位于四川省宣汉县境内,构造上属于川东断褶带东北段双石庙-普光NE 向构造带上的一个鼻状构造,其目的层段为飞仙关组和长兴组,岩性主要为灰岩类、白云岩类以及过渡岩类,属于碳酸盐岩地层。
岩心资料表明:目的层段储层物性发育较好,以中孔中渗、高孔高渗储层为主,也有高孔低渗、低孔高渗储层,有效储层孔隙度主要分布在2~15%之间,渗透率主要分布在0.1~1000×10-3L m 2之间。
1 储层储集空间类型的判别钻井取心资料显示普光地区目的层段储层的储集空间既有孔隙、孔洞,又有裂缝,从常规测井资料来看,孔隙型储层厚度相对较大,孔隙度曲线和电阻率曲线形状多呈“U ”或“W ”字形变化,表现为声波时差和中子孔隙度增高、侧向电阻率和密度值降低。
而裂缝型储层厚度小,仅1~2m 异常反映,孔隙度曲线和电阻率形状多呈厚度小的尖刺状“V ”字型特征。
图 普光井组合成果图(555 微电阻率扫描等成像测井是判断裂缝和溶蚀孔的最直接的方法。
复杂岩性分析程序CRACRA程序适用于复杂的碳酸盐岩剖面,它能计算地层孔隙度、泥质含量、含水饱和度等储层参数,它除了一般复杂岩性程序中的砂岩、灰岩、白云岩和硬石膏之外,还可以加入四种附加矿物,能处理八种分离矿物。
CRA程序本身还具有编辑功能,并对测井仪器进行校正,用五种方法求取孔隙度和矿物体积,用六种方法计算含水饱和度,并有较完善的油气校正。
需要输入的曲线CNL 补偿中子DEN 体积密度AC 声波时差GR 自然伽马THOR 钍K40 钾UR 铀TC 能谱测井总计数率PORS 井壁中子SP 自然电位RT 深探测电阻率RXO 浅探测电阻率SGMA 中子寿命G2 中子寿命测井RATO 中子寿命短/长之比TPI 钍-钾指数CAL 井径需要输入的参数SHFG 泥质体积计算方法标志,隐含值为1=0 不计算泥质含量=1 用GR=2 用TC=3 用K40=4 用THOR=5 用CNL或PORS=6 用SGMA=7 用RATO=8 用G2=9 用SP=10 用AC=14 用TPI=20 用RT=21 D/N(中子-密度交会)=22 D/A(声波-密度交会)=23 A/N(中子-声波交会)SWCN 选择中子测井仪类型的标志,隐含值为1=0 不用中子测井=1 用补偿中子测井(CNL)=2 用井壁中子测井(PORS)PRFG 选择孔隙度计算标志,隐含值为1=1 用中子-密度交会(D/N)=2 用中子-声波交会(D/N)=3 仅用密度测井=4 仅用声波测井=5 仅用中子测井ANHY 在计算矿物体积时,石膏是否存在的标志,隐含值为1=1 有石膏=0 无石膏SAND 在计算矿物体积时,砂岩是否存在标志,隐含值为1。
=1 有砂岩=0 无砂岩LIME 在计算矿物体积时,石灰岩矿物存在状况的标志,隐含值为1=1 有石灰岩=0 无石灰岩DOLO 在矿物体积计算中,白云岩矿物存在状况的标志,隐含值为1=1 有白云岩=0 无白云岩M1X,M1Y,M2X,M2Y,M3X,M3Y,M4X,M4Y对应于四种附加矿物(m1,m2,m3,m4)在X-Y交会图上的骨架值,若=-9999,表示不存在此种矿物DG,DF 密度的骨架和流体值,隐含值为2.71和1.0TM,TF 声波时差的骨架和流体值,隐含值为47.5和189NFM,DFM,TFM井眼未垮塌的纯地层的最大中子值、最小密度值和最大声波时差值,隐含值分别为100、1和189A 岩性系数,隐含值为1M 胶结指数,隐含值为2N 饱和度指数,隐含值为2BH 选择进行井眼编辑标志,隐含值为1=0 进行井眼编辑=1 不进行井眼编辑CNFG 中子刻度标志符,隐含值为0=0 CNL是百分数刻度=1 CNL是小数刻度PASS 开关参数标志,隐含值为2=1 第一次运行作为预处理=2 第二次运行作为结果处理CPOP 选择声波压实系数的标志,隐含值为0=0 用公式自动计算压实系数=1 用参数CP赋值ACP,BCP 计算压实系数的两个参数,隐含值分别为0.203和1.67CP 压实系数,隐含值为1SMNi SMXi当SHFG=1,2,3,4,5,9,10,14时,某条测井曲线在纯地层的极小值和在泥岩层的极大值,隐含值均为0和100RSH,RLIM 当SHFG=20时,用RT求泥质含量时的参数,它们分别表示泥岩层的平均值和纯地层的极大值,隐含值分别为6和200。
复杂岩性分析程序CRACRA程序适用于复杂的碳酸盐岩剖面,它能计算地层孔隙度、泥质含量、含水饱和度等储层参数,它除了一般复杂岩性程序中的砂岩、灰岩、白云岩和硬石膏之外,还可以加入四种附加矿物,能处理八种分离矿物。
CRA程序本身还具有编辑功能,并对测井仪器进行校正,用五种方法求取孔隙度和矿物体积,用六种方法计算含水饱和度,并有较完善的油气校正。
需要输入的曲线CNL 补偿中子DEN 体积密度AC 声波时差GR 自然伽马THOR 钍K40 钾UR 铀TC 能谱测井总计数率PORS 井壁中子SP 自然电位RT 深探测电阻率RXO 浅探测电阻率SGMA 中子寿命G2 中子寿命测井RATO 中子寿命短/长之比TPI 钍-钾指数CAL 井径需要输入的参数SHFG 泥质体积计算方法标志,隐含值为1=0 不计算泥质含量=1 用GR=2 用TC=3 用K40=4 用THOR=5 用CNL或PORS=6 用SGMA=7 用RATO=8 用G2=9 用SP=10 用AC=14 用TPI=20 用RT=21 D/N(中子-密度交会)=22 D/A(声波-密度交会)=23 A/N(中子-声波交会)SWCN 选择中子测井仪类型的标志,隐含值为1=0 不用中子测井=1 用补偿中子测井(CNL)=2 用井壁中子测井(PORS)PRFG 选择孔隙度计算标志,隐含值为1=1 用中子-密度交会(D/N)=2 用中子-声波交会(D/N)=3 仅用密度测井=4 仅用声波测井=5 仅用中子测井ANHY 在计算矿物体积时,石膏是否存在的标志,隐含值为1=1 有石膏=0 无石膏SAND 在计算矿物体积时,砂岩是否存在标志,隐含值为1。
=1 有砂岩=0 无砂岩LIME 在计算矿物体积时,石灰岩矿物存在状况的标志,隐含值为1=1 有石灰岩=0 无石灰岩DOLO 在矿物体积计算中,白云岩矿物存在状况的标志,隐含值为1=1 有白云岩=0 无白云岩M1X,M1Y,M2X,M2Y,M3X,M3Y,M4X,M4Y对应于四种附加矿物(m1,m2,m3,m4)在X-Y交会图上的骨架值,若=-9999,表示不存在此种矿物DG,DF 密度的骨架和流体值,隐含值为2.71和1.0TM,TF 声波时差的骨架和流体值,隐含值为47.5和189NFM,DFM,TFM井眼未垮塌的纯地层的最大中子值、最小密度值和最大声波时差值,隐含值分别为100、1和189A 岩性系数,隐含值为1M 胶结指数,隐含值为2N 饱和度指数,隐含值为2BH 选择进行井眼编辑标志,隐含值为1=0 进行井眼编辑=1 不进行井眼编辑CNFG 中子刻度标志符,隐含值为0=0 CNL是百分数刻度=1 CNL是小数刻度PASS 开关参数标志,隐含值为2=1 第一次运行作为预处理=2 第二次运行作为结果处理CPOP 选择声波压实系数的标志,隐含值为0=0 用公式自动计算压实系数=1 用参数CP赋值ACP,BCP 计算压实系数的两个参数,隐含值分别为0.203和1.67CP 压实系数,隐含值为1SMNi SMXi当SHFG=1,2,3,4,5,9,10,14时,某条测井曲线在纯地层的极小值和在泥岩层的极大值,隐含值均为0和100RSH,RLIM 当SHFG=20时,用RT求泥质含量时的参数,它们分别表示泥岩层的平均值和纯地层的极大值,隐含值分别为6和200。