线性方程组的公式解
- 格式:pdf
- 大小:205.96 KB
- 文档页数:6
甘肃政法学院本科学年论文(设计)题目浅议线性方程组的几种求解方法学号:姓名:指导教师:成绩:__________________完成时间: 2012 年 11 月目录第一章引言 (1)第二章线性方程组的几种解法 (1)2.1 斯消元法 (1)2.1.1 消元过程 (1)2.1.2 回代过程 (2)2.1.3 解的判断 (2)2.2 克莱姆法则 (3)2.3 LU分解法 (4)2.4 追赶法 (6)第三章结束语 (8)致谢 (8)参考文献 (9)摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.下面将综述几种不同类型的线性方程组的解法,如消元法、克莱姆法则、直接三角形法、、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,高斯消元法方法,具有表达式清晰,使用范围广的特点.另外,这些方法有利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合。
关键词:线性方程组;解法;应用Several methods of solving linear equation groupAbstract: The system of linear equations is one of linear algebra core contents, its solution research is in the algebra the classics also the important research topic. This article summarized several kind of different type system of linear equations solution, like the elimination, the Cramer principle, the generalized inverse matrix law, the direct triangle law, the square root method, pursue the law, and by concrete example introduction different solution application skill. In these solutions, the generalized inverse matrix method, has the expression to be clear, use scope broad characteristic. Moreover, these methods favor effectively solve the system of linear equations solution problem fast, provides a simple platform for the solution system of linear equations, promoted the theory and the actual union.Key word: Linear equations; Solution ; Example第一章 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.下面将介绍线性方程组的消元法、追赶法、直接三角形法等求解方法,为求解线性方程组提供一个平台。
线性方程组的解法例题线性方程组的解法第二章线性方程组的解法n阶线性方程组的一般形式为:a11x1,a12x2, ,a1nxn b1 ax,ax, ,ax b 2112222nn2(2.0.1)an1x1,an2x2, ,annxn bnAx b用矩阵表示为: 其中A称为系数矩阵,x称为解向量,b称为常数向量(简称方程组自由项),它们分别为:x1 b1 a11a12a1nx b aa2122a2n x 2 b 21,, Axn bn an1an2ann如果矩阵A非奇异,即A的行列式值det(A) 0,则根据克莱姆(Cramer)规则,方程组有唯一解:Di,i 1,2, ,n xi D其中D det(A),Di表示D中等i列换b后所得的行列式值。
但克莱姆规则不适用于求解线性代数方程组,因为计算工作量大得难以容忍。
实际用于求解线性代数方程组的计算方法主要有两种:一是消去法,它属于直接解法;二是迭代解法。
消去法的优点是可以预先估计计算工作量,并且根据消去法的基本原理,可以得到矩阵运算(如矩阵求逆等)的求解方法。
但是,由于实际计算过程总存在有误差,由消去法得到的结果并不是绝对精确的,存在数值计算的稳定性问题。
迭代解法的优点是简单,便于编制计算机程序。
在迭代解法中,必须考虑迭收敛速度快慢的问题。
?2.1 线性方程组的直接计算求解线性代数方程组的直接解法主要是消去法(或称消元2法)。
消去法的基本思想是通过初等行变换:将一个方程乘以某个常数,以及将两个方程相加或相减,减少方程中的未知数数目,最终使每个方程中含一个未知数,从而得到所需要的解。
2.1.1 三角形方程组的计算对下三角形方程组:a11x1 b1ax,ax b 2112222(2.1.1)an1x1,an2x2, ,annxn bn可以通过前代的方法求解:先从第1个方程求出x1,代入第2个方程求出x2,依次类推,可以逐次前代求出所有xi(i 1,2, ,n),计算公式如下:b1x1 a11i~1bi~ aij xj(2.1.2)j 13xi , i 2, 3, , n aii对上三角形方程组:a11x1,a12x2, ,a1nxn b1ax, ,ax b 2222nn2annxn bn(2.1.3)可以通过回代的方法求解:先从第n个方程求出xn,代入第n~1个方程求出xn~1,依次类推,可以逐次回代求出所有xi(i n,n~1, ,1),计算公式如下:bnxn annnbi~ aij xj(2.1.4)j i,1xi , i n~1, n~2, , 1 aii2n 前代法和回代法的计算量都是次四则运算。
线性方程组的几种解法线性方程组形式如下:常记为矩阵形式其中一、高斯消元法高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x向量。
现举例说明如下:(一)消元过程第一步:将(1)/3使x1的系数化为1 得再将(2)、(3)式中x1的系数都化为零,即由(2)-2×(1)(1)得由(3)-4×(1)(1)得)1(32)2(......3432=+xx)1(321)1(......23132=++xxx第二步:将(2)(1)除以2/3,使x 2系数化为1,得再将(3)(1)式中x 2系数化为零,即 由(3)(1)-(-14/3)*(2)(2),得第三步:将(3)(2)除以18/3,使x 3系数化为1,得经消元后,得到如下三角代数方程组:(二)回代过程由(3)(3)得 x 3=1, 将x 3代入(2)(2)得x 2=-2, 将x 2 、x 3代入(1)(1)得x 2=1 所以,本题解为[x]=[1,2,-1]T(三)、用矩阵演示进行消元过程第一步: 先将方程写成增广矩阵的形式第二步:然后对矩阵进行初等行变换初等行变换包含如下操作(1) 将某行同乘或同除一个非零实数(2) 将某行加入到另一行 (3) 将任意两行互换第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形)3(3)3(......1-=x )2(3)3( (63)18-=x )2(32)2(......02=+x x )1(32)3( (63)10314-=--x x示例:(四)高斯消元的公式综合以上讨论,不难看出,高斯消元法解方程组的公式为1.消元(1)令a ij(1) = a ij , (i,j=1,2,3,…,n)b i(1) =b i , (i=1,2,3,…,n)(2)对k=1到n-1,若a kk(k)≠0,进行l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n)a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n)b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n)2.回代若a nn(n) ≠0x n = b n(n) / a nn(n)x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n )(五)高斯消元法的条件消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。
线性⽅程组解的判别与解的结构⼀.线性⽅程组求解定理1.线性⽅程组有解判别定理线性⽅程组a11 x1 + a12 x2 + … + a1n x n = b1 ,a21 x1 + a22 x2 + … + a2n x n = b2 , ......................................................as1 x1 + as2 x2 + … + asn x n = bs有解的充分必要条件是 : 它的系数矩阵与增⼴矩阵有相同的秩 .2. 齐次线性⽅程组a11 x1 + a12 x2 + … + a1n x n = 0,a21 x1 + a22 x2 + … + a2n x n = 0, ......................................................as1 x1 + as2 x2 + … + asn x n = 0有⾮零解的充分必要条件是: 它的系数矩阵的秩r ⼩于未知量个数n .齐次线性⽅程组求解⼀般步骤: 1.把系数矩阵通过初等变换,变换成阶梯形矩阵. 2.判断阶梯形矩阵中⾮零⾏的个数秩(r),以及计算⾃由元个数m=n-r. 3.确定⾃由元位置,然后以次为它们赋值1,0... 4.求解出⽅程组的基础解系. 5.⽤基础解系表⽰出⽅程全解.⾮齐次线性⽅程组求解,与齐次线性⽅程组求解过程基本⼀致,只需要再求出⼀个特解。
⼆.如何⽤C语⾔计算线性⽅程组的解 那么如何⽤算法求出线性⽅程组的解呢? 就是根据上⾯⽅程组求解⼀般步骤来的, 1.矩阵的初等变换(在上次⾏列式计算的基础上,这个很好实现). 2.求出矩阵的秩/⾃由元个数,然后确定⾃由元的位置(我认为这是⼀个难点) 3.初始化⾃由元(1,0,..),计算变量,最终求出基础解系 4.⾮齐次线性⽅程 4.1.先求出齐次线性⽅程组的基础解系 4.2.再利⽤上⾯步骤求⼀个特解即可1.矩阵的初等变换//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){{if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}2.计算矩阵的秩//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}3.确定⾃由元位置 ⾃由元确定需要考虑两种情况: 1).系数梯形矩阵最后⼀⾏只有⼀个⾮零元素. 2) 系数梯形矩阵中某⾏的个数等于⾃由元的个数.//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc) {int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m){o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}求解⽰例图:1> p148-例42> 2.7(1)-13> 2.7(2)-1.14> 2.7(2)-1.25> 2.7(2)-1.36> 2.7(3)-1.17> 2.7(3)-1.28> 2.7(3)-1.39> 2.7(3)-1.410> p155-例6以下是C语⾔求解的全部源代码#include <stdio.h>#include <stdlib.h>double undefined=-999;//标志位void main(){int i,j,s,n;int res;double **array,*temp,**result;//tempdouble t1[6]={1,1,1,1,1,0};double t2[6]={3,2,1,0,-3,0};double t3[6]={0,1,2,3,6,0};double t4[6]={5,4,3,2,6,0};int homogeneous=1;//标识⽅程是否是齐次⽅程void primaryRowChange(int s, int n, double **array);void printfDouble1Dimension(int n, double *array);void printfDouble2Dimension(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result); int nonHomegeneousResolve(int s, int n, double **array, double **result,double *special); //void printfInt2Dimension(int s, int n, int ** array);//int* getPrimary(int n,double *temp);//输⼊说明printf("输⼊说明:⾏数代表S个线性⽅程,N代表未知数及常数项.\n");printf("例如⽅程如下:\n");printf("1x-2y+3z=4\n");printf("-2x-4y+5z=10\n");printf("如下输⼊2⾏,4列:\n");printf("1 -2 3 4\n");printf("-2 -4 5 10\n\n");//开始printf("输⼊⾏数:");scanf("%d",&s);printf("输⼊列数:");scanf("%d",&n);//s=4;//n=6;//动态分配内存空间array =(double**)malloc(s*sizeof(double*));result =(double**)malloc(s*sizeof(double*));special =(double*)malloc(n*sizeof(double));for(i=0;i<s;i++){temp=(double*)malloc(n*sizeof(double));printf("请输⼊第%d⾏数组:",i+1);for(j=0;j<n;j++)scanf("%lf",temp+j);/*switch(i){case 0:temp=t1;//{1,1,1,1,1,0};break;case 1:temp=t2;//{3,2,1,0,-3,0};break;case 2:temp=t3;//{0,1,2,3,6,0};break;case 3:temp=t4;//{5,4,3,2,6,0};break;}*/array[i]=temp;}//打印数组printf("初等⾏列变换之前:\n");printfDouble2Dimension(s,n,array);//判断⽅程是否是齐次⽅程for(i=0;i<s;i++){if(*(*(array+i)+n-1)!=0)//如果最后⼀列,有不为0的说明⽅程为⾮齐次⽅程{homogeneous=0;break;}}primaryRowChange(s,n,array);printf("初等⾏列变换之后:\n");printfDouble2Dimension(s,n,array);if(homogeneous)//齐次{switch (res){case -1:printf("⽅程⽆解.\n");break;case0:printf("⽅程只有零解.\n");break;default:printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);break;}}else//⾮齐次{res=nonHomegeneousResolve(s,n,array,result,special);if(res==-1)printf("⽅程⽆解.\n");else{printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);printf("⽅程的特解如下:\n");printfDouble1Dimension(n-1,special);}}system("pause");}//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){flag=0;for(k=i+1;k<s;k++){if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}//⾮齐次⽅程解的情况int nonHomegeneousResolve(int s, int n, double **array, double **result, double *special) {int i,j,k,l;int r1,r2;//系数矩阵/增⼴矩阵的秩int getRank(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result);r1=getRank(s,n-1,array);r2=getRank(s,n,array);if(r1!=r2)return -1;//⽆解//特解temp =(double**)malloc(r1*sizeof(double*));homogeneousResolve(r1,n,0,array,temp);for(i=0;i<n;i++)*(special+i)=*(*(temp)+i);return homogeneousResolve(r1,n,1,array,result);}//齐次⽅程解的情况int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result){int i,j,k,l,o,p,flag;int r;//秩rankint m;//⾃由元个数int f;//最后⼀个⾮零⾏⾸元的位置double sum1=0,sum2=0;double *temp = (double*)malloc(n*sizeof(double));//临时⾏指针int **matrixPrimary;//存储矩阵⾸元位置及⾮零元个数double **matrixCalc;//计算基础解系int *freeElement;//⾃由元位置double **matrixTemp;//声明函数void printfDouble2Dimension(int s, int n, double **array);void printfInt2Dimension(int s, int n, int **array);int** getPrimary(int s, int n, double **array);int getRank(int s, int n, double **array);double** initMatrixCalc(int s, int n);int* getFreeElement(int r, int n,double **array, int **matrixPrimary, double **matrixCalc);void printfInt1Dimension(int n, int *array);void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result); //秩rankr = getRank(s,n,array);//判断解的情况m=n-1-r;if(m<0)return -1;//⽆解else if(m==0)return0;//只有零解else{//初始化计算矩阵matrixCalc = initMatrixCalc(r,n);//获取矩阵⾸元信息matrixPrimary = getPrimary(r,n,array);/*printf("打印计算矩阵:\n");printfDouble2Dimension(r,n,matrixCalc);printf("打印矩阵⾸元信息:\n");printfInt2Dimension(r,2,matrixPrimary);*/freeElement = getFreeElement(r, n, array, matrixPrimary,matrixCalc);//打印⾃由元位置//printf("打印⾃由元位置:\n");//printfInt1Dimension(m, freeElement);//计算基础解系getPrimarySolution(r, n, homogeneous, array, matrixPrimary, matrixCalc, freeElement ,result);//printfDouble2Dimension(m,n,result);return m;}}//init Matrix calcdouble** initMatrixCalc(int s, int n){int i,j;double **array=(double**)malloc(s*sizeof(double*));for(i=0;i<s;i++){array[i] =(double*)malloc(n*sizeof(double));*(*(array+i)+n-1)=1;{*(*(array+i)+j)=undefined;}}return array;}//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}//查找某⾏⾮零个数及⾸元位置int** getPrimary(int s, int n, double **array){int i,j;int num=0,index=0;int **result=(int**)malloc(s*sizeof(int*));int *temp;for(i=0;i<s;i++){temp =(int*)malloc(2*sizeof(int));num=0;index=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0){if(num==0)index=j;num+=1;}}temp[0]=index;temp[1]=num;result[i]=temp;}return result;}//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc){int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位for(i=r-1;i>=0;i--)//查找⾃由元,及位置为0的{if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m)o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}//计算基础解系void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result) {int i,j,k,l,p;int m=n-1-r;//⾃由元double sum1,sum2;double *temp,**matrixTemp;//计算基础解系for(i=0;i<m;i++){matrixTemp=(double**)malloc(r*sizeof(double*));//复制数组for(j=0;j<r;j++){temp =(double*)malloc(n*sizeof(double));for(k=0;k<n;k++)*(temp+k)=*(*(matrixCalc+j)+k);matrixTemp[j]=temp;}//设置⾃由元为0或1for(j=0;j<r;j++){*(*(matrixTemp+j)+freeElement[i])=1;//⾃由元为1for(k=0;k<m;k++){if(k!=i)*(*(matrixTemp+j)+freeElement[k])=0;//⾃由元为0}}//printfDouble2Dimension(r,n,matrixTemp);//计算for(j=r-1;j>=0;j--){p=*(*(matrixPrimary+j));//当前⾏起始位置for(k=p;k<n;k++){if(*(*(matrixTemp+j)+k)==undefined)//如果等于标志位,它可能是未知变量{sum1=sum2=0;for(l=p;l<n;l++){if(l==n-1){sum1=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}else if(l!=k){sum2+=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}}for(l=0;l<r;l++)*(*(matrixTemp+l)+k)=((homogeneous?0:sum1)-sum2)/ *(*(array+j)+k);//如果齐次sum1=0;//break;}}}result[i]=matrixTemp[0];//printfDouble2Dimension(r,n,matrixTemp);}}void printfDouble2Dimension(int s, int n, double **array) {//printf("%d,%d",s,n);int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%6.2lf",*(*(array+i)+j));}printf("\n");}}void printfDouble1Dimension(int n, double *array){int i;for(i=0;i<n;i++){printf("%6.2lf",*(array+i));}printf("\n");}//打印⼆维数组void printfInt2Dimension(int s, int n, int **array){int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%4d",*(*(array+i)+j));}printf("\n");}}//打印⼀维数组void printfInt1Dimension(int n, int *array){int i;for(i=0;i<n;i++){printf("%4d",*(array+i));}printf("\n");}View Code。