线性方程组解的关系
- 格式:docx
- 大小:424.68 KB
- 文档页数:2
1 / 3第四节 线性方程组解的判定从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解.11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。
线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。
因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。
方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即11121121222212n n m m mn m a a a b a a a b A a a a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列的矩阵(或列向量),记作b ,即12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12m b b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦由矩阵运算,方程组(13—2)实际上是如下关系111212122212n n m m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦12n x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=12m b b b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即 AX=b2 /3 如果令112111m a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,122222m a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,…,12n n n mn a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则方程组(13-2)的向量形式为1122n n a x a x a x b +++=定理1 (有解判定定理)方程级(13-2)有解的充分必要条件是:秩(A)=秩(A )推论1 线性方程组(13—2)有惟一的充分必要条件是r (A )=r(A )=n 。
线性方程组解结构的几何意义
线性方程组解可以用几何方法表示,这有助于我们理解它的含义和推断它的结果。
几何意义中所讨论的线性方程组是多变量线性方程组,即不止两个变量。
首先,让我们来了解一下什么是多元线性方程组和什么是解:多变量线性方程组由若干(通常三个或以上)变量组成的一组多项式方程组,它的解是变量的一个有限点的集合,表示为(x,y,z)。
多元线性方程组的解,如下所示:
Ax+By+Cz=D
Ea+Fb+Gc=H
Ix +Jy +Kz=L
以上方程的解是几何意义的另一个概念,它表示一个特定的平面上的一个点集,由多个方程构成,每个方程提供了三个变量(x,y,z)的一个坐标。
这些坐标形成了一个平面上的点集,换句话说,线性方程组解的几何意义,就是一个三维空间中某一特定平面上某个特定点集,这种特定点集表示了线性方程组有多个解的几何意义。
以上给出的线性方程组的解的几何意义可以用图标表示:其中,A,B,C,D,E,F,G,H,I,J,K和L这12个常数分别在三个变量x,y,z上形成了一个解空间,即解的几何意义;而这个解空间中的每一个坐标点(x,y,z)都代表了一个解,也是线性方程组解的几何意义。
综上所述,我们可以发现,线性方程组的解的几何意义是比较清楚的:它是一个三维空间中的特定的平面上的特定的点集,这些点所代表的解就是线性方程组的解。
因此,我们可以用几何的角度更好地理解线性方程组的解的几何意义,从而推断它的结果。
第三章 线性方程组§1 消元法一、线性方程组的初等变换现在讨论一般线性方程组。
所谓一般线性方程组是指形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********,, (1) 的方程组,其中n x x x ,,,21 代表n 个未知量,s 是方程的个数,),,2,1;,,2,1(n j s i a ij ==称为线性方程组的系数,),,2,1(s j b j =称为常数项.方程组中未知量的个数n 与方程的个数s 不一定相等。
系数ij a 的第一个指标i 表示它在第i 个方程,第二个指标j 表示它是j x 的系数。
所谓方程组(1)的一个解就是指由n 个数n k k k ,,,21 组成的有序数组),,,(21n k k k ,当n x x x ,,,21 分别用n k k k ,,,21 代入后,(1)中每个等式都变成恒等式. 方程组(1)的解的全体称为它的解集合.解方程组实际上就是找出它全部的解,或者说,求出它的解集合。
如果两个方程组有相同的解集合,它们就称为同解的.显然,如果知道了一个线性方程组的全部系数和常数项,那么这个线性方程组就基本上确定了。
确切地说,线性方程组(1)可以用下面的矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s sns s n n b a a a b a a a b a a a21222221111211 (2) 来表示。
实际上,有了(2)之后,除去代表未知量的文字外线性方程组(1)就确定了,而采用什么文字来代表未知量当然不是实质性的.在中学所学代数里学过用加减消元法和代入消元法解二元、三元线性方程组.实际上,这个方法比用行列式解线性方程组更有普遍性.下面就来介绍如何用一般消元法解一般线性方程组.例如,解方程组⎪⎩⎪⎨⎧=++=++=+-.522,4524,132321321321x x x x x x x x x 第二个方程组减去第一个方程的2倍,第三个方程减去第一个方程,就变成⎪⎩⎪⎨⎧=-=-=+-.42,24,1323232321x x x x x x x 第二个方程减去第三个方程的2倍,把第二第三两个方程的次序互换,即得⎪⎩⎪⎨⎧-==-=+-.6,42,132332321x x x x x x 这样,就容易求出方程组的解为(9,-1,—6)。
线性代数齐次线性方程组解的结构线性代数中,齐次线性方程组是由一系列未知数的线性方程组成,其中所有方程的右边都为零。
齐次线性方程组的解的结构是线性无关的向量的线性组合,它们构成了解空间。
首先,考虑一个例子:```2x+3y-z=04x-y+2z=03x+2y=0```我们可以将这个齐次线性方程组写成矩阵的形式:```23-14-12320xyz```将这个矩阵进行行变换,得到阶梯形矩阵如下:```0-7400-2xyz```由阶梯形矩阵可知,z是自由变量,而x和y是基础变量。
基础变量是由自由变量表示的。
因此,解的结构可以用自由变量和基础变量的关系表示。
设z=k,则有:```-7y+4z=0-2z=0```由此可得到z=0.5k,y=-0.5k。
最后,带入原方程组得到x=0.25k。
因此,解的结构可以表示为:```x=0.25ky=-0.5k```可以看出,解是一个形如k倍数的向量,其中k为任意实数。
这说明齐次线性方程组的解空间是一个无限维空间,其中解向量是在基础解向量上的线性组合。
总结起来,齐次线性方程组解的结构可以通过以下步骤得到:1.将方程组写成矩阵形式;2.将矩阵进行行变换,得到阶梯形矩阵;3.根据阶梯形矩阵的形式,确定基础变量和自由变量;4.根据自由变量和基础变量的关系,得到解的表达式。
需要注意的是,齐次线性方程组的解空间要么是一个零向量,要么是一个由基础解向量生成的无限维空间。
这就是齐次线性方程组解的结构。
线性⽅程组解的判别与解的结构⼀.线性⽅程组求解定理1.线性⽅程组有解判别定理线性⽅程组a11 x1 + a12 x2 + … + a1n x n = b1 ,a21 x1 + a22 x2 + … + a2n x n = b2 , ......................................................as1 x1 + as2 x2 + … + asn x n = bs有解的充分必要条件是 : 它的系数矩阵与增⼴矩阵有相同的秩 .2. 齐次线性⽅程组a11 x1 + a12 x2 + … + a1n x n = 0,a21 x1 + a22 x2 + … + a2n x n = 0, ......................................................as1 x1 + as2 x2 + … + asn x n = 0有⾮零解的充分必要条件是: 它的系数矩阵的秩r ⼩于未知量个数n .齐次线性⽅程组求解⼀般步骤: 1.把系数矩阵通过初等变换,变换成阶梯形矩阵. 2.判断阶梯形矩阵中⾮零⾏的个数秩(r),以及计算⾃由元个数m=n-r. 3.确定⾃由元位置,然后以次为它们赋值1,0... 4.求解出⽅程组的基础解系. 5.⽤基础解系表⽰出⽅程全解.⾮齐次线性⽅程组求解,与齐次线性⽅程组求解过程基本⼀致,只需要再求出⼀个特解。
⼆.如何⽤C语⾔计算线性⽅程组的解 那么如何⽤算法求出线性⽅程组的解呢? 就是根据上⾯⽅程组求解⼀般步骤来的, 1.矩阵的初等变换(在上次⾏列式计算的基础上,这个很好实现). 2.求出矩阵的秩/⾃由元个数,然后确定⾃由元的位置(我认为这是⼀个难点) 3.初始化⾃由元(1,0,..),计算变量,最终求出基础解系 4.⾮齐次线性⽅程 4.1.先求出齐次线性⽅程组的基础解系 4.2.再利⽤上⾯步骤求⼀个特解即可1.矩阵的初等变换//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){{if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}2.计算矩阵的秩//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}3.确定⾃由元位置 ⾃由元确定需要考虑两种情况: 1).系数梯形矩阵最后⼀⾏只有⼀个⾮零元素. 2) 系数梯形矩阵中某⾏的个数等于⾃由元的个数.//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc) {int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m){o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}求解⽰例图:1> p148-例42> 2.7(1)-13> 2.7(2)-1.14> 2.7(2)-1.25> 2.7(2)-1.36> 2.7(3)-1.17> 2.7(3)-1.28> 2.7(3)-1.39> 2.7(3)-1.410> p155-例6以下是C语⾔求解的全部源代码#include <stdio.h>#include <stdlib.h>double undefined=-999;//标志位void main(){int i,j,s,n;int res;double **array,*temp,**result;//tempdouble t1[6]={1,1,1,1,1,0};double t2[6]={3,2,1,0,-3,0};double t3[6]={0,1,2,3,6,0};double t4[6]={5,4,3,2,6,0};int homogeneous=1;//标识⽅程是否是齐次⽅程void primaryRowChange(int s, int n, double **array);void printfDouble1Dimension(int n, double *array);void printfDouble2Dimension(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result); int nonHomegeneousResolve(int s, int n, double **array, double **result,double *special); //void printfInt2Dimension(int s, int n, int ** array);//int* getPrimary(int n,double *temp);//输⼊说明printf("输⼊说明:⾏数代表S个线性⽅程,N代表未知数及常数项.\n");printf("例如⽅程如下:\n");printf("1x-2y+3z=4\n");printf("-2x-4y+5z=10\n");printf("如下输⼊2⾏,4列:\n");printf("1 -2 3 4\n");printf("-2 -4 5 10\n\n");//开始printf("输⼊⾏数:");scanf("%d",&s);printf("输⼊列数:");scanf("%d",&n);//s=4;//n=6;//动态分配内存空间array =(double**)malloc(s*sizeof(double*));result =(double**)malloc(s*sizeof(double*));special =(double*)malloc(n*sizeof(double));for(i=0;i<s;i++){temp=(double*)malloc(n*sizeof(double));printf("请输⼊第%d⾏数组:",i+1);for(j=0;j<n;j++)scanf("%lf",temp+j);/*switch(i){case 0:temp=t1;//{1,1,1,1,1,0};break;case 1:temp=t2;//{3,2,1,0,-3,0};break;case 2:temp=t3;//{0,1,2,3,6,0};break;case 3:temp=t4;//{5,4,3,2,6,0};break;}*/array[i]=temp;}//打印数组printf("初等⾏列变换之前:\n");printfDouble2Dimension(s,n,array);//判断⽅程是否是齐次⽅程for(i=0;i<s;i++){if(*(*(array+i)+n-1)!=0)//如果最后⼀列,有不为0的说明⽅程为⾮齐次⽅程{homogeneous=0;break;}}primaryRowChange(s,n,array);printf("初等⾏列变换之后:\n");printfDouble2Dimension(s,n,array);if(homogeneous)//齐次{switch (res){case -1:printf("⽅程⽆解.\n");break;case0:printf("⽅程只有零解.\n");break;default:printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);break;}}else//⾮齐次{res=nonHomegeneousResolve(s,n,array,result,special);if(res==-1)printf("⽅程⽆解.\n");else{printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);printf("⽅程的特解如下:\n");printfDouble1Dimension(n-1,special);}}system("pause");}//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){flag=0;for(k=i+1;k<s;k++){if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}//⾮齐次⽅程解的情况int nonHomegeneousResolve(int s, int n, double **array, double **result, double *special) {int i,j,k,l;int r1,r2;//系数矩阵/增⼴矩阵的秩int getRank(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result);r1=getRank(s,n-1,array);r2=getRank(s,n,array);if(r1!=r2)return -1;//⽆解//特解temp =(double**)malloc(r1*sizeof(double*));homogeneousResolve(r1,n,0,array,temp);for(i=0;i<n;i++)*(special+i)=*(*(temp)+i);return homogeneousResolve(r1,n,1,array,result);}//齐次⽅程解的情况int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result){int i,j,k,l,o,p,flag;int r;//秩rankint m;//⾃由元个数int f;//最后⼀个⾮零⾏⾸元的位置double sum1=0,sum2=0;double *temp = (double*)malloc(n*sizeof(double));//临时⾏指针int **matrixPrimary;//存储矩阵⾸元位置及⾮零元个数double **matrixCalc;//计算基础解系int *freeElement;//⾃由元位置double **matrixTemp;//声明函数void printfDouble2Dimension(int s, int n, double **array);void printfInt2Dimension(int s, int n, int **array);int** getPrimary(int s, int n, double **array);int getRank(int s, int n, double **array);double** initMatrixCalc(int s, int n);int* getFreeElement(int r, int n,double **array, int **matrixPrimary, double **matrixCalc);void printfInt1Dimension(int n, int *array);void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result); //秩rankr = getRank(s,n,array);//判断解的情况m=n-1-r;if(m<0)return -1;//⽆解else if(m==0)return0;//只有零解else{//初始化计算矩阵matrixCalc = initMatrixCalc(r,n);//获取矩阵⾸元信息matrixPrimary = getPrimary(r,n,array);/*printf("打印计算矩阵:\n");printfDouble2Dimension(r,n,matrixCalc);printf("打印矩阵⾸元信息:\n");printfInt2Dimension(r,2,matrixPrimary);*/freeElement = getFreeElement(r, n, array, matrixPrimary,matrixCalc);//打印⾃由元位置//printf("打印⾃由元位置:\n");//printfInt1Dimension(m, freeElement);//计算基础解系getPrimarySolution(r, n, homogeneous, array, matrixPrimary, matrixCalc, freeElement ,result);//printfDouble2Dimension(m,n,result);return m;}}//init Matrix calcdouble** initMatrixCalc(int s, int n){int i,j;double **array=(double**)malloc(s*sizeof(double*));for(i=0;i<s;i++){array[i] =(double*)malloc(n*sizeof(double));*(*(array+i)+n-1)=1;{*(*(array+i)+j)=undefined;}}return array;}//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}//查找某⾏⾮零个数及⾸元位置int** getPrimary(int s, int n, double **array){int i,j;int num=0,index=0;int **result=(int**)malloc(s*sizeof(int*));int *temp;for(i=0;i<s;i++){temp =(int*)malloc(2*sizeof(int));num=0;index=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0){if(num==0)index=j;num+=1;}}temp[0]=index;temp[1]=num;result[i]=temp;}return result;}//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc){int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位for(i=r-1;i>=0;i--)//查找⾃由元,及位置为0的{if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m)o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}//计算基础解系void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result) {int i,j,k,l,p;int m=n-1-r;//⾃由元double sum1,sum2;double *temp,**matrixTemp;//计算基础解系for(i=0;i<m;i++){matrixTemp=(double**)malloc(r*sizeof(double*));//复制数组for(j=0;j<r;j++){temp =(double*)malloc(n*sizeof(double));for(k=0;k<n;k++)*(temp+k)=*(*(matrixCalc+j)+k);matrixTemp[j]=temp;}//设置⾃由元为0或1for(j=0;j<r;j++){*(*(matrixTemp+j)+freeElement[i])=1;//⾃由元为1for(k=0;k<m;k++){if(k!=i)*(*(matrixTemp+j)+freeElement[k])=0;//⾃由元为0}}//printfDouble2Dimension(r,n,matrixTemp);//计算for(j=r-1;j>=0;j--){p=*(*(matrixPrimary+j));//当前⾏起始位置for(k=p;k<n;k++){if(*(*(matrixTemp+j)+k)==undefined)//如果等于标志位,它可能是未知变量{sum1=sum2=0;for(l=p;l<n;l++){if(l==n-1){sum1=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}else if(l!=k){sum2+=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}}for(l=0;l<r;l++)*(*(matrixTemp+l)+k)=((homogeneous?0:sum1)-sum2)/ *(*(array+j)+k);//如果齐次sum1=0;//break;}}}result[i]=matrixTemp[0];//printfDouble2Dimension(r,n,matrixTemp);}}void printfDouble2Dimension(int s, int n, double **array) {//printf("%d,%d",s,n);int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%6.2lf",*(*(array+i)+j));}printf("\n");}}void printfDouble1Dimension(int n, double *array){int i;for(i=0;i<n;i++){printf("%6.2lf",*(array+i));}printf("\n");}//打印⼆维数组void printfInt2Dimension(int s, int n, int **array){int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%4d",*(*(array+i)+j));}printf("\n");}}//打印⼀维数组void printfInt1Dimension(int n, int *array){int i;for(i=0;i<n;i++){printf("%4d",*(array+i));}printf("\n");}View Code。