2
3
图1-1 1
正方形1,2,3的面积之间 有什么关系吗?
2
图1-2
S1+S2=S3
(图中每个小方格代表一个单位面积)
2021/1/6
7
1.阅读课本 回答问题
3 2
S1= 9 = 32 S2 16 源自 42 = 25 = 52 S3S=1+S2=S3
32+42= 52
1
图2-3
(图2021/中1/6 每个小方格代表一个单位面积)
2.△ABC的a=6,b=8,则c=10 (
)
二、填空题
3.在△ABC中, ∠C=90°,AC=6,CB=8,则
△ABC面积为__2_4__,斜边为上的高为__4_.8___.
A D
2021/1/6
C
B
18
4.观察下列表格:
列举 3,4,5
5,12,13 7,24,25
…… 13,b,c
猜想 32=4+5
4
学习目标
1.知识目标 (1)掌握勾股定理,了解利用拼图验证勾股定理的方法. (2)已知直角三角形两边的长,会利用勾股定理求
第三边. 2.教学重点
勾股定理的探索与应用. 3.教学难点
勾股定理实际生活中的应用.
2021/1/6
5
析
(1)观察图1-1
1.阅读课本 回答问题
正方形1中含有 9 个
小方格,即它的面积是
勾
弦
在西方又称毕达
哥拉斯定理
股
2021/1/6
10
例透析
例 如果直角三角形两直角边长分别为 BC=5厘米 , AC=12厘米,求斜边AB的长度.
解:在Rt△ABC中根据勾股定理,