二线制三线制四线制仪表区别
- 格式:doc
- 大小:93.50 KB
- 文档页数:6
什么是两线制?两线制有什么优点?两线制是指现场变送器与控制室仪表联系仅用两根导线,这两根线既是电源线,又是信号线。
两线制与三线制 (一根正电源线,两根信号线,其中一根共GND) 和四线制(两根正负电源线,两根信号线,其中一根GND)相比,两线制的优点是:1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的导线;可节省大量电缆线和安装费用;2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般利用双绞线就能降低干扰;两线制与三线制必须用屏蔽线,屏蔽线的屏蔽层要妥善接地。
3、电容性干扰会导致接收器电阻有关误差,对于4~20mA两线制环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远;4、各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等而造成精度的差异,实现分散采集,分散式采集的好处就是:分散采集,集中控制....5、将4mA用于零电平,使判断开路与短路或传感器损坏(0mA状态)十分方便。
6,在两线输出口非常容易增设一两只防雷防浪涌器件,有利于安全防雷防爆两线制输出接线是当前模拟量串口中最先进的输出方式,具有6大优点:(1)不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的双绞线导线;(2)在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般情况利用双绞线就能降低干扰;(3)电容性干扰会导致接收器电阻有关误差,对于4~20mA两线制环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远;(4)各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等造成精度的差异;(5)将4mA用于零电平,使判断输送线开路或传感器损坏(0mA状态)十分方便;(6)在两线输出口容易增设防浪涌和防雷器件,有利于安全防雷防爆。
关于模拟变送器信号形式的疑问解答什么是变送器的二线制和四线制信号传输方式?二线制传输方式中,供电电源、负载电阻、变送器是串联的,即二根导线同时传送变送器所需的电源和输出电流信号,目前大多数变送器均为二线制变送器;四线制方式中,供电电源、负载电阻是分别与变送器相连的,即供电电源和变送器输出信号分别用二根导线传输。
一.什么是两线制电流变送器? 什么是两线制? 两线制有什么优点?两线制是指现场变送器与控制室仪表联系仅用两根导线,这两根线既是电源线,又是信号线。
两线制与三线制(一根正电源线,两根信号线,其中一根共GND)和四线制(两根正负电源线,两根信号线,其中一根GND)相比,两线制的优点是:1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的导线;可节省大量电缆线和安装费用;2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般利用双绞线就能降低干扰;两线制与三线制必须用屏蔽线,屏蔽线的屏蔽层要妥善接地。
3、电容性干扰会导致接收器电阻产生误差,对于4~20mA两线制环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远;4、各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等而造成精度的差异,实现分散采集,分散式采集的好处就是:分散采集,集中控制....5、将4mA用于零电平,使判断开路与短路或传感器损坏(0mA状态)十分方便。
6,在两线输出口非常容易增设一两只防雷防浪涌器件,有利于安全防雷防爆。
三线制和四线制变送器均不具上述优点即将被两线制变送器所取代,从国外的行业动态及变送器心片供求量即可略知一斑,电流变送器在使用时要安装在现场设备的动力线上,而以单片机为核心的监测系统则位于较远离设备现场的监控室里,两者一般相距几十到几百米甚至更远。
常见热电阻测量电路的分析与比较摘要:在工业生产现场中,热电阻是一种重要的测量传感器,需要通过导线将测量信号传递到控制系统中,因此本文通过分析比较三种常见的接线方式,来说明导线对热电阻测量电路的影响。
关键词:接线方式;二线制;三线制;四线制一、背景介绍随着社会的发展,工业技术也不断进步。
在很多工业领域中,热电阻是一种将温度变化转化为电阻值变化的一次元件,在工业生产现场中,需要通过导线将电阻值信号传递到计算机控制系统中或其他仪表上。
由于其安装地与控制地存在一定的物理距离,不能忽视热电阻引线对其测量结果产生的较大影响,因此研究热电阻的接线方式具有重要意义。
二、常见测量电路的分析目前在生产中,常见的热电阻测量电路接线方式主要有三种:二线制、三线制和四线制。
这三种接线方式由于自身的优缺点应用于不同的场合,接下来将详细介绍这三种接线方式。
2.1 二线制接线电路二线制的接线方式就是从热电阻的两端各引出一根导线接入测量电路,从而导出电阻信号,这是热电阻最简单的一种接线方式,该测温原理图的等效电路图如图2-1所示。
其中,r为两根连接导线的电阻;为热电阻,是系统的感温元件;R为固定电阻,与热电阻及导线电阻构成惠斯通电桥。
图2-1 热电阻二线制等效电路图根据等效电路可以得出,显示仪表两端的电压:式2-1根据式2-1得出:式2-2在上式2-2中,R为测量电路中的已知量,可测量得出,因此,测量的距离较短或者在测量精度要求不高时,可以将导线电阻r忽略,视为r=0。
这时就可得出:式2-3采用二线制时,其一,并没有考虑导线电阻,但现实中导线电阻必然存在,导致较大的误差;其二,若采用这种电路进行精密温度测量,整个电路还必须在使用温度范围内。
因此这种接线方式只适合用于测量精度要求较低、传送距离较短的情况。
2.2 三线制接线电路三线制的接线方式是将一根导线从热电阻的根部引出,接到电桥的电源端;从另外一端引出两根导线,这两根导线分别接到热电阻所在的桥臂以及与其相邻的电桥桥臂上,等效电路图如图2-2所示。
四线制、三线制和两线制热电阻原理 - 传感器二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简洁,但由于连接导线必定存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合;三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消退引线电阻的影响,是工业过程把握中的最常用的;四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻供应恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。
可见这种引线方式可完全消退引线的电阻影响,主要用于高精度的温度检测。
热电阻接受三线制接法。
接受三线制是为了消退连接导线电阻引起的测量误差。
这是由于测量热电阻的电路一般是不平衡电桥。
热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。
接受三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消退了导线线路电阻带来的测量误差。
两线制介绍及其优点两线制是指现场变送器与把握室仪表联系仅用两根导线,这两根线既是电源线,又是信号线。
两线制与三线制(一根正电源线,两根信号线,其中一根共GND) 和四线制(两根正负电源线,两根信号线,其中一根共GND)相比,测量精度较低。
热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机把握装置或者其它一次仪表上。
工业用热电阻安装在生产现场,与把握室之间存在肯定的距离,因此热电阻的引线对测量结果会有较大的影响。
两线制优点:1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用格外廉价的更细的导线;可节省大量电缆线和安装费用;2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,由于干扰源引起的电流微小,一般利用双绞线就能降低干扰;三线制与四线制必需用屏蔽线,屏蔽线的屏蔽层要妥当接地。
[图文]Pt100热电阻两线制、三线制和四线制接线对测温精度的影响1、Pt100热电阻的三种接线方式在原理上的不同:二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。
四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。
2、Pt100热电阻的三种接线方式对测量精度的影响连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。
与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。
其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。
请参阅下图:(1)四线制就是从热电阻两端引出4线,接线时电路回路和电压测量回路独立分开接线,测量精度高,需要导线多。
(2)三线制就是引出三线,Pt100B铂电阻接线时电流回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。
精度稍好。
(3)两线制就使引出两线,Pt100B铂电阻接线时接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接、I+端子和V+短接短接)。
测量精度差。
铂热电阻的接线造成温度失真现象的研究[ 录入:tai-yan | 时间:2007-07-24 00:44:20 | 作者: | 来源:采集所得 | 浏览:158次 ]摘要: 项目推广中发现很多矿井主通风机的监测温度经常出现不同程度的虚高现象, 分析其原因是测温线路的接线引起了较大的温度误差。
文章对测温线路进行了理论分析, 并通过实验得出导线电阻的大小对温度影响的关系。
0 引言PT100(铂热电阻) 温度传感器具有精度高、测温范围宽、使用方便等优点, 在工业过程控制和测量系统中得到了广泛的应用。
用铂热电阻测温时, 将铂热电阻接入二次仪表, 例如巡检仪温度模块等, 通过二次仪表测量出铂热电阻的阻值,从而算出温度。
二线制、三线制和四线制传感器(变送器)简介二线制、三线制和四线制传感器(变送器)简介一、定义两线制传感器(变送器):传感器(变送器)仅用两根导线,这两根线既是电源线,又是信号线。
三线制传感器(变送器):传感器(变送器)仅用三根导线,一根正电源线,一根信号线,另一根信号线与负电源线(GND)共用。
四线制传感器(变送器):传感器(变送器)用四根导线,两根电源线,两根独立信号线。
二、三者的区别三者的工作原理不同。
两线制传感器(变送器)一般是电流型(4-20mA),信号是以电流的形式传输,抗干扰能力相比电压型输出型较高。
三线制传感器(变送器)和四线制传感器(变送器)既可以是电流型,也可以是电压型,但多为电压型。
四线制传感器(变送器),其供电大多为AC 220V,少数供电为DC 24V。
由于三者的工作原理不同,因此三者的接线方式各不一样。
图1 两线制传感器(变送器)的接线示意图图2 三线制传感器(变送器)的接线示意图图3 四线制传感器(变送器)的接线示意图三、总结1.电压型传感器(变送器)输出信号是电压信号,电压信号容易受电磁干扰。
特别是传输的距离较远时,信号失真度较大。
2.电流型传感器(变送器)输出信号是电流信号,而电流信号抗干扰能力较电压信号强。
3.两线制电流变送器具有低失调电压(<30μV)、低电压漂移(<μV/C°)、超低非线性度(<%)的特点。
测量信号和电源在双绞线上同时传送,既省去了昂贵的传输电缆,而且信号是以电流的形式传输。
4.两线制4-20mA电流输出型传感器(变送器)的信号线断线时,用万用表的电压档测量电压为DC 24V。
其负载为250Ω时:被测量为最小值时,电压为DC 23V;被测量为最大值时,电压为DC 19V。
5.三线制4-20mA电流输出型传感器(变送器)的信号线断线时,用万用表的电压档测量电压为DC 24V。
其负载为250Ω时:被测量为最小值时,电压为DC 1V;被测量为最大值时,电压为DC 5V。
2009年10月29日
Pt100热电阻两线制、三线制和四线制接法对测温精度的影响?
1、Pt100热电阻的三种接线方式在原理上的不同:
二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。
四线制没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。
2、Pt100热电阻的三种接法对测温精度的影响:
连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。
与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子I+、I-、V+、V- 。
其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来检测热电阻的电压变化,依此检测温度变化。
(1)四线制就是从热电阻两端引出四线,接线时电源回路和电压测量回路独立分开接线,测量精度高,需要导线多。
(2)三线制就是引出三线,Pt100铂电阻接线时电源回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。
精度稍好。
(3)两线制就是引出两线,Pt100铂电阻接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接,I+端子和V+端子短接)。
测量精度差。
热电阻是广泛应用在中、低温度测量的一种检测器,热电阻的主要特点是测量精度高,性能稳定,其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的温度测量校验仪表,文献上常提到的RTD。
热电阻测温原理及材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。
两线、三线、四线热电阻的区别从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻引出的各种导线电阻的变化会给温度测量带来影响。
为消除引线电阻的影响一般采用三线制或四线制。
热电阻接线有分别,主要与应用有关。
一般2线用于近距离测量;3线用于远距离测量,主要是为了克服线路电阻和干扰的影响。
另外4线的热电阻,是为了更高精度测量而提出来的。
使用上主要是给热电阻施加一个电流,然后再测量它的电压来提高测量精度和灵敏度。
与热电阻连接的检测设备(温控表、PLC输入等)都有四个接线端子。
I+、I-、V+、V-。
其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。
4线就是从热电阻两端引出4线,和4个端子连接。
3线就是引出3线,这需要检测设备方的I-、V-短接。
2线就使引出2线,这需要检测设备方的I-、V-、I+、V+短接。
两线、三线、四线热电阻的测温原理都是一样,只是接线区别。
准确的说是电流回路和电压测量回路是否分开接线的问题。
2线,电流回路和电压测量回路合二为1,精度差。
3线,电流回路的参考位和电压测量回路的参考位为一条线。
精度稍好。
4线,电路回路和电压测量回路独立分开,精度高,但费线。
pt100也称为铜铂热电阻,通常测量0~500摄氏度的温度,一般t=0摄氏度时,R=100欧,T=100摄氏度时,R=138.5欧pt100也称为铜铂热电阻,通常测量0~500摄氏度的温度,一般t=0摄氏度时,R=100欧,T=100摄氏度时,R=138.5欧。
热电阻的引线主要有三种方式○1二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合○2三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的引线电阻。
○3四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。
可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。
热电阻采用三线制接法。
采用三线制是为了消除连接导线电阻引起的测量误差。
这是因为测量热电阻的电路一般是不平衡电桥。
热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。
采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。
工业上一般都采用三线制接法。
热电偶产生的是毫伏信号,不存在这个问题。
概述双支热电阻就是把两支热电阻构成一组热电阻,并安装在外保护管内,测量同一点的温度。
有双组输出,可以接两个温控器。
一个保护管内有一只还是两只电阻体芯子,一般关键测温点、容易损坏的测温点、联锁控制用的测温点采用双只。
这样既可以保证测温的准确性,又可以防止一支损坏之后还要重新拆卸,带来的麻烦。
技术要求双支热电阻是由HSLW热电阻组成,其中可以分为四线制和六线制,四线制和六线制的区别就是六线制的每一支上面有一根温度补偿线,以便提高测量的准确性。
分度号:PT100,PT1000 测温范围:-100~300℃精度:0.2%FS 安装要求:可以是螺纹固定,也可以压簧固定。
二线制、三线制和四线制传感器(变送器)简介一、定义两线制传感器(变送器):传感器(变送器)仅用两根导线,这两根线既是电源线,又是信号线。
三线制传感器(变送器):传感器(变送器)仅用三根导线,一根正电源线,一根信号线,另一根信号线与负电源线(GND)共用。
四线制传感器(变送器):传感器(变送器)用四根导线,两根电源线,两根独立信号线。
二、三者的区别三者的工作原理不同。
两线制传感器(变送器)一般是电流型(4-20mA),信号是以电流的形式传输,抗干扰能力相比电压型输出型较高。
三线制传感器(变送器)和四线制传感器(变送器)既可以是电流型,也可以是电压型,但多为电压型。
四线制传感器(变送器),其供电大多为AC 220V,少数供电为DC 24V。
由于三者的工作原理不同,因此三者的接线方式各不一样。
图1 两线制传感器(变送器)的接线示意图图2 三线制传感器(变送器)的接线示意图图3 四线制传感器(变送器)的接线示意图三、总结1.电压型传感器(变送器)输出信号是电压信号,电压信号容易受电磁干扰。
特别是传输的距离较远时,信号失真度较大。
2.电流型传感器(变送器)输出信号是电流信号,而电流信号抗干扰能力较电压信号强。
3.两线制电流变送器具有低失调电压(<30μV)、低电压漂移(<0。
7μV/C°)、超低非线性度(<0.01%)的特点。
测量信号和电源在双绞线上同时传送,既省去了昂贵的传输电缆,而且信号是以电流的形式传输。
4.两线制4-20mA电流输出型传感器(变送器)的信号线断线时,用万用表的电压档测量电压为DC 24V.其负载为250Ω时:被测量为最小值时,电压为DC 23V;被测量为最大值时,电压为DC 19V.5.三线制4—20mA电流输出型传感器(变送器)的信号线断线时,用万用表的电压档测量电压为DC 24V.其负载为250Ω时:被测量为最小值时,电压为DC 1V;被测量为最大值时,电压为DC 5V。
热工仪表——热电阻英文名称:thermal resistor定义:电阻值随温度变化的温度检测元件。
所属学科:机械工程(一级学科);仪器仪表元件(二级学科);仪器仪表机械元件-敏感元件(三级学科)成分结构金属热电阻的感温元件有石英套管十字骨架结构,麻花骨架结构得杆式结构等。
金属热电阻常用的感温材料种类较多,最常用的是铂丝。
工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁—镍、钨、银等。
薄膜热电阻是利用电子阴极溅射的方法制造,可实现工业化大批量生产。
其中骨架用陶瓷,引线采用铂钯合金。
制作原料热电阻材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。
主要特点·压簧式感温元件,抗振性能好,测温精度高;机械强度高,耐高温耐压性能好,进口薄膜电阻元件,性能可靠稳定。
工作原理热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,现在已开始采用镍、锰和铑等材料制造热电阻。
热电阻通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。
热电阻种类普通型热电阻从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。
铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。
与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。
端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。
它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。
浅谈仪表的两线制、三线制、四线制(转)
我们讨论的两线制、三线制、四线制,是指各种输出为模拟直流电流信号的变送器,其工作原理和结构上的区别,而并非只指变送器的接线形式。
否则热电偶配毫伏计测量温度可称为是两线制的鼻祖了!
几线制的称谓,是在两线制变送器诞生后才有的。
这是电子放大器在仪表中广泛应用的结果,放大的本质就是一种能量转换过程,这就离不开供电。
因此最先出现的是四线制的变送器;即两根线负责电源的供应,另外两根线负责输出被转换放大的信号(如电压、电流、等)。
DDZ-Ⅱ型电动单元组合仪表的出现,供电为220V.AC,输出信号为0--10mA.DC的四线制变送器得到了广泛的应用,目前在有些工厂还可见到它的身影。
七十年代我国开始生产DDZ-Ⅲ型电动单元组合仪表,并采用国际电工委员会(IEC)的:过程控制系统用模拟信号标准。
即仪表传输信号采用4-20mA.DC,联络信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。
采用4-20mA.DC信号,现场仪表就可实现两线制。
但限于条件,当时两线制仅在压力、差压变送器上采用,温度变送器等仍采用四线制。
现在国内两线制变送器的产品范围也大大扩展了,应用领域也越来越多。
同时从国外进来的变送器也是两线制的居多。
因为要实现两线制变送器必须同时满足以下条件:
1.V≤Emin-ImaxRLmax
变送器的输出端电压V等于规定的最低电源电压减去电流在负载电阻和传输导线电阻上的压降。
2. I≤Imin
变送器的正常工作电流I必须小于或等于变送器的输出电流。
3. P<Imin(Emin-IminRLmax)
变送器的最小消耗功率P不能超过上式,通常<90mW。
式中:Emin=最低电源电压,对多数仪表而言Emin=24(1-5%)=22.8V,5%为24V电源允许的负向变化量;
Imax="20mA";
Imin="4mA";
RLmax="250"Ω+传输导线电阻。
如果变送器在设计上满足了上述的三个条件,就可实现两线制传输。
所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线,这两根电线既是电源线又是信号线。
两线制变送器由于信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA.DC,不与
机械零点重合,这种“活零点”有利于识别断电和断线等故障。
而且两线制还便于使用安全栅,利于安全防爆。
两线制变送器如图一所示,其供电为24V.DC,输出信号为4-2 0mA.DC,负载电阻为250Ω,24V电源的负线电位最低,它就是信号公共线,对于智能变送器还可在4-20mA.DC信号上加载HART协议的FSK键控信号。
此主题相关图片如下,点击图片看大图:
图一两线制变送器接线示意图
由于4-20mA.DC(1-5V.DC)信号制的普及和应用,在控制系统
应用中为了便于连接,就要求信号制的统一,为此要求一些非电动单元组合的仪表,如在线分析、机械量、电量等仪表,能采用输出为4 -20mA.DC信号制,但是由于其转换电路复杂、功耗大等原因,难于全部满足上述的三个条件,而无法做到两线制,就只能采用外接电源的方法来做输出为4-20mA.DC的四线制变送器了。
四线制变送器如图二所示,其供电大多为220V.AC,也有供电为24V.DC的。
输出信号有4-20mA.DC,负载电阻为250Ω,或者0-1 0mA.DC,负载电阻为0-1.5KΩ;有的还有mA和mV信号,但负载电阻或输入电阻,因输出电路形式不同而数值有所不同。
此主题相关图片如下,点击图片看大图:
图二四线制变送器接线示意图
有的仪表厂为了减小变送器的体积和重量、并提高抗干扰性能、减化接线,而把变送器的供电由220V.AC改为低压直流供电,如电源从24V.DC电源箱取用,由于低压供电就为负线共用创造了条件,这样就有了三线制的变送器产品。
三线制变送器如图三所示,所谓三线制就是电源正端用一根线,信号输出正端用一根线,电源负端和信号负端共用一根线。
其供电大多为24V.DC,输出信号有4-20mA.DC,负载电阻为250Ω或者0-10m A.DC,负载电阻为0-1.5KΩ;有的还有mA和mV信号,但负载电阻或输入电阻,因输出电路形式不同而数值有所不同。
图三三线制变送器接线示意图
以上三个图中,输入接收仪表的是电流信号,如将电阻RL并联接入时,则接收的就是电压信号了。
从上面叙述可看出,由于各种变送器的工作原理和结构不同,从而出现了不同的产品,也就决定了变送器的两线制、三线制、四线制接线形式。
对于用户而言,选型时应根据本单位的实际情况,如信号制的统一、防爆要求、接收设备的要求、投资等问题来综合考虑选择。