线性方程组解的判定
- 格式:doc
- 大小:84.50 KB
- 文档页数:3
线性方程组的解的判定
线性方程组的解的判定,是指对线性方程组的解进行判定,以确定其是否有解、是唯一解或者无解。
下面就来详细介绍线性方程组解的判定。
首先,我们来看一下线性方程组的定义:线性方程组是由一组线性方程组成的集合,并且每一个方程中变量的指数为1。
例如:2x + 3y = 5, 4x - 6y = 12.
对于线性方程组的解的判定,有三种常用的方法:
1. 通解法:通解法是求解线性方程组的一种常用方法,即令原方程组的所有方程式左端相加,右端相减,得到一个新的等式。
然后再将此等式化为标准形式,即将所有变量的系数变为正数,最后将方程组解为一个共同的标准型,从而得出线性方程组的解。
2. 秩的判定法:秩的判定法是根据矩阵的秩来判断线性方程组的解。
可以将线性方程组转换为矩阵形式,计算出矩阵的秩,然后根据矩阵的秩来判断线性方程组是否有解。
3. 间接判定法:间接判定法是一种在解线性方程组时,对方程组的解进行判定的一种方法。
这种方法既不求解方程组,也不求矩阵的秩,而是计算出方程组的系数矩阵的行列式,根据行列式的值来判定方程组是否有解,这
种方法的优点是求解简单易懂,但是缺点是计算量大,无法直接判断方程组是否有唯一解。
以上就是线性方程组解的判定的详细介绍,它是一种重要的数学解决问题的方法,可以有效地判定线性方程组的解是否有解,是唯一解或者无解,从而给出解决问题的有效方案。
线性方程组解的判定
线性方程组解的判定是一个重要的数学问题,它涉及到对一组未知量的求解。
解的判定问题的主要内容如下:
1. 系数矩阵存在不等式:在求解线性方程组时,首先要判断系数矩阵是否存在不等式,即是否存在元素值为负的情况:若存在,则解不存在;如果全部元素值都不为负,则判定解存在。
2. 是否存在无穷解:通常情况下,一个线性方程组只有唯一解,即只有一组解。
但也有可能存在无穷多解,即系数矩阵存在元素值全为0,此时解可以是任意一组数,因此可以判定存在无穷解。
3. 闭解的确定:当系数矩阵存在不等式或存在元素值全为0时,可以判定存在无穷解;当系数矩阵存在唯一解时,需要通过计算、符号识别和几何意义的结合,来确定具体的闭解。
4. 压缩可行性:压缩可行性判定法是指将求解所求出来的解,压缩在基本解所构成的空间上,以便表达出更复杂的结果。
5. 方程式系数:也可以通过方程式系数的分析,来判定方程组的解的存在与否,这是一种常用的判定方法。
从上述内容可以看到,线性方程组解的判定是一个复杂的数学问题,要想判断线性方程组的解的存在性,需要结合不等式判定、无穷解判定、压缩可行性判定以及方程式系数等步骤,一步步进行判断,才能正确地确定某个线性方程组的解的存在性。
§ 4 线性方程组设是由m 个方程组成的 n 元线性方程组,它的系数矩阵、未知数列向量和常数列向量分别是A = X = β=于是线性方程组( 4-1 )可改为 AX= β。
记:= =称为 (4-1) 的增广矩阵。
如果β=0 ,那么,式 (4-1) 表示一个齐次线性方程组;否则 (4-1) 表示一个非齐次线性方程组。
定理4.1 如果线性方程组 AX= β有两个不同的解,那么它一定有无穷多解。
线性方程组( 4-1 )的解只有三种可能:无解,唯一解,无穷多解。
下面介绍解线性方程组的一个规范方法 --- 高斯消去法,它是加减消元法和代入消元法的推广和规范化。
定义4.1 设是两个由m 个方程组成的 n元线性方程组,如果的解都是的解, 的解都是的解,即线性方程组有相同的解,那么称它们为同解方程组,或称这两个方程组同解。
定理4.2 如果线性方程组的增广矩阵A= 经过有限次行初等变换变成矩阵,作为增广矩阵对应于线性方程组那么,线性方程组是同解方程组。
用高斯消去法解线性方程组 4-1 ,实际上就是对增广矩阵进行矩阵的行初等变换,先把变为阶梯形矩阵,再继续施行行初等变换,使其变为简化阶梯形矩阵。
前者就是消元过程,后者就是回代过程。
定理4.3 设线性方程组 4-1 的增广矩阵 A 经过行初等变换变为阶梯形矩阵 4-4 。
1 当d ≠ 0 时,线性方程组 4-1 无解;2 当d =0 且r =n 时,线性方程组 4-1 只有唯一解;3 当d =0 且r <n 时,线性方程组 4-1 有无穷多解。
(4-4)对于齐次线性方程组(4-5)由于总是它的一个解(通常称为零解),所以齐次线性方程组的解总是存在的。
问题是它会不会有非零解,从而有无穷多解。
推论4.4 如果齐次线性方程组( 4-5 )的系数矩阵 A 的阶梯形中非零行的数目 r 小于未知数的数目 n ,那么它一定有非零解。
推论4.5 如果齐次线性方程组( 4-5 )的方程数目 m 小于未知数的数目n ,那么它一定有非零解。
线性⽅程组解的判别与解的结构⼀.线性⽅程组求解定理1.线性⽅程组有解判别定理线性⽅程组a11 x1 + a12 x2 + … + a1n x n = b1 ,a21 x1 + a22 x2 + … + a2n x n = b2 , ......................................................as1 x1 + as2 x2 + … + asn x n = bs有解的充分必要条件是 : 它的系数矩阵与增⼴矩阵有相同的秩 .2. 齐次线性⽅程组a11 x1 + a12 x2 + … + a1n x n = 0,a21 x1 + a22 x2 + … + a2n x n = 0, ......................................................as1 x1 + as2 x2 + … + asn x n = 0有⾮零解的充分必要条件是: 它的系数矩阵的秩r ⼩于未知量个数n .齐次线性⽅程组求解⼀般步骤: 1.把系数矩阵通过初等变换,变换成阶梯形矩阵. 2.判断阶梯形矩阵中⾮零⾏的个数秩(r),以及计算⾃由元个数m=n-r. 3.确定⾃由元位置,然后以次为它们赋值1,0... 4.求解出⽅程组的基础解系. 5.⽤基础解系表⽰出⽅程全解.⾮齐次线性⽅程组求解,与齐次线性⽅程组求解过程基本⼀致,只需要再求出⼀个特解。
⼆.如何⽤C语⾔计算线性⽅程组的解 那么如何⽤算法求出线性⽅程组的解呢? 就是根据上⾯⽅程组求解⼀般步骤来的, 1.矩阵的初等变换(在上次⾏列式计算的基础上,这个很好实现). 2.求出矩阵的秩/⾃由元个数,然后确定⾃由元的位置(我认为这是⼀个难点) 3.初始化⾃由元(1,0,..),计算变量,最终求出基础解系 4.⾮齐次线性⽅程 4.1.先求出齐次线性⽅程组的基础解系 4.2.再利⽤上⾯步骤求⼀个特解即可1.矩阵的初等变换//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){{if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}2.计算矩阵的秩//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}3.确定⾃由元位置 ⾃由元确定需要考虑两种情况: 1).系数梯形矩阵最后⼀⾏只有⼀个⾮零元素. 2) 系数梯形矩阵中某⾏的个数等于⾃由元的个数.//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc) {int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m){o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}求解⽰例图:1> p148-例42> 2.7(1)-13> 2.7(2)-1.14> 2.7(2)-1.25> 2.7(2)-1.36> 2.7(3)-1.17> 2.7(3)-1.28> 2.7(3)-1.39> 2.7(3)-1.410> p155-例6以下是C语⾔求解的全部源代码#include <stdio.h>#include <stdlib.h>double undefined=-999;//标志位void main(){int i,j,s,n;int res;double **array,*temp,**result;//tempdouble t1[6]={1,1,1,1,1,0};double t2[6]={3,2,1,0,-3,0};double t3[6]={0,1,2,3,6,0};double t4[6]={5,4,3,2,6,0};int homogeneous=1;//标识⽅程是否是齐次⽅程void primaryRowChange(int s, int n, double **array);void printfDouble1Dimension(int n, double *array);void printfDouble2Dimension(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result); int nonHomegeneousResolve(int s, int n, double **array, double **result,double *special); //void printfInt2Dimension(int s, int n, int ** array);//int* getPrimary(int n,double *temp);//输⼊说明printf("输⼊说明:⾏数代表S个线性⽅程,N代表未知数及常数项.\n");printf("例如⽅程如下:\n");printf("1x-2y+3z=4\n");printf("-2x-4y+5z=10\n");printf("如下输⼊2⾏,4列:\n");printf("1 -2 3 4\n");printf("-2 -4 5 10\n\n");//开始printf("输⼊⾏数:");scanf("%d",&s);printf("输⼊列数:");scanf("%d",&n);//s=4;//n=6;//动态分配内存空间array =(double**)malloc(s*sizeof(double*));result =(double**)malloc(s*sizeof(double*));special =(double*)malloc(n*sizeof(double));for(i=0;i<s;i++){temp=(double*)malloc(n*sizeof(double));printf("请输⼊第%d⾏数组:",i+1);for(j=0;j<n;j++)scanf("%lf",temp+j);/*switch(i){case 0:temp=t1;//{1,1,1,1,1,0};break;case 1:temp=t2;//{3,2,1,0,-3,0};break;case 2:temp=t3;//{0,1,2,3,6,0};break;case 3:temp=t4;//{5,4,3,2,6,0};break;}*/array[i]=temp;}//打印数组printf("初等⾏列变换之前:\n");printfDouble2Dimension(s,n,array);//判断⽅程是否是齐次⽅程for(i=0;i<s;i++){if(*(*(array+i)+n-1)!=0)//如果最后⼀列,有不为0的说明⽅程为⾮齐次⽅程{homogeneous=0;break;}}primaryRowChange(s,n,array);printf("初等⾏列变换之后:\n");printfDouble2Dimension(s,n,array);if(homogeneous)//齐次{switch (res){case -1:printf("⽅程⽆解.\n");break;case0:printf("⽅程只有零解.\n");break;default:printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);break;}}else//⾮齐次{res=nonHomegeneousResolve(s,n,array,result,special);if(res==-1)printf("⽅程⽆解.\n");else{printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);printf("⽅程的特解如下:\n");printfDouble1Dimension(n-1,special);}}system("pause");}//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){flag=0;for(k=i+1;k<s;k++){if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}//⾮齐次⽅程解的情况int nonHomegeneousResolve(int s, int n, double **array, double **result, double *special) {int i,j,k,l;int r1,r2;//系数矩阵/增⼴矩阵的秩int getRank(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result);r1=getRank(s,n-1,array);r2=getRank(s,n,array);if(r1!=r2)return -1;//⽆解//特解temp =(double**)malloc(r1*sizeof(double*));homogeneousResolve(r1,n,0,array,temp);for(i=0;i<n;i++)*(special+i)=*(*(temp)+i);return homogeneousResolve(r1,n,1,array,result);}//齐次⽅程解的情况int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result){int i,j,k,l,o,p,flag;int r;//秩rankint m;//⾃由元个数int f;//最后⼀个⾮零⾏⾸元的位置double sum1=0,sum2=0;double *temp = (double*)malloc(n*sizeof(double));//临时⾏指针int **matrixPrimary;//存储矩阵⾸元位置及⾮零元个数double **matrixCalc;//计算基础解系int *freeElement;//⾃由元位置double **matrixTemp;//声明函数void printfDouble2Dimension(int s, int n, double **array);void printfInt2Dimension(int s, int n, int **array);int** getPrimary(int s, int n, double **array);int getRank(int s, int n, double **array);double** initMatrixCalc(int s, int n);int* getFreeElement(int r, int n,double **array, int **matrixPrimary, double **matrixCalc);void printfInt1Dimension(int n, int *array);void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result); //秩rankr = getRank(s,n,array);//判断解的情况m=n-1-r;if(m<0)return -1;//⽆解else if(m==0)return0;//只有零解else{//初始化计算矩阵matrixCalc = initMatrixCalc(r,n);//获取矩阵⾸元信息matrixPrimary = getPrimary(r,n,array);/*printf("打印计算矩阵:\n");printfDouble2Dimension(r,n,matrixCalc);printf("打印矩阵⾸元信息:\n");printfInt2Dimension(r,2,matrixPrimary);*/freeElement = getFreeElement(r, n, array, matrixPrimary,matrixCalc);//打印⾃由元位置//printf("打印⾃由元位置:\n");//printfInt1Dimension(m, freeElement);//计算基础解系getPrimarySolution(r, n, homogeneous, array, matrixPrimary, matrixCalc, freeElement ,result);//printfDouble2Dimension(m,n,result);return m;}}//init Matrix calcdouble** initMatrixCalc(int s, int n){int i,j;double **array=(double**)malloc(s*sizeof(double*));for(i=0;i<s;i++){array[i] =(double*)malloc(n*sizeof(double));*(*(array+i)+n-1)=1;{*(*(array+i)+j)=undefined;}}return array;}//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}//查找某⾏⾮零个数及⾸元位置int** getPrimary(int s, int n, double **array){int i,j;int num=0,index=0;int **result=(int**)malloc(s*sizeof(int*));int *temp;for(i=0;i<s;i++){temp =(int*)malloc(2*sizeof(int));num=0;index=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0){if(num==0)index=j;num+=1;}}temp[0]=index;temp[1]=num;result[i]=temp;}return result;}//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc){int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位for(i=r-1;i>=0;i--)//查找⾃由元,及位置为0的{if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m)o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}//计算基础解系void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result) {int i,j,k,l,p;int m=n-1-r;//⾃由元double sum1,sum2;double *temp,**matrixTemp;//计算基础解系for(i=0;i<m;i++){matrixTemp=(double**)malloc(r*sizeof(double*));//复制数组for(j=0;j<r;j++){temp =(double*)malloc(n*sizeof(double));for(k=0;k<n;k++)*(temp+k)=*(*(matrixCalc+j)+k);matrixTemp[j]=temp;}//设置⾃由元为0或1for(j=0;j<r;j++){*(*(matrixTemp+j)+freeElement[i])=1;//⾃由元为1for(k=0;k<m;k++){if(k!=i)*(*(matrixTemp+j)+freeElement[k])=0;//⾃由元为0}}//printfDouble2Dimension(r,n,matrixTemp);//计算for(j=r-1;j>=0;j--){p=*(*(matrixPrimary+j));//当前⾏起始位置for(k=p;k<n;k++){if(*(*(matrixTemp+j)+k)==undefined)//如果等于标志位,它可能是未知变量{sum1=sum2=0;for(l=p;l<n;l++){if(l==n-1){sum1=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}else if(l!=k){sum2+=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}}for(l=0;l<r;l++)*(*(matrixTemp+l)+k)=((homogeneous?0:sum1)-sum2)/ *(*(array+j)+k);//如果齐次sum1=0;//break;}}}result[i]=matrixTemp[0];//printfDouble2Dimension(r,n,matrixTemp);}}void printfDouble2Dimension(int s, int n, double **array) {//printf("%d,%d",s,n);int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%6.2lf",*(*(array+i)+j));}printf("\n");}}void printfDouble1Dimension(int n, double *array){int i;for(i=0;i<n;i++){printf("%6.2lf",*(array+i));}printf("\n");}//打印⼆维数组void printfInt2Dimension(int s, int n, int **array){int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%4d",*(*(array+i)+j));}printf("\n");}}//打印⼀维数组void printfInt1Dimension(int n, int *array){int i;for(i=0;i<n;i++){printf("%4d",*(array+i));}printf("\n");}View Code。
第四节 线性方程组解的判定
从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。
11112211211222
22
11
22n n n n
m m mn n m
a x a x a x
b a x a x a x b a x a x a x b +++=⎧⎪+
++=
⎪⎨⎪⎪+++=⎩
(13—2)
主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。
线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。
因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。
方程组(13-2)中各未知量的系数组成的矩阵11121212221
2
n n m m mn a a a a a a A a a a ⎡
⎤⎢
⎥
⎢
⎥=⎢⎥
⎢⎥
⎣
⎦
称为方程组(13-2)的系数矩阵。
由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即
11121121
222212
n n
m m mn
m a a a b a a a b A a a a b ⎡⎤
⎢⎥⎢⎥=⎢⎥⎢
⎥⎣⎦
方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1
列的矩阵(或列向量),记作b ,即12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,12
m b b b b ⎡⎤
⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦
由矩阵运算,方程组(13-2)实际上是如下关系111212122212
n n m m mn a a a a a a a a a ⎡
⎤⎢
⎥
⎢
⎥
⎢⎥
⎢⎥
⎣
⎦
12n x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ =12m b b b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
即 AX=b
如果令112111m a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,122222m a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,…,12n n n mn a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦
则方程组(13-2)的向量形式为11
22n n
a x a x a x
b +++=
定理1 (有解判定定理)方程级(13-2)有解的充分必要条件是:秩(A )=秩(A ) 推论1 线性方程组(13-2)有惟一的充分必要条件是r(A)=r(A )=n. 推论2 线性方程组(13-2)有无穷多解的充分必要条件是r(A)=r(A )<n. 例1 判断下列方程组是否有解?若有解,是有惟一解还是有无穷多解?
(1) 1
231
2312331334591x x x x x x x x x +
-=⎧⎪--=⎨⎪+-=⎩ (2)12
31
2312331334590x x x x x x x x x +
-=⎧⎪--=⎨⎪+-=⎩ (3)12
31
231
2
3
31334580
x x x x x x x x x +
-=⎧⎪--=⎨⎪+-=⎩ 解 (1)113111311131313404610461159104600001A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--→-→-⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
所以秩(A )=3,秩(A)=2;秩(A)≠秩(A ),故方程组无解。
(2)113111313134046115900000A --⎡⎤⎡⎤
⎢⎥⎢⎥=--→→-⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦ 秩(A )=秩(A )=2<n(=3),故方程组有无穷多解。
(3)113111313134046115800010A --⎡⎤⎡⎤⎢⎥⎢⎥=--→→-⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦
秩(A )=秩(A)=3=n ,故方程组有惟一解。
方程组(13-2)12,,,m b b b 全为零时,称为齐次线性方程组。
即
1111221211222
211
22000
n n n n
m m mn n
a x a x a x a x a x a x a x a x a x +++=⎧⎪+
++
=⎪⎨⎪⎪+++=⎩
(13-3) 其矩阵形式为AX=0
对齐次线性方程组(13-3)而言,显然,其增广矩阵A 的秩与系数矩阵A 的秩相等,即秩(A )=秩(A ),由定理1可知它总是有解的。
比如120n x x x ==== 就是方程组(13-3)的一个解,常称之为零解。
但所关心的是方程组(13-3)在何条件下有非零解。
将推论1及推论2应用到齐次线性方程组(13-3)上,得到以下结论。
推论3 齐次线性方程组(13-3)只有零解的充分必要条件是r(A)=n. 推论4 齐次线性方程组(13-3)有非零解的充分必要条件是r(A)<n.
例2 试问线性方程组123123123
200x x x x x x x x x λ++=⎧⎪
++=⎨⎪++=⎩ 当λ取何值时有非零解。
解 方程组为齐次线性方程组,对其系数矩阵进行初等变换,化成阶梯形矩阵
12111
112101011001A λλ⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦
当λ-1=0,即λ=1时, r(A)=2<n(=3),由推论4,该方程组有非零解.
学生板演巩固练习:1.2.3.4.
总结归纳:通过本节的学习,能对线性方程组解的的情况作出准确判定。
课外作业:习题1.2.3。