1.3.1有理数的加法(2)
- 格式:doc
- 大小:45.00 KB
- 文档页数:3
课题 1.3.1有理数的加法(2)备课时间序号授课时间主备人授课班级七年级课标要求理解有理数的运算律,能解决简单问题。
教学目标知识与技能:能用运算律简化有理数加法的运算。
过程与方法:经历有理数加法运算律的探索过程,理解有理数加法的运算律。
情感态度价值观:使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力。
教学重点加法交换律和结合律,及其合理、灵活的运用教学难点合理运用运算律教学方法类比教学过程设计师生活动设计意图一、引出课题回顾复习:小学时已学过的加法运算律有哪几条?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题。
二、分析问题、探究新知1.有理数加法交换律的学习问题1:我们如何知道加法交换律在有理数范围内是否适用?问题2:我们如何用语言来叙述有理数加法的交换律呢?教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变。
”问题3 :你能把有理数加法的交换律用字母来表示吗?〔1〕式子中的字母分别表示任意的一个有理数。
(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。
(2)在同一个式子中,同一个字母表示同一个数.2.有理数加法结合律的学习.(基本步骤同于加法交换律的学习)学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证由学生回答得出a+b=b+a后,教师说明“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律.让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性板书设计:1.3.1 有理数的加法有理数的加法中,两个数相加, 交换加数的位置,和不变。
加法交换律:a+b=b+a有理数的加法中,三个数相加, 先把前两个数相加,或者先把 后两数相加,和不变。
1.3.1有理数加法(2):有理数加法法则:·同号两个数相加,取相同的符号,并把绝对值相加。
·异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两数相加得0.·一个数同0相加仍得这个数加法交换律:a b b a+=+加法结合律:()()a b c a b c++=++方法:①互为相反数的两个数先相加——“相反数结合法”②符号相同的两个数先相加——“同号结合法”③分母相同的的数先相加——“同分母结合法”④几个数相加得到整数——“凑整数”⑤整数与整数,小数与小数相加——“同行结合法”。
新课讲授:见ppt例1:计算:(1)(—83)+(+26)+(—17)+(—26)+(+15)(2)131 ++++244(—2.5)(—3)(—1)3(—1)(3)18.56+(—5.16)+(—1.44)+(+5.16)+(—18.56)练习:(1)13+(-34)+(-13)+(-14)+1819(2)(-13)+(+25)+(+35)+(-123)(3)(-12)+(-23)+(-56)(4)(-26.54)+(-6.4)+(+18.54)+6.4(5)(-3.75)+2.85+(-114)+(-12)+3.15+(-2.5)(6)11+22(—6)3(7))539()518()23()52()21(++++-+-(8))37(75.0)27()43()34()5.3(-++++-+-+-自主探究:(针对性练习)1.若|x—4|与|y+2|互为相反数,求x+y+的值。
2.若m,n互为相反数,x的绝对值2,则5(m+n)+x=3.计算1111++++ 12233420112012⋅⋅⋅⨯⨯⨯⨯4.(-1)+(+2)+(-3)+(+4)+…(-2007)+(+2008)+(-2009)+(+2010)课堂达标:1.口算:(1))8()2(+++= (2))17()16(-+- = (3))8()13(++-=(4)(-8.6)+0 = (5)3.78)+(-3.78)= (6)(-423)+(+316)= (7)(-823)+(+4.5)= (8)(-723)+(-356)= (9)│-7│+│-9715│= (10)(+4.85)+(-3.25)= (11)(-3.1)+(6.9)= (12)(-22914)+0= (13)-34+(-45)= (14)4.23+(-2.76)= (15)(-25)+(+56)+(-39)= (16)(-1.9)+3.6+(-10.1)+1.4 =(17) (-7)+(+11)+(-13)+9= (18)43+(-77)+37+(-23) =(19) 18+(-12)+(-21)+(+12) = (20)(+3)(-21)+(-19)+(+12)+(+5) =2.计算—1+1的结果是( )A. 1B. 0C.—1D. —23.下列运算正确的是( )①(—2)+2=0 ②512+=663(—)③33+=44—(—)(—7)—7④(—6)+(+4)=—10 ⑤0+(—3)=+3A. 0个B. 1个C. 2个D. 3个4.如果两个数相加的和是负数,那么( )A.这两个加数都为负数B.两个加数中,一个为负数,一个为正数C.一个加数为正数,另一个加数为负数,并且负数的绝对值大于正数的绝对值D.以上都有可能5.如果|a+b|=|a|+|b|,则这两个数一定是( )A.同为正数B.同为负数C. 同为非负数D.符号相同或一个为0或者同时为06.已知a 〈0,b 〉0且|a|=1,|b|=5,则a+b 等于( )A. 6B. ±6C. 4D. -47.小丽沿着一南北走向的街道散步,先向北走了1000m ,又向南走了800m ,则她此时位于其出发点的( )A.北200m 处B.南200m 处C. 北1800m 处D. 南1800m 处8.一个数是—8,另一个数比它大123,则另一个数是 。
有理数的加法教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.小结 五、课时小结: 本节课我们探索了有理数加法的运算律,灵活运用加法的运算律使运算简便.一般情况下,将互为相反数的数结合相加;同分母的分数能凑整的数结合;正数、负数分别相加,以使计算简便.作 业 1、教科书 习题1.3第1题;2、配套练习相关题目。
板 书 设 计一、 复习引入 二、 讲授新课 三、 例题讲解 四、 当堂检测 五、课时小结教 学 反 思组长查阅2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.(二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条D CA BD CABDCAB理、很规范.下面我们来看大屏幕. (演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CA答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D C A B(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习EDCA B P1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷---(3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。
第一章 有理数 1.3 有理数的加减法 1.3.1 有理数的加法第2课时 有理数加法的运算律及运用学习目标:1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;2.能运用加法运算律简化加法运算;3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用. 学习难点:运用有理数加法法则简化运算. 课堂活动一、有理数加法运算律的探索 1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○ 和 ○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇ 和 □+(○+◇) 2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括: 字母表示 加法的结合律:文字概括: 字母表示 二、有理数加法运算律的应用 问题1.计算(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6(3))75()65()72(61++-+-+ (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)问题2:计算 (1) (-11)+8+(-14) (2)32)41()32()43(+-+-+-(3) 0.35+(-0.6)+0.25+(-5.4) (4))61(31)21()2(-++-+-三、拓展延伸问题3.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 问(1)10筐苹果共超过(不足)多少千克? (2)10筐苹果共重多少千克?课堂反馈:1.从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?知识巩固 一、填空1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.2.绝对值小于5的所有负整数的和为3.已知a 是最小的正整数,b 是a 的相反数,c 的绝对值为3,则a +b +c =4.某天股票A 的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A 这天的收盘价是 元.5.如果a<0,则︱a ︱+a= 二、计算(1) )4(1)3()1(3-++-+-+ (2)(-9)+4+(-5)+8;(3)(-36.35)+(-7.25)+26.35+(+714) (4))2(9465195-+++(5))127(25)125()23(-++-+- (6)(-13)+(+25)+(+35)+(-123)三、解答题1. 一天早晨的气温是-7ºC,中午上升了11ºC,半夜又降了9ºC,则半夜的气温是多少?2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克): 1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?3. 某种袋装奶粉标明净含量为400g ,检查其中8袋,记录如下表:请问这8袋被检奶粉的总净含量是多少?4.一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走的路线如下:(单位:千米)8,9,4,7,2,10,18,3,7,5+-++--+-++ ⑴ 问收工时离出发点A 多少千米?⑵ 若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?6.已知c b a ,7,2-==的相反数为-5,试求a +)(b -+(-c )7.计算:|1-12|+|12-13|+|13-14|+…+|19-110|课后反思:学习小结:课后作业:。
《1.3.1 有理数的加法》作业设计方案(第一课时)一、作业目标本次作业设计的主要目标是帮助学生掌握有理数加法的基本原理和方法,加深对负数和有理数运算规则的理解,培养学生独立思考和解决问题的能力,以及提高学生数学运算的准确性和速度。
二、作业内容1. 基础练习:要求学生完成一定数量的有理数加法练习题,包括同号相加、异号相加以及涉及零的特殊情况。
通过反复练习,使学生熟练掌握有理数加法的基本规则。
2. 实际应用:设计一些实际生活中的应用题,如温度变化、购物找零等场景下的有理数加法问题。
通过将数学知识与实际生活相结合,激发学生的学习兴趣,提高学生的应用能力。
3. 探究性学习:引导学生探究有理数加法的本质和规律,通过小组合作或个人思考的方式,发现和总结有理数加法的性质和法则。
4. 思维拓展:设计一些具有一定难度的拓展题,如含有括号的加减混合运算等,以培养学生的逻辑思维和解决问题的能力。
三、作业要求1. 基础练习部分要求学生独立完成,并保证计算过程和结果的准确性。
2. 实际应用部分要求学生结合实际生活情境,运用所学知识解决问题。
3. 探究性学习部分要求学生积极参与,大胆尝试,发现规律,总结方法。
4. 思维拓展部分要求学生挑战自我,勇于探索,尝试解决更复杂的问题。
5. 作业完成后,学生需自行检查答案的准确性,并尝试总结本次作业的收获和不足。
四、作业评价1. 教师根据学生完成作业的情况,对每位学生的作业进行评分和评价。
2. 评价内容包括学生掌握知识的程度、解题的准确性、思维的能力、应用的创新能力等方面。
3. 对于表现出色的学生,教师可给予表扬和鼓励;对于存在问题的学生,教师应指出其不足并给出改进的建议。
五、作业反馈1. 教师通过课堂讲解、个别辅导等方式,对学生完成的作业进行反馈和指导。
2. 对于共性问题,教师可在课堂上进行集体讲解和纠正;对于个别问题,教师可通过个别辅导的方式帮助学生解决。
3. 鼓励学生之间互相交流学习心得和解题方法,以提高学生的自主学习能力和合作学习能力。
1.3.1 有理数的加法(二)◆课堂测控知识点一加法运算律1.计算:(1)(-2)+(+5)+(-8)+7=______;(2)(-0.6)+0.3+(-0.4)+0.7=_____.2.(-12)+14+(-25)+(+310)运用运算律计算恰当的是()A.[(-12+14)]+[(-25)+(+310)] B.[14+(-25)]+[(-12)+(+310)]C.(-12)+[14+(-25)]+(+310) D.以上都不对3.下列计算运用运算律恰当的有()(1)28+(-18)+6+(-21)=[(-18)+(-21)]+28+6(2)(-12)+1+(-14)+13=[(-12)+(-14)]+1+13(3)3.25+(-235)+534+(-8.4)=(3.25+534)+[(-235)+(-8.4)]A.1个 B.2个 C.3个 D.都不恰当4.计算:(1)(-8)+3+(-2)+7 (2)(-12)+14+(-18)(3)0.75+(-234)+(+0.125)+(-1257)+(-418)知识点二加法交换律的应用5.8筐蔬菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下(单位:千克):1.5,3,2,-0.5,1,-2,-2,+1.5.则8筐蔬菜总重量为______kg.6.飞机飞行的高度是8000米,上升300米,又下降500米,又上升200米,•最后飞机的高度为______米.7.小于5的正整数与不小于-4的负整数的和是______.8.(教材变式题)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,•某天自A地出发到收工时所跑的路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.问收工时距A地多远?◆课后测控9.绝对值不小于5但小于7的所有整数的和是_____.10.计算:(-12)+5+(-10)+15=______.11.如图所示,则下列结论错误的是()A.b+c<0 B.a+b<0 C.a+b+c<0 D.│a+b│=a+bc o a12.下列运算正确的个数为()(1)(+34)+(-734)+(-6)=-13 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3 (4)1+(-3)+5+(-7)+9+(-1)=-4A.3个 B.4个 C.2个 D.1个13.用简便方法计算:(1)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7)(2)(-1)+2+(-3)+4+…+(-99)+100(3)(-23)+(+0.25)+(-16)+1214.阅读下列(1)题解法,计算(2)题(1)计算-556+(-923)+1734+(-312)[解]原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+17+(-3)]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114.上述方法叫拆项法.(2)计算4.5+(-2.5)+913+(-1523)+213.◆拓展测控15.(经典题)股民吉姆上星期五买进某公司股票1000股,每股27元,•下表为本周内每日该股票的涨跌情况(单位:元).(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将全部股票卖出,他的收益情况如何?答案:课堂测控1.(1)2 (2)0 2.A 3.C4.解:(1)原式=-8+(-2)+3+7=0(2)原式=-24+14+(-18)=-14+(-18)=-38(3)原式=34+(-234)+18+(-418)+(-1257)=-1857[总结反思](1)正数,负数分别相加;(2)分数,整数分别相加.5.204.5 6.8000 7.08.解:(+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5)=10+4+2+13+12+8+5-3-8-2=41[解题技巧]正数一起加,负数一起加.课后测控9.0 10.-2 11.D 12.A13.解:(1)原式=(-6.8)+(-3.2)+425+635+(-5.7)+5.7=-10+11=1. (2)原式=50111+++个=50(3)原式=-23+(-16)+(+14)+12=-411264+++=-56+34=-10912-+=-112 [解题思路]运用交换律结合律进行计算.14.解:(2)原式=4+0.5+(-2)+(-0.5)+9+13+(-15)+(-23)+2+13=[4+(-2)+9+(-15)+2]+[0.5+(-0.5)+[13+(-23)+13] =-2+0+0=-2[解题思路]把各个数能拆项进行拆项,运用交换律结合律,将相反数,整数,分数分别相加.拓展测控15.解:(1)星期三收盘每股价为:27+4+4.5+(-1)=34.5(元);(2)本周内每股最高价是35.5元,最低价是每股28元;(3)星期五每股卖出价为:27+4+4.5+(-1)+(-2.5)+(-4)=28(元),共收益:•28•×1000×(1-1.5‰-1‰)-27×1000×(1+1.5‰)=889.5(元).所以吉姆收益889.5元.[解题思路](1)起始价为27元,把第一到三天的涨跌数相加再加上27得周三收盘价.(2)把一周每天计算出来.再比较.(3)收入减交易中的手续费及交易税,得利润.。