新北师大版数学八上第二章教案
- 格式:doc
- 大小:758.50 KB
- 文档页数:42
北师大版数学八年级上册《认识无理数(2)》教案一、学生起点分析学生在小学阶段已经学习了非负数,七年级又学习了有理数.本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,借助计算器,感受无理数是无限不循环小数,会判断一个数是无理数,并能结合实际判别有理数和无理数.在活动中进一步发展学生独立思考的意识和合作交流的能力,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,而且对今后学习数学也有着重要意义.为此,本节课的教学目标是: 1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.三、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数(如1-,0,2,3,…) 有理数 分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a 面积s 1<a <21<s<4 1.4<a <1.5[来源:学+科+1.96<s<2.25 1.41<a <1.42 1.9881<s<2.0164 1.414<a <1.415 1.999396<s<2.002225 1.4142<a <1.41431.99996164<s<2.00024449归纳总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b 的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础. 2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况? 探究结论:分数只能化成有限小数或无限循环小数. 即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).[来源:学.科.网Z.X.X.K]目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念. 第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力. 第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数.有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数例1填空: 0.351, 4.96••-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形; (D ) 面积为1.44的正方形. [来源:Z 。
北师大版数学八年级上册第二章《二次根式》教案教学目标:1.式子b a b a ⋅=⋅ (a ≥0,b ≥0),b a ba = (a ≥0,b >0)的运用;能利用化简对实数进行简单的四则运算.(重点) 2.让学生能根据实际情况灵活地运用两个法则进行有关实数的四则运算.(难点)3.通过对法则的逆运用,让学生体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.教法及学法指导:本节采用“导学-探究—反馈”教学模式,引导学生对设计的问题进行主动思考、小组讨论、主动探究,最后自己得到二次根式化简的方法,并能进行简单的四则混合运算. “两个公式的逆运用”是本节课的重点知识,“灵活地运用公式进行实数运算”是本节课的难点知识.对以上两个知识,要通过大量练习,才能让学生熟练掌握. 课前准备:制作课件,学生课前进行预习工作.教学过程:一、 导学1.让学生回顾算术平方根的概念,并提出问题:下面正方形的边长分别是多少?(利用课间展示图片)学生思考后踊跃回答,上述两个问题学生很容易完成.在这个环节为了方便表示,设大正方形的边长为a ,小正方形的边长为b .因此,学生得到:.2,822==b a 由算数平方根的定义很容易得到:.2,8==b a2.老师继续提出问题:这两个正方形的边长之间有什么关系?(停留片刻,展示分割大正方形的图片)借助图片,学生得出:,2b a =即:.228=3.你能借助什么运算法则解释它吗?点明本节课研究任务——化简,导入新课.二、 探究1.利用课件出示上节课研究的两个运算法则:b a b a ⋅=⋅(a ≥0,b ≥0), ba b a=(a ≥0,b >0).并明确指出逆用仍然是成立的,面积8 面积2即:b a b a ⋅=⋅,b a b a = (a ≥0,b >0).2.老师提出问题:能否根据该公式将8化成22呢?在这个环节,由于学生课前已经自学完课本,有部分学生能够解决这个问题.学生回答:2242428=⨯=⨯=.(强调:含有根号的数与一个不含根号的数相乘,一般把不含根号的数写在前面,并省略去乘号)3.探究方法老师提出问题:以上化简过程有何规律呢?学生得出:被开方数被拆成两个因数乘积的形式,并且其中一个因数能够直接开平方,而且在这个变化过程当中逆用了我们上节课研究的乘法运算公式.老师明确:像这种运算我们称为化简,像8被开方数含有开得尽的因数,一般需要进行化简.4.典例解析:32如何化简?学生在这个环节进行小组探究,学生得出(1):82848432=⨯=⨯=(学生比较热于利用乘法口诀); 学生得出(2):2416216232=⨯=⨯=老师引导学生:两名同学化简的结果有什么区别?学生:82可以继续化简,即2442242282=⨯=⨯=.老师继续提出:哪种方法更好呢?我们以后应该采用哪种方法?学生一定选择第二种方法,第二种方法的优点是只需一次化简,而第一种方法需要两次化简.总结方法:对于32这种式子的化简,被开方数拆成两个因数乘积的形式,其中一个因数能够直接开方,而另一个不再含有开方开得尽的因数.5.反馈练习:化简:(1)45;(2)27;(3)54;(4)98;(5)16125. 五名同学在黑板板书,其余同学独立完成.完成后同位交换批改,并订正答案.黑板上的让同学点评.6.拓展:事实上,对带有根号的数的化简,不仅仅限于以上提出的要求,它还有其他要求.类比(4)98 (5)16125的化简,让学生化简21.(小组合作探究) 学生会有两种做法: 方法一: 212121==.在此指出这种结果并非最简,还需进行分母有理化,但分母有理化不是我们现在的教学要求,以后我们习题课的时候有可能会涉及到.方法二: 22424221===.自学效果好的同学得到这种方法,这种方法是我们这节课要掌握的方法.那么这种方法的特点是什么呢?学生回答:被开方数的分母利用分数的基本性质扩大一定的正整数倍,配成能够直接开方的数.有些学生有这种想法: 2242216816821====.这种情况里面8还需要化简.因此分母扩大一定的正整数倍后,应该配成最小的能够直接开平方的数.老师总结:原来被开方数含有分母,化简后,被开方数不含分母了.7.反馈练习:化简:(1)31 (2) 121 (两名同学黑板板书,其余同学独立完成,并同位间批改订正)8.小结归纳:带根号的数的化简要求:(1)使被开方数不含开得尽的数;(2)使被开方数不含分母.9.知识运用例1 化简:(1)50;(2)348-;(3)515-. 对于例题的处理:先让学生自学例题,注意解题格式和步骤,然后合上课本把例题再做一遍,并且找四名同学到黑板上板书,最后让学生点评例题.三、反馈1.课本60页随堂练习1:(三名同学到黑板板书,然后其余同学独立完成,同位间批改订正,黑板上同学的完成情况,让学生点评)化简:(1)18;(2)7533-;(3)72.2.补充习题, 化简:(1)81;(2)278;(3)2.1;(4)1615 (找同学板书) 说明:(3)(4)大部分同学无从下手,老师给予适当点拨.(3)要先把小数化成分数,再考虑下一步的化简.(4)要把带分数化成假分数,再考虑下一步的化简.3.补充习题,化简:(1)128; (2)900; (3)48122+;(4)325092-+; (5)5145203--; (找同学板书) 课堂小结小组内交流讨论,总结本节课的收获.以小组为单位做出总结:(1)被开方数中含有分母或者含有能开得尽的因数的式子需要化简;(2)公式b a b a ⋅=⋅(a ≥0,b ≥0),ba b a=(a ≥0,b >0)从左往右或从右往左在化简中会灵活运用.(3)能够进行含有根式的式子的四则混合运算.限时作业课本62页 习题 2.10 知识技能 1.课本64页 复习题 8.化简 (4)(5)(6)板书设计:教学反思:1.这是一节实数的运算、化简课,只有在熟练掌握两个公式(和这两个公式的逆运用)的基础上,反复利用练习来巩固学生对知识理解和融汇.2.本节课通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并体验实数的运算、化简;让学生根据实例进行探索,通过同学们互相交流合作,得出两个化简的公式(实际上是两个运算公式的逆运用),培养他们的合作精神和探索能力.3.由于课本的知识量比较少,我在新课引入和反馈训练方面所花的时间相对多一些,这§2.6.3 实数(三)1.法则 2.例题讲解b a b a ⋅=⋅ (a ≥0,b ≥0);b a ba =(a ≥0,b >0) 练 习 区也是数(或式)的运算的通用的做法,旨在通过练习、例题来巩固学生对所学知识的理解和掌握.。
八年级数学上册教案新版北师大版:2.4估算教学目标1.能估算一个无理数的大致取值范围;(重点)2.能通过估算比较两个数的大小;(难点)3.掌握估算的方法,形成估算的意识.教学过程第一环节:情境引入内容:由修建环保公园的实际问题情境引出本节课的学习内容――公园有多宽.某市开辟了一块长方形的荒地用来建一个以环保为主题的公园.已知这块地的长是宽的两倍,它的面积为400000平方米.此时公园的宽是多少?长是多少?给出这个问题情境,先让学生凭感觉说出公园的长和宽分别是多少.给出引导问题:公园的宽有1000米吗?(没有)那么怎么计算出公园的长和宽.解:设公园的宽为x米,则它的长为2x米,由题意得:x·2x =400000,2x2=400000,x.目的:从现实情境引入,一方面让学生初步建立数感,另一方面让学生体会生活中的数学从而激发学习的积极性.效果:学生通过与生活紧密联系的问题情境初步感受到估算的实用价值.第二环节:活动探究内容:1.探究一个无理数估算结果的合理性.2.学会估算一个无理数的大致范围.例1 下列结果正确吗?你是怎样判断的?与同伴交流.解答:这些结果都不正确.怎样估算一个无理数的范围?例2 你能估算它们的大小吗?说出你的方法.(①②误差小于0.1;③误差小于10;④误差小于1.)解答:说明:误差小于10就是估算出的值与准确值之间的差的绝对值小于10,的估算值在误差小于10的前提下可以是310,也可以是320,还可以是310到320之间的任何数.教材使用误差小于10,而不用精确到哪一位,目的在于降低要求。
目的:同伴间进行交流,教师适时引导.在解决问题的同时引导学生对解决方法进行总结,和学生一起归纳出估算的方法.让学生从被动学习到主动探究,激发学生的学习热情,培养学生自主学习数学的能力.效果:通过简单无理数大致范围的估计,初步积累一些解决问题的经验,为接下来的实际应用做好准备.第三环节:深入探究内容:用估算来解决数学的实际问题.例1你能比较512与12的大小吗?你是怎样想的?512与12>2>1512>12.解:∵5>4)2>22,2,>1,即512>12.例2 解决引入时“公园有多宽?”的问题情境中提出的问题.=?(1)如果要求误差小于10米,它的宽大约是?(大约440米或450米)说明:只要是440与450之间的数都可以.(2)该公园中心有一个圆形花圃,它的面积是800平方米,你能估计它的半径吗(误差小于1米)?(15米或16米)说明:只要是15与16之间的数都可以.例3 给出新的问题情境——画能挂上去吗?生活表明,靠墙摆放梯子时,若梯子底端离墙距离为梯子长度的三分之一,则梯子比较稳定.现有一长度为6米的梯子,当梯子稳定摆放时,(1)他的顶端最多能到达多高(保留到0.1)?(2)现在如果请一个同学利用这个梯子在墙高5.9米的地方张贴一副宣传画,他能办到吗?解:设梯子稳定摆放时的高度为x 米,此时梯子底端离墙恰好为梯子长度的13,根据勾股定理:2x +(13×6)2=62, 2x +4=36,2x =32,x因为3236.316.52<=因为3249.327.52>=所以画不能挂上去目的:学生通过独立思考与小组讨论相结合的方式解决新的实际问题,让学生初步体会数学知识的实际应用价值.效果:在解决实际问题中再次体会估算的方法,从而体验到学习数学的乐趣.第四环节:反馈练习内容:反馈练习1 估算下列数的大小.(10.1);(21).解答:(1)∵3.6 3.7,或3.7(只要是3.6与3.7之间的数都可以).(2)∵910,或10(只要是9与10之间的数都可以).反馈练习2通过估算,比较下面各数的大小.(1312与12;(2 3.85.解答:(12,<1, 即312<12. (2)∵3.852=14.8225,3.85.反馈练习3给出与生活密切联系的实际问题情境一个人一生平均要饮用的液体总量大约为40立方米,如果用一圆柱形的容器(底面直径等于高)来装这些液体,这个容器大约有多高(误差小于1米)?目的:教学引导学生解决问题,学生通过独立思考和与同伴合作交流的方式解决提出的问题,让学生再次体会估算的方法和估算的实际应用,调动探究的积极性.效果:进一步激发学生对利用估算的方法解决问题的兴趣,调动学生学习数学的热情.第五环节:反思归纳内容:1.用自己的语言表达学习这节内容的感想(1)通过这节课的学习,你掌握了哪些知识?(2)通过学习这些知识,对你有怎样的启发?(3)对于这节课的学习,你还有哪些疑问?2.浏览给出的知识点归纳.目的:引导学生归纳本节的基本内容,让学生及时小结,教师展示知识脉络图并反思本节课教学设计的不足,及时做出后面教学的调整.效果:部分学生能大胆地提出疑问.第六环节:作业巩固内容:习题2.6 1,2,3,6目的:给出作业内容,学生浏览给出的作业.效果:让学生在练习中及时巩固所学知识.教学设计反思(一)突出重点、突破难点的策略“公园有多宽”这节内容是让学生掌握估算的方法,训练他们的估算能力,而学生在生活中接触用估算解决实际问题的情况比较少,所以比较陌生,进而学习起来难度就比较大。
八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。
2.无理数是_________的小数,如_________,_________,_________等都是无理数。
3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。
二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。
师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。
即有理数和无理数统称为实数。
生:也就是说实数可分为有理数和无理数。
师:对!你说的太对啦!实数从定义可分为有理数和无理数。
无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。
师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。
师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。
互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。
师:同学们回答的非常好,-2的倒数是什么?生:是-。
师:的倒数是什么?生:思考回答。
师:实数a的倒数是什么?生:是。
师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。
是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
北师大版八年级数学上册:2.2《平方根》教案一. 教材分析《平方根》是北师大版八年级数学上册第2章“实数与平方根”的第2节内容。
本节内容是在学生已经掌握了有理数、无理数的概念,以及算术平方根的基础上,进一步研究平方根的概念和性质。
通过本节内容的学习,学生能够理解平方根的定义,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。
二. 学情分析学生在学习本节内容之前,已经掌握了有理数、无理数的概念,以及算术平方根的知识。
但是,对于平方根的性质和求法,以及平方根在实际生活中的应用,可能还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握平方根的知识。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.能够运用平方根的知识解决实际问题。
3.培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.平方根的概念和性质。
2.求一个数的平方根的方法。
3.平方根在实际生活中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握平方根的知识。
2.启发式教学法:通过提问和讨论,激发学生的思考,培养学生的创新能力。
3.实践操作法:通过实际操作,让学生掌握求一个数的平方根的方法。
六. 教学准备1.教学课件:制作平方根的概念、性质和求法的课件。
2.教学素材:准备一些实际问题,用于引导学生运用平方根的知识解决。
3.练习题:准备一些有关平方根的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算土地面积等,引出平方根的概念。
提问:你们知道这些实例中涉及到的数学知识吗?2.呈现(10分钟)展示平方根的定义和性质,引导学生理解和掌握。
同时,介绍求一个数的平方根的方法,如:分解因式法、配方法等。
3.操练(10分钟)让学生分组讨论,互相练习求一个数的平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些实际问题,让学生运用平方根的知识解决。
北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。
本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。
教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。
二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。
但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。
同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。
三. 教学目标1.理解实数的概念,掌握实数的分类。
2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。
2.实数的运算:加法、减法、乘法、除法、乘方等。
五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。
2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。
3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。
4.练习法:布置适量作业,巩固所学知识。
六. 教学准备1.教材:北师大版八年级数学上册。
2.教案:实数教学设计。
3.PPT:实数相关知识点和案例分析。
4.作业:适量实数运算练习题。
七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。
2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。
3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。
4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。
5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。
北师大版八年级数学上册:2.7《二次根式》教案2一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节课的主要目的是让学生理解二次根式的概念,掌握二次根式的性质和运算方法。
教材通过引入二次根式,让学生在已有的一次根式知识基础上,进一步拓展对根式的认识。
本节课的内容对于学生来说是一个新的知识点,也是后续学习更高阶根式的基础。
二. 学情分析学生在学习本节课之前,已经学习过一次根式的相关知识,对根式的概念和运算方法有一定的了解。
但二次根式与一次根式在概念和运算上有很大的区别,学生可能需要一定的时间来消化和理解。
此外,学生可能对二次根式的实际应用场景还不够了解,需要在课堂上进行引导和拓展。
三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。
2.学会二次根式的运算方法,能够进行二次根式的化简和计算。
3.能够运用二次根式解决实际问题,提高解决问题的能力。
四. 教学重难点1.二次根式的概念和性质。
2.二次根式的运算方法。
3.二次根式在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题引导学生思考,通过案例让学生理解二次根式的应用,通过小组合作学习法让学生在讨论中巩固知识。
六. 教学准备1.PPT课件。
2.相关案例和练习题。
3.小组合作学习的相关材料。
七. 教学过程导入(5分钟)通过一个实际问题引入二次根式的概念:某立方体体积为8立方厘米,求该立方体的棱长。
解决这个问题需要用到二次根式,从而引出本节课的主题。
呈现(15分钟)1.介绍二次根式的概念,讲解二次根式的性质。
2.通过PPT展示二次根式的各种形式,让学生对二次根式有一个直观的认识。
3.通过案例讲解二次根式的运算方法,让学生学会如何进行二次根式的化简和计算。
操练(10分钟)1.让学生进行一些二次根式的化简和计算练习,巩固所学知识。
2.引导学生发现二次根式运算的规律,提高运算速度和准确性。
巩固(5分钟)通过一些实际问题,让学生运用二次根式进行解决问题,巩固二次根式的应用。
第二章 有理数及其运算2.1 有理数1.在具体情境中,进一步认识负数,学会用正负数表示具有相反意义的量,体会负数是实际生活的需要. 2.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类.(重点)阅读教材P23~24,完成预习内容. (一)知识探究1.正整数、0和负整数统称为整数.正分数和负分数统称为分数. 2.整数和分数统称为有理数. (二)自学反馈1.(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克,记作+0.02克,那么-0.03克表示什么? (3)某大米包装袋上标注着“净重量:10 kg ±150 g ”,这里的“10 kg ±150 g ”表示什么? 解:(1)沿顺时针方向转了12圈记作-12圈.(2)-0.03克表示乒乓球的质量低于标准质量0.03克. (3)每袋大米的标准质量应为10 kg ,但实际每袋大米可能有150 g 的误差,即每袋大米的净含量最多是10 kg +150 g ,最少是10 kg -150 g.2.把下列各数写在相应的集合里.-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16.正整数集合:{10,+66,2 009,…}负整数集合:{-5,-16,…}负分数集合:{-4.5,-2.15,-35,…}正分数集合:{+235,0.01,15%,227,…}整数集合:{-5,10,0,+66,2 009,-16,…} 负数集合:{-5,-4.5,-2.15,-35,-16,…}正数集合:{10,+235,0.01,+66,15%,227,2 009,…}有理数集合:{-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16,…}3.有理数的分类(分两类).有理数的分类标准要统一.活动1 小组讨论例1 在知识竞赛中,如果用“+10”表示加10分,那么扣20分记作什么? 解:记作-20分.例2 在数-5,23,0,-0.24,7,4 076,-59,-2中,正数有23,7,4 076,负数有-5,-0.24,-59,-2,整数有-5,0,7,4 076,-2,分数有23,-0.24,-59,有理数有-5,23,0,-0.24,7,4__076,-59,-2.例3 下列说法不正确的是(A)A .正整数和负整数统称为整数B .正有理数和负有理数和零统称有理数C .整数和分数统称有理数D .正分数和负分数统称为分数 活动2 跟踪训练1.下列说法正确的是(D)A .一个有理数不是正数就是负数B .正有理数和负有理数组成有理数C .有理数是指整数、分数、正有理数、负有理数和零这五类数D .负整数和负分数统称为负有理数2.有理数:-7,3.5,-12,112,0,π,1317中正分数有(C)A .1个B .2个C .3个D .4个3.下列各数:-8,-113,2.03,0.5,67,-44,-0.99,其中整数是-8,-44,负分数有-113,-0.99.4.有理数中,是整数而不是负数的是非负整数,是负有理数而不是分数的是负整数.活动3 课堂小结通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是正整数、零、负整数、正分数、负分数.2.2 数轴1.了解数轴的概念,学会画数轴,知道如何在数轴上表示有理数.(重点)2.能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.(重点) 3.体会数形结合的思想方法.阅读教材P27~28,完成预习内容. (一)知识探究1.规定了原点、正方向、单位长度的直线叫做数轴. 2.数轴是一条直线,它可以向两端无限延伸. 3.数轴上原点左侧是负数,正数在原点的右侧. (二)自学反馈1.数轴的三要素是原点、正方向、单位长度.2.如图,数轴上点A 、B 表示的数分别是-2.5、2.3.指出图中所画数轴的错误:解:略.活动1 小组讨论例 (1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75; (2)画一条数轴,并表示出如下各点:1 000,5 000,-2 000; (3)画一条数轴,在数轴上标出到原点的距离小于3的整数; (4)画一条数轴,在数轴上标出-5和+5之间的所有整数. 解:略.数轴的三要素、画法、适当地选择单位长度和原点的位置.活动2 跟踪训练1.在数轴上点A 表示-4,如果把原点向负方向移动1.5个单位,那么在新数轴上点A 表示的数是(C) A .-512B .-4C .-212D .2122.在数轴上表示-1.2的点在(B)A .-1与0之间B .-2与-1之间C .1与2之间D .-1与1之间 3.数轴上表示-8的点在原点的左侧,距离原点8个单位长度;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是-5.4.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有4个.5.写出数轴上点A ,B ,C ,D ,E 所表示的数:解:0,-2,1,2.5,-3.6.画一条数轴表示下列各数,并用“<”把这些数连接起来. 13,2,-4.5,0,52,-0.5,-14. 解:略.7.一个点在数轴上表示的数是-5,这个点先向左边移动3个单位长度,然后再向右边移动6个单位长度,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数? 解:-2,-1.利用数轴数形结合解题.活动3 课堂小结1.数轴的出现对数学的发展起了重要作用,以它作基础师生共同研究,什么是数轴?如何画数轴?如何在数轴上表示有理数?2.利用数轴很多数学问题都可以借助图直观地表示.2.3 绝对值1.借助数轴,理解绝对值和相反数的概念,知道|a|的含义以及互为相反数的两个数在数轴上的位置关系. 2.能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小.(重点) 3.通过应用绝对值解决实际问题,体会绝对值的意义和作用.(难点)阅读教材P30~31,完成预习内容. (一)知识探究1.一般地,数轴上表示数a 的点与原点的距离,叫做数a 的绝对值.2.一个正数的绝对值是它本身,即:若a>0,则|a|=a ;一个负数的绝对值是它的相反数,即:若a<0,则|a|=-a ;0的绝对值是0(双重性). (二)自学反馈1.数轴上有一点到原点的距离为6.03,那么这个点表示的数是±6.03.所以|6.03|=6.03,|-6.03|=6.03. 2.(1)|+13|=13; (2)|-8|=8; (3)|+315|=315;(4)|-8.22|=8.22.3.-213的绝对值是213,绝对值等于213的数是±213,它们是一对相反数.非负数的绝对值是它本身,负数的绝对值是它的相反数.活动1 小组讨论例1 -2的相反数是(A)A .2B .-2C .0.5D .-0.5 例2 下列四组数中不相等的是(C)A .-(+3)和+(-3)B .+(-5)和-5C .+(-7)和-(-7)D .-(-1)和|-1| 例3 下列说法正确的是(B)A .一个数的绝对值的相反数一定不是负数B .一个数的绝对值一定不是负数C .一个数的绝对值一定是正数D .一个数的绝对值一定是非正数例4 若|x -3|+|y -2|=0,则x =3,y =2. 例5 比较下列每组数的大小: (1)-1和-5; (2)-56和-2.7.解:(1)-1>-5.(2)-56>-2.7.活动2 跟踪训练1.在|-7|,5,-(+3),-|0|中,负数共有(A)A .1个B .2个C .3个D .4个 2.一个数的绝对值等于这个数本身,这个数是(D) A .1 B .+1,-1,0 C .1或-1 D .非负数3.在数轴上距离原点2个单位长度的点表示的数是±2,也就是说绝对值等于2的数是±2. 4.在数轴上表示下列各数,并求它们的绝对值:-32,6,-3,-8.6. 解:32;6;3;8.6.图略.5.已知|a|=3,|b|=5,a 与b 异号,求a 、b 两数在数轴上所表示的点之间的距离. 解:8.6.比较下列各组数的大小: (1)-110,-27;(2)-0.5,-23;(3)0,|-23|;(4)|-7|,|7|. 解:(1)-110>-27.(2)-0.5>-23.(3)0<|-23|.(4)|-7|=|7|.7.下面的说法是否正确?请将错误的改正过来. (1)有理数的绝对值一定比0大; (2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等; (4)互为相反数的两个数的绝对值相等. 解:(1)错误,可能等于0. (2)错误,可能比0大. (3)错误,可能互为相反数. (4)正确.活动3 课堂小结1.求一个有理数的相反数.2.绝对值的定义:有理数到原点的距离3.化简绝对值. |a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)4.两个负数比较大小,绝对值大的反而小.2.4 有理数的加法第1课时 有理数的加法法则1.了解有理数加法的意义,理解有理数加法法则的合理性. 2.能运用有理数加法法则正确进行有理数加法运算.(重点)阅读教材P34~36,完成预习内容. (一)知识探究结合课本对两个有理数相加的7个计算式,类似地再列举出相应的计算式并结合数轴解释,得出结果(如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0),根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数相加,一个有理数和0相加,和分别为多少?结合以上内容,总结得出有理数加法法则:1.同号两数相加,取相同符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数. (二)自学反馈计算:(1)16+(-8)=8; (2)(-12)+(-13)=-56;(3)(+312)+(-72)=0;(4)(+8)+(-3)=5; (5)(-0.125)+(18)=0;(6)0+(-9.7)=-9.7.在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.活动1 小组讨论 例1 计算:(1)(-3)+(-9); (2)(-4.7)+3.9.解:(1)-12. (2)-0.8.例2 足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数. 解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0. 活动2 跟踪训练1.两个数的和为负数,则下列说法中正确的是(D) A .两个均是负数 B .两个数一正一负 C .至少有一个正数 D .至少有一个负数 2.一个正数与一个负数的和是(D)A .正数B .负数C .零D .不能确定符号 3.计算:(1)(+3)+(+8);(2)(+14)+(-12);(3)(-312)+(-3.5);(4)(-314)+(+213);(5)(-19)+8.3;(6)-3.4+4.解:11,-14,-7,-1112,-10.7,0.6.注意计算的符号,特别是负号.4.某县某天夜晚平均气温是-10 ℃,白天比夜晚高12 ℃,那么白天的平均温度是多少? 解:2 ℃.活动3 课堂小结 有理数的加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值. 3.任意有理数和零相加,仍得这个数.第2课时 有理数的加法运算律1.掌握有理数加法的运算律,理解小学中加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算,会根据算式的特点选择适当的简便运算方法.(重难点)阅读教材P37~38,完成预习内容. (一)知识探究加法的交换律的文字表达:两个数相加,交换加数的位置,和不变. 加法的交换律的字母表达:a +b =b +a . 加法的交换律的例子说明:1+2=2+1.加法的结合律的文字表达:三个数相加,先用前两个数相加,或者先用后两个数相加,和不变. 加法的结合律的字母表达:(a +b)+c =a +(b +c). 加法的结合律的例子说明:(1+2)+3=1+(2+3). (二)自学反馈 计算:(1)(-7.34)+(-12.74)+7.34+12.4; (2)(-35+15)+(-45);(3)(-37)+(+15)+(+27)+(-115); (4)(-20.75)+314+(-4.25)+1934;(5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7).解:(1)-0.34.(2)-65.(3)-117.(4)-2.(5)1.活动1 小组讨论例1 计算:(1)(-2)+3+1+(-3)+2+(-4); (2)16+(-25)+24+(-35); (3)314+(-235)+534+(-825);(4)(-7)+6+(-3)+10+(-6); 解:(1)-3.(2)-20.(3)-2.(4)0.例2 有一批食品罐头,标准质量为每听454 g ,现抽取10听样品进行检测,结果如下表:这10听罐头的总质量是多少? 解:解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4 550(g).解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表:这10(-10)+5+0+5+0+0+(-5)+0+5+10 =[(-10)+10]+[(-5)+5]+5+5=10(g). 因此,这10听罐头的总质量为454×10+10=4 540+10=4 550(g).注意运算律的运用.活动2 跟踪训练1.用适当的方法计算:(1)23+(-17)+6+(-22); (2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33). 解:(1)-10.(2)23.(3)-3.(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米? (2)若汽车耗油量为a 公升/千米,这天下午汽车共耗油多少公升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发地0千米. (2)118a.活动3 课堂小结有理数加法交换律、结合律: 1.加法交换律:a +b =b +a ;加法结合律:(a +b)+c =a +(b +c). 2.简便运算: ①运用运算律;②运用相反数的和为零; ③凑整.2.5 有理数的减法1.掌握有理数的减法法则,熟练地进行有理数的减法运算.(重点) 2.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.阅读教材P40~41,完成预习内容. (一)知识探究通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x ,使x +(-3)=4,易知x =7,所以4-(-3)=7.① 另一方面,4+(+3)=7,② 由①②有4-(-3)=4+(+3).再试把减数-3换成正数,任意列出一些算式进行计算,如: 计算:9-8与9+(-8);15-7与15+(-7). 由上述内容,得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a -b =a +(-b).减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.有理数的减法法则是:减去一个数,等于加这个数的相反数; 用字表示为:a -b =a +(-b). (二)自学反馈 计算:(1)(-3)-(-6); (2)0-8; (3)6.4-(-3.6);(4)-312-(+514).解:(1)3.(2)-8. (3)10.(4)-834.(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a -b =a +(-b)活动1 小组讨论 例 计算:(1)(-38)-(-36); (2)0-(-711);(3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234);(6)(-334)-(+1.75).解:(1)-2.(2)711.(3)5.2.(4)-114.(5)6512.(6)-5.5.活动2 跟踪训练1.计算:(1)(-23)-(+112)-(-14);(2)(-0.1)-(-813)-1123-(-110);(3)(-1.5)-(-1.4)-(-3.6)-4.3-(+5.2);(4)(5-6)-(7-9).解:(1)-2312.(2)-313.(3)-6.(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数; (2)-13的绝对值的相反数与23的相反数的差.解:(1)-0.81-1.8=-2.61. (2)-|-13|-(-23)=-13+23=13.活动3 课堂小结1.有理数的减法法则:a -b =a +(-b). 2.转化原则:减号变加号,减数变成相反数.2.6 有理数的加减混合运算 第1课时 有理数的加减混合运算1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,能把有理数加法运算省略加号和括号,理解有理数的和.(重难点)阅读教材P43,完成预习内容. (一)知识探究把下列算式统一为加法,并写成省略加号的形式:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7, (-7)+(+5)+(-4)-(-10)=(-7)+(+5)+(-4)+(+10)=-7+5-4+10. 认识算式:①2-5;②-5+3;③-2-8;④-4+2-6的意义.注意有理数的加减混合运算写成省略加号的和的形式的意义.(二)自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略加号的和的形式,并计算.解:23-45-15+13-1=-1.活动1 小组讨论例1 计算:(1)(+27)+(-49)-(+59)-(-57)-(+1);(2)-7-(-8)-(-712)-(+9)+(-10)+1112;(3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1.(2)1.(3)50.(4)-5 050.例2 银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1 200元,存进了2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元? 解:增加了,增加了1 625元.例3 把-a +(+b)-(-c)+(-d)写成省略加号的和的形式为-a +b +c -d .总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练1.把下列算式先统一为加法运算再写成省略括号和的形式,并把结果用两种读法读出来. (1)(+9)-(+10)+(-2)-(-8)+3; (2)(-13)-(+22)+(-17)-(-18). 解:(1)9-10-2+8+3. (2)-13-22-17+18. 2.计算:(1)(-7)-(+5)+(-4)-(-10); (2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1; (4)-2.4+3.5-4.6+3.5.解:(1)-6.(2)-0.5.(3)-314.(4)0.活动3 课堂小结1.有理数的加减混合运算可以利用运算顺序进行计算. 2.熟练进行含有整数、小数、分数的加减混合运算.第2课时 有理数加减混合运算中的简便计算1.运用加法交换律和结合律简化有理数加减混合运算.(重难点) 2.能熟练地进行有理数的加减混合运算.阅读教材P44~45,完成预习内容. (一)知识探究计算:4.5+(-3.2)+1.1+(-1.4). 解:原式=4.5+1.1+[(-3.2)+(-1.4)] =5.6+(-4.6) =1.运用加法交换律和结合律可以简化运算.(二)自学反馈运用交换律和结合律计算: (1)3-10+7=3+7-10=0;(2)-6+12-3-5=-6-3-5+12=-2.活动1 小组讨论 例1 计算:(1)(-9)-(-7)+(-6)-(+4)-(-5); (2)(+4.3)-(-4)+(-2.3)-(+4).解:(1)原式=-9+7-6-4+5=(-9-6-4)+7+5=-19+12=-7. (2)原式=4.3+4-2.3-4=2.例2 已知上周周五(周末不开盘)收盘时股市指数以2 880点报收,本周内股市涨跌情况如下表,则本周四收盘时的股市指数为(D)A.2 880 B .2 877 C .2 855 D .2 887正数表示涨,负数表示跌,每天的变化是相对于前一天来比较的,所以周四的股市指数为2 880+50-21-100+78=2 887.总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练 1.计算:(1)(-8)-(-15)+(-9)-(-12); (2)(-13)-15+(-23);(3)(-18)-(-65)+(+8)-(+710);(4)-23+(-16)-(-14)-12.解:(1)10.(2)-16.(3)-9.5.(4)-1312.2.甲、乙两队进行拔河比赛,标志物先向乙队方向移动了0.2米,又向甲队方向移动了0.5米,相持一会后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家的欢呼鼓励中,标志物又向甲队方向移动了0.9米,若规定标志物向某队方向移动2米该队即可获胜,那么现在谁赢了?用算式说明你的判断.解:甲队获胜,因为-0.2+(+0.5)+(-0.4)+(+1.3)+(+0.9)=+2.1(米)>2(米),所以甲队获胜.活动3 课堂小结在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.第3课时有理数加减混合运算的应用1.能综合运用有理数及其加、减法的有关知识灵活地解决简单的实际问题.(重难点)2.感受到有理数运算的实用性,增强学好数学的信心.阅读教材P47,完成预习内容.知识探究折线统计图可以表示同一种量在不同时间的变化规律,如北京周一到周日的天气变化情况.正确地画出折线统计图是观察变化情况的依据.画法及步骤:①写出统计图名称,如天气、水位等;②画出横、纵两条互相垂直的数轴(有时不画箭头,一般向上为正方向,向右为正方向),分别表示两个量,标出单位和单位长度;③根据统计数据,分别描出对应点,描点时可借助三角板来完成;④用线段把所描的点顺次连接起来.活动1 小组讨论例下表是一个水文站在雨季对某条河一周内水位变化情况的记录.其中,水位上升用正数表示,水位下降用负数表示(②上周日12时的水位高度为2米.(1)请你通过计算说明本周末水位是上升了还是下降了.(2)用折线图表示本周每天的水位,并根据折线图说明水位在本周内的升降趋势.分析:计算这七天水位变化量的和,看结果是正、还是负,若是正,说明周末水位上升了;若是负,说明水位下降了.解:(1)因为(+0.4)+(-0.3)+(-0.4)+(-0.3)+(+0.2)+(+0.2)+(+0.1)=0.4-0.3-0.4-0.3+0.2+0.2+0.1=-0.1(米),所以本周末水位下降了.(2)折线图如图所示:由折线图可看出,本周水位先上升,再下降,最后上升.①画折线统计图时,要先确定哪一个量或哪一个数值为0,即基准;②要标出横线和竖线的单位;③选择单位长度时要考虑使统计图有明显的上升和下降的幅度,能看出变化情况.活动2 跟踪训练1.光明中学初一(1)班学生的平均身高是160厘米.(1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表:(2)(3)最高和最矮的学生身高相差多少?解:(1)依次填入:162 160 163 -6 +5.(2)小山最高,小亮最矮.(3)最高和和最矮的学生身高相差11厘米.2.9.11事故后,美国股市出现狂跌,股市指数一度跌到历史最低点,后经政府宏观调控,稍有反弹,下表是某周(周末不开盘)的股市指数升跌情况,+号表示指数比头一天上升,-号表示指数比头一天下跌:(1)本周内哪天股市指数最高?哪天股市指数最低?(2)本周五的股市指数比上周五的股市指数高还是低?(3)若将上周五的股市指数记为0点,请你画出本周的股市指数折线图.解:(1)本周内星期四股市指数最高,星期二股市指数最低.(2)本周五的股市指数比上周五的股市指数高(3)图略.活动3 课堂小结1.知识归纳:利用正、负数表示相反意义的量,进行有理数的加减混合运算解决实际问题.2.数学思想方法:用已学知识解决新问题的转化思想.2.7 有理数的乘法第1课时 有理数的乘法法则1.了解有理数乘法的实际意义.2.理解有理数的乘法法则,能熟练地进行有理数乘法运算.(重点)阅读教材P49~51,完成预习内容. (一)知识探究有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值. 乘积为1的两个数互为倒数.如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.看书第50、51页的内容,体会几个不等于零的有理数相乘,积的符号的确定方法:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负.几个数相乘,如果其中有一个因数是0,积等于0. (二)自学反馈1.计算:(-114)×(-45)=1,(+3)×(-2)=-6,0×(-4)=0,123×(-115)=-2,(-15)×(-13)=5,-│-3│×(-2)=6.2.计算:(-2)×(-3)×(-5)=-30, (-723)×3×(-123)=1,(-9.89)×(-6.2)×(-26)×(-30.7)×0=0.(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数.活动1 小组讨论例1 计算:(+5)×(+3)=15, (+5)×(-3)=-15, (-5)×(+3)=-15, (-5)×(-3)=15, (+6)×0=0, 6×(-4)=-24,(-6)×4=-24, (-6)×(-4)=24. 例2 计算:(1)(-112)×815×(-23)×(-214)=-115;(2)14×(-16)×(-45)×(-114)×8×(-0.25)=8. 活动2 跟踪训练 1.计算:(1)(-5)×0.2=-1; (2)(-8)×(-0.25)=2; (3)(-312)×(-27)=1;(4)0.1×(-0.01)=-0.001;(5)(-59)×0.01×0=0;(6)(-2)×(-5)×(+56)×(-30)=-250;(7)312×(-47)+(-25)×(-334)=-12.2.a ×(-56)=1则a =-65.一个有理数的倒数的绝对值是7,则这个有理数是±17.3.判断对错:(1)两数相乘,若积为正数,则这两个因数都是正数.(×) (2)两数相乘,若积为负数,则这两个数异号.(√) (3)两个数的积为0,则两个数都是0.(×) (4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(√) 活动3 课堂小结1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.第2课时 有理数的乘法运算律1.进一步应用乘法法则进行有理数的乘法运算.2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.(重难点)阅读教材P52~53,完成预习内容.(一)知识探究 乘法的交换律文字表达:两个数相乘,交换因数的位置,积相等.乘法的交换律字母表达:ab =ba . 乘法的结合律文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法的结合律字母表达:(ab)c =a(bc). 乘法的分配律文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 乘法的分配律字母表达:a(b +c)=ab +ac .(二)自学反馈1.计算:(-3)×56×(-95)×(-14)×(-8)×(-1). 解:-9.2.计算:(1)-34×(8-43-1415);(2)191819×(-15). 解:(1)-4310.(2)-299419.运用运算律进行简便运算.活动1 小组讨论例 计算:(1)(-0.5)×(-316)×(-8)×113; 解:-1.(2)-10556×12; 解:-1 270.(3)(-34+156-78)×(-24); 解:-5.(4)317×(317-713)×722×2122; 解:-4.(5)(23-49+527)×27-1117×8+117×8. 解:3.活动2 跟踪训练1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是(D)A .(-3)×4-3×2-3×3B .(-3)×(-4)-3×2-3×3C .(-3)×(-4)+3×2-3×3D .(-3)×(-4)-3×2+3×32.在运用分配律计算3.96×(-99)时,下列变形较合理的是(C)A .(3+0.96)×(-99)B .(4-0.04)×(-99)C .3.96×(-100+1)D .3.96×(-90-9)3.对于算式2 007×(-8)+(-2 007)×(-18),逆用分配律写成积的形式是(C)A .2 007×(-8-18)B .-2 007×(-8-18)C .2 007×(-8+18)D .-2 007×(-8+18)4.计算1357×316最简便的方法是(D) A .(13+57)×316B .(14-27)×316C .(10+357)×316D .(16-227)×316 5.计算:(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;(2)(134-78-112)×117; (3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).解:(1)-10.(2)1921.(3)250. 活动3 课堂小结1.有理数乘法交换律.2.有理数乘法结合律.3.有理数乘法分配律.2.8 有理数的除法1.理解除法的意义,掌握有理数的除法法则.2.能熟练进行有理数的除法运算.(重点)3.感受转化、归纳的数学思想.阅读教材P55~56,完成预习内容.(一)知识探究1.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数.2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何不等于0的数仍得0.(二)自学反馈(1)(-18)÷6=-3; (2)5÷(-15)=-25; (3)(-27)÷(-9)=3;(4)0÷(-2)=0.0不能作除数.活动1 小组讨论例1 计算:(1)(-15)÷(-3); (2)12÷(-14); (3)(-0.75)÷0.25;(4)(-12)÷(-112)÷(-100). 解:(1)5.(2)-48.(3)-3.(4)-1.44.例2 计算:(1)(-18)÷(-23); (2)16÷(-43)÷(-98). 解:(1)27.(2)323.乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.活动2 跟踪训练1.两个不为零的有理数的和等于0,那么它们的商是(B)A .正数B .-1C .0D .±12.两个不为0的数相除,如果交换它们的位置,商不变,那么(D)A .两数相等B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数3.计算:(1)-0.125÷(-38); (2)(-215)÷1110; (3)(-112)÷34÷1.4. 解:(1)13.(2)-2;(3)-107. 活动3 课堂小结1.法则1:a ÷b =a ·1b. 2.法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得0.3.化简分数.2.9 有理数的乘方1.理解有理数乘方的意义,理解乘方运算、幂、底数等概念的意义.2.正确进行有理数乘方运算.(重点)阅读教材P58~59,完成预习内容.(一)知识探究1.求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂,a 叫底数,n 叫指数.乘方a n 有双重含义:(1)表示一种运算,这时读作“a 的n 次方”;(2)表示乘方运算的结果,这时读作“a 的n 次幂”.2.正数的任何次幂都是正数,0的任何正整数次幂都是0;负数的奇次幂是负数,偶次幂是正数.(二)自学反馈1.在(-2)6中,底数是-2,指数是6,运算结果是64;在-26中,底数是2,指数是6,运算结果是-64.(特别注意)2.底数是-23,指数是3的幂是-827. 3.(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.在书写乘方时,若底数为负数、分数时一定要加括号.3.(-12)4表示的意义是4个-12相乘,23×23×23×23可写成(23)4. 4.计算:(-25)3=-8125;3×23=24;(3×2)3=216;(-3)3×(-42)=432;(-324)2-324=4516.活动1 小组讨论例 计算:(1)(-2)2×(-2)3; (2)5×(-3)2;(3)(-2)4-(-4)2; (4)(-3×2)2-3×22.解:(1)-32.(2)45.(3)0.(4)24.活动2 跟踪训练1.如果一个数的平方与这个数的差等于零,那么这个数只能是(D)A .0B .-1C .1D .0或12.下列说法正确的是(D)A .一个数的偶次幂一定是正数B .一个正数的平方比原数大C .一个负数的立方比原数小D .互为相反数的两个数的立方仍互为相反数3.任何一个有理数的二次幂是(B)A .正数B .非负数C .负数D .无法确定4.当n 为整数时,(-1)2n -1+(-1)2n 的值为(B)A .-2B .0C .1D .25.某种细胞每过30分钟便由1个分裂成2个,经过5小时后,这种细胞1个能分裂成多少个?(1)细胞每30分钟分裂一次,则5个小时共分裂10次;(2)5个小时后,细胞的个数一共有=1__024个,为了简便可以记作210.6.①边长为a 的正方形的面积为a 2; ②棱长为a 的正方体的体积为a 3;③把一张纸对折一次可裁成两张,对折2次可裁成4张,问对折3次可裁成几张?用算式如何表示?23.如果对折10次、100次,用算式如何表示?210,2100.7.计算(-2)3,(-3)3,(-12)3,(-13)3,并找出其中最大的数和最小的数. 解:(-2)3=-8,(-3)3=-27,(-12)3=-18,(-13)3=-127. 其中最大的数为-127,最小的数为-27.活动3 课堂小结1.乘方2.乘方的计算:3.乘方的性质.2.10 科学记数法掌握科学记数法的表示方法,能用科学记数法来表示比较大的数据.(重点)阅读教材P63~64,完成预习内容.(一)知识探究把一个大于10的数用科学记数法可以表示为a×10n的形式(其中a是大于或等于1且小于10的数,即1≤a<10;n 等于原整数的位数减去1).(二)自学反馈用科学记数法表示下列各数:1.1 000 000=1×106;2.57 000 000=5.7×107;3.123 000 000 000=1.23×1011;4.10 000=1×104;5.800 000=8×105;6.7 400 000=7.4×106.在上面的计算中,等号左边整数的位数与右边10的指数有什么关系?用科学记数法表示一个n位整数,其中10的指数是n-1.活动1 小组讨论例用科学记数法表示下列各数:(1)中国森林面积有128 630 000公顷;(2)2016年某市总人口达1 022.7万人;(3)地球到太阳的距离大约是150 000 000千米;(4)光年是天文学中的距离单位,1光年大约是950 000 000 000千米;(5)2008年北京奥运会门票预算收入为140 000 000美元;(6)一只苍蝇腹内的细菌多达2 800万个.(在使用科学记数法时要注意单位的转换,如1万=104,1亿=108) 解:(1)1.286 3×108.(2)1.022 7×103万.(3)1.5×108.(4)9.5×1011.(5)1.4×108.(6)2.8×103万.活动2 跟踪训练1.某校在校师生共有2 000人,如果每人借阅10册书,那么中国国家图书馆共2亿册书,可以供多少所这样的学校借阅(B)A.100 000所B.10 000所C.1 000所D.2 000所2.将0.36×45×105的计算结果用科学记数法来表示,正确的是(B)A.16.2×105B.1.62×106C.16.2×106D.16.2×100 0003.1纳米相当于1根头发丝直径的六万分之一,用科学记数法表示头发丝的半径是(D)A.6×103纳米B.6×104纳米C.3×103纳米D.3×104纳米4.填空:(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.5.若-59 600 000用科学记数法表示为a×10n,则a=-5.96,n=7.6.用科学记数法表示下列各数:(1)700 900;(2)-50 090 000;(3)人体中约有25 000 000 000 000个细胞;。
第二章实数1.了解平方根、立方根、二次根式、最简二次根式、实数及其相关概念;会求平方根、立方根;能进行有关实数的简单四则运算和简单的二次根式化简,发展运算能力.2.结合具体情境理解估算的意义,能进行简单的估算,进一步发展数感和估算能力.经历数系扩充、探求实数性质及其运算规律、借助计算器探索数学规律等活动过程,发展抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.一、本章主要内容及要求1.体验从具体情境中抽象出数学符号的过程,理解实数.2.掌握必要的运算(包括估算)技能.3.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.4.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.5.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.6.能用有理数估计一个无理数的大致范围.7.了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值.8.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算.二、教材分析从有理数扩充到实数是初中阶段数系扩充的最后一个阶段,中学阶段的多数问题是在实数范围内进行的,同时实数也是后继内容(如一元二次方程、函数等)学习的基础.因此,本章学习内容具有基础性,应要求学生能熟练掌握有关实数的运算,适应后续学习的需要.学生以前经历过数系的第一次扩充,已经积累了一些数系扩充的学习经验,感受到数系扩充是源于实际生活的需要.本章再次引领学生经历数系扩充的过程,感受数系扩充的必要性.本章大致按照如下线索展开内容:无理数的引入——无理数的表示——实数的相关概念及其运算(包括简单的二次根式的化简),实数的应用贯穿于内容的始终.具体地,教材首先通过拼图活动和计算器探索活动,给出无理数的概念;然后通过具体问题的解决,引入平方根、立方根的概念和开方运算.由于在实际生活和生产中,人们常常通过估算来求无理数的近似值,为此教材安排了一节“估算”,介绍估算的方法,包括通过估算比较大小、检验计算结果的合理性等.接着,教材用类比的方法引入实数的相关概念、运算律和运算性质等,最后,介绍了二次根式的概念及其化简和运算.在呈现具体内容时,教材关注现实性,力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题.但考虑到本章内容的特点,以及随着学生年龄的增长,他们的思维水平也在不断提高,因此本章在关注现实性的同时,更加关注数学知识内部的挑战性,为此提供了许多有趣而富有数学含义的问题,如a可能是整数吗?a可能是分数吗?……让学生进行数学的思考,进一步提高学生的抽象思维水平.【重点】1.经历无理数发现的过程,了解无理数的概念和意义.2.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;能用平方运算与立方运算求某些数的平方根与立方根;会用计算器求平方根和立方根,并能探索一些有趣的数学规律.3.能用有理数估计一个无理数的大致范围,包括通过估算比较大小,检验计算结果的合理性等.4.了解实数的概念,会按要求对实数进行分类,了解实数的相反数和绝对值的意义,知道实数与数轴上的点具有一一对应的关系,了解有理数的运算法则与运算律对实数仍然适用.5.能对带根号的数进行化简,并能利用化简进行有关实数的简单四则运算.6.能运用实数的运算解决简单的实际问题.【难点】1.无理数概念的理解及应用.2.解决与实数有关的实际问题时的思维转化.3.运算性质的掌握与应用.1.注重概念的形成过程,让学生在概念的形成过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合,去掉非本质特征,保持本质属性而形成的.加强概念形成过程的教学,对提高学生的思维水平是很有必要的.如无理数的引入,要让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义,在教学时,教师要鼓励学生动手、动脑、动口,与同伴进行合作,并充分地开展交流.再如平方根的概念,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的运算结果唯一的经验不符.对此,在平方根的引入时,教师可多提一些具体的问题,如9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?……旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.接着让学生去讨论:一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,特别是负数的情况,然后再通过具体的求平方根的练习,巩固新学的概念.2.鼓励学生自主探索和合作交流.本章为学生提供了许多有趣而富有数学含义的问题,教学中应当让学生进行充分的探索和交流.如面积为2的正方形的边长a是什么数?教师应引导学生充分进行交流、讨论与探索,从中感受无理数引入的必要性,并体会无限不循环的过程;再如二次根式的相关运算性质,教学中应让学生经历从具体问题到一般规律的探索过程,鼓励学生借助计算器等工具进行探索、猜测、验证,并用自己的语言清楚地表达.3.注意运用类比的方法,使学生清楚新旧知识的区别和联系.七年级时,学生已经学习过有理数的有关概念和运算,本章将学习实数的有关概念及运算.在这些概念、运算律、运算法则的教学中,应加强类比教学,通过新旧知识的类比、对比,认识新旧知识的区别和联系,促进知识系统的构建与完善.如实数的相反数、绝对值等概念是完全类比有理数建立起来的,运算律和运算法则也是通过类比得出的.1认识无理数2课时2平方根2课时3立方根1课时4估算1课时5用计算器开方1课时6实数1课时7二次根式3课时回顾与思考1课时1认识无理数1.通过拼图活动,感受无理数关系到的实际背景和引入的必要性.2.借助计算器探索无理数,并从中体会无限逼近思想.3.会判断一个数是不是无理数.1.在探究的过程中使学生感受到数的扩张,积累解决数学问题的经验和方法.2.在探索的过程中体会无理数的产生过程,积累解决数学问题的方法和经验.1.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.2.通过“再创造”的过程,体会数学发现的方法和乐趣.【重点】理解无理数的概念.【难点】判断一个数是不是无理数.第课时感受无理数产生的实际背景和引入的必要性.经历动手拼图过程,发展动手能力和探索精神.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.【重点】感受无理数产生的背景.【难点】会判断一个数是不是无理数.【教师准备】两张边长为1的正方形纸片,多媒体课件.【学生准备】两张边长为1的正方形纸片,复习有理数的运算法则及勾股定理有关知识.导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?探究活动1.已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 - 1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1拼成后的正方形是什么样的呢?问题2拼成后的大正方形面积是多少?问题3若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够用了”.巧设问题背景,顺利引入本节课题.思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.[知识拓展]正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA的对角线长度就不是有理数,数轴上的点P表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.通过生活中的实例,证实了确实存在不是有理数的数.1.在直角三角形中两个直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.4答案:B2.下列面积的正方形,边长不是有理数的是()A.16B.25C.2D.4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为,长度不是有理数的线段为.答案:略第1课时1.拼接正方形.2.做一做.3.a,b存在,但不是有理数.一、教材作业【必做题】教材第21页随堂练习及教材第22页习题2.1第1题.【选做题】教材第22页习题2.1第2题.二、课后作业【基础巩固】1.在正方形网格中,每个小正方形的边长为1,则网格上的ΔABC 中,边长不是有理数的线段有 ,在图中再画一条边长不是有理数的线段.【能力提升】2.在任意两个有理数之间都有无数个有理数. 假设a ,b 是两个有理数,且a <b ,在a ,b 两数之间插入一个数为 . 【拓展探究】3.把下列小数化成分数. (1)0.6;(2)0.7·;(3)0.3·4·.4.你会在下面的正方形网格(每个小正方形面积为1)中画出面积为10的正方形吗?试一试.【答案与解析】1.AB ,BC ,AC 略(解析:AB 2=42+12=17,BC 2=22+32=13,AC 2=22+42=20.)2.a+b2(解析:答案不唯一,如插入a 和b 正中间的数.)3.解析:(1)0.6=35; (2)设0.7·=x ,则10x =7.7·,∴9x =7,从而x =79;(3)设0.3·4·=x ,则100x =34.3·4·,∴99x =34,从而x =3499. 解:(1)0.6=35. (2) 0.7·=79. (3) 0.3·4·=3499. 4.略大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本课时通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.在教学过程中,没有刻意安排一些环节,帮助理解能力差的学生加深对“新数”的理解.设计更多的实例让理解能力差的学生较好地理解“新数”.为进一步学习“新数”,即第二课时的教学埋下伏笔.随堂练习(教材第21页)解:因为等边三角形中BC边上的高平分BC,所以h2=22-12=3,所以h不可能是整数,也不可能是分数.习题2.1(教材第22页)1.解:答案不唯一.如图(1)所示,线段AB,AD,AE,DE,BD,BC的长度都是有理数;线段AC,CE,BE的长度都不是有理数.2.解:答案不唯一.如图(2)所示的是几个符合要求的直角三角形.一个正方形木块的面积为8平方厘米,那么它的边长满足什么条件?可能是整数吗?可能是分数吗?解:它的边长的平方为8,没有整数的平方为8,所以边长不可能为整数,也没有一个分数的平方为8,所以边长不可能为分数.第课时掌握无理数的概念;能用所学定义正确判断所给数的属性.借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.在掌握估算方法的过程中,发展学生的数感和估算能力.【重点】能用所学定义正确判断所给数的属性.【难点】无理数概念的建立.【教师准备】计算器、立方体、多媒体课件.【学生准备】计算器、复习有理数的分类.导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如-1,0,2,3,…)分数(如13,-25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a2=2,b2=5中的a,b不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图]通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.一、数的小数表示面积为2的正方形的边长a究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?边长a面积S1<a<2 1<S<41.4<a<1.5 1.96<S<2.251.41<a<1.42 1.9881<S<2.01641.414<a<1.415 1.999396<S<2.0022251.4142<a<1.4143 1.99996164<S<2.00024449【思考】a的范围在哪两个数之间?左面的边长中,前面的数值和后面的数值相比,哪个更接近正方形的实际边长?【归纳总结】a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.【做一做】(1)请大家用上面的方法估计面积为5的正方形的边长b的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b≈2.2,精确到0.01,b≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.25992105…,它也是一个无限不循环小数.[设计意图]让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,c=1.25992105…是无限不循环小数的过程,体会无限逼近的思想.二、有理数的小数表示,明确无理数的概念思路一请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么? 3,45,59,-845,211.【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况? 思路二回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数. 【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数) 【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.三、例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2). 解:有理数有:3.14,-43,0.5·7·;无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2). 【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q的形式(q ≠0,p ,q 为整数且互质),而无理数不能.[设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类. [知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法: 1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数 答案:C2.以下各正方形的边长是无理数的是 ( ) A .面积为25的正方形 B .面积为425的正方形 C .面积为8的正方形 D .面积为1.44的正方形 解析:52=25,(25)2=425,(1.2)2=1.44.故选C .3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数. 4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n ,-1.4242242224…(相邻两个4之间2的个数逐次加1). (1)写出所有有理数; (2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n .(2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第2课时1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.一、教材作业【必做题】教材第24页随堂练习.【选做题】教材第25页习题2.2第2,4题.二、课后作业【基础巩固】1.面积为3的正方形的边长为x,则x()A.1<x<2B.2<x<3C.3<x<4D.4<x<52.一个正三角形的边长是4,高为h,则h是()A.整数B.分数C.有限小数D.无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是,则斜边长是数. 【拓展探究】4.设半径为a的圆的面积为20 π.(1)a是有理数吗?说说你的理由;(2)估计a的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数. (2)a≈4.5.(3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米. (2)1.73米.本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.随堂练习(教材第24页)解:有理数有:0.4583,3.7·,-17,18.无理数有:-π. 习题2.2(教材第25页) 1.解:-559180,3.97·,-234.10101010…(相邻两个1之间有1个0)是有理数,0.12345678910111213…(小数部分由相继的正整数组成)是无理数. 2.提示:(1)x 不是有理数. (2)x ≈3.2. (3)x ≈3.16. 3.(1)✕ (2) (3)✕ (4)✕4.解:5π,π-1,3.4141141114…(相邻两个4之间1的个数逐次加1)等,答案不唯一.由于本节的重点之一是让学生经历借助计算器探索无理数是无限不循环小数的过程,因此,要重视教材创设(或相同类型)的问题,针对内容应该花较多的时间,教师应积极引导,让学生有充足的时间借助计算器进行思考和交流,循序渐进地缩小范围,体会无限逼近的思想.本节渗透了用有理数近似地表示无理数和用有理数逼近无理数的数学思想,通过探索,学生容易理解“无限”,但对“不循环”一般不会有清楚的认识,只有逐步渗透理解,教学中不必多说.“逼近”思想可以借用中央电视台的“幸运52”的猜商品的价格游戏进行解释.为进一步让学生理解无理数的概念,应强调“无限不循环小数”与“无限循环小数”的联系和区别,前者不能化为分数,后者可以化为分数,但如何化成分数,教师不必深入讲解.鼓励学生自学教材中的“读一读”,了解无理数产生的历史背景和人类的科学精神,特别是对学有余力的学生,在教师引导下,可阅读“边长为1的正方形的对角线的长是无理数”的严格证明.一根长为5米的电线杆竖立于地面,为保证它的安全,要用三根钢丝把它固定,要求每根钢丝一头拉着电线杆的最上端,一头系在离电线杆3米远的地面木桩上,则每根钢丝的长要满足什么条件?它是有理数吗?大概是多长?〔解析〕每根钢丝的长要满足它的平方等于52+32,它不是有理数,大概是5.8米.解:由勾股定理,得钢丝长的平方等于52+32=34,但是找不到一个整数的平方是34,也找不到一个分数的平方是34,所以,它不是有理数,5.82=33.64,接近于34,所以大概为5.8米.2平方根1.了解数的算术平方根、平方根的概念,会用根号表示一个数的算术平方根和平方根.2.了解开方与平方是互逆运算,会利用平方运算求某些非负数的算术平方根和平方根.通过教学过程的参与,培养学生学习的主动性,提高数学表达和运算能力.。
北师大版数学八年级上册2《平面直角坐标系》教案2一. 教材分析《平面直角坐标系》是北师大版数学八年级上册第二章的内容。
本节内容是在学生已经掌握了坐标系的基础知识,以及初中阶段所学的几何图形的性质的基础上进行的。
本节课的主要内容有:建立平面直角坐标系,确定原点、坐标轴和坐标单位,利用坐标表示点的位置,以及点的坐标与图形性质之间的关系。
这些内容对于学生理解和掌握坐标系的运用,以及解决实际问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经对坐标系有了初步的了解,掌握了坐标系的基本概念,能够利用坐标表示点的位置。
但是,对于平面直角坐标系的建立和坐标轴的确定,以及点的坐标与图形性质之间的关系,还需要进一步的引导和讲解。
此外,学生对于实际问题中的坐标系的运用,还需要通过实例进行讲解和练习。
三. 教学目标1.理解平面直角坐标系的建立和坐标轴的确定方法。
2.学会利用坐标表示点的位置,掌握点的坐标与图形性质之间的关系。
3.能够运用平面直角坐标系解决实际问题。
四. 教学重难点1.重点:平面直角坐标系的建立,坐标轴的确定,点的坐标表示方法。
2.难点:点的坐标与图形性质之间的关系,平面直角坐标系在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,从而掌握平面直角坐标系的知识;通过案例分析,让学生了解平面直角坐标系在实际问题中的应用;通过小组合作学习,培养学生团队合作意识和解决问题的能力。
六. 教学准备1.准备相关的教学案例和实际问题,用于讲解和练习。
2.准备平面直角坐标系的图示和模型,用于展示和解释。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾坐标系的基础知识,为新课的学习做好铺垫。
例如:“你们已经学习了坐标系,那么坐标系有什么作用呢?坐标系是如何帮助我们表示点的位置的呢?”2.呈现(10分钟)通过展示实际问题,引导学生思考平面直角坐标系的建立和坐标轴的确定方法。
《2.3立方根》一、教材分析《立方根》是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》第三节.本节内容安排了1个学时完成.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要让学生感受类比的思想方法,为今后的学习打下基础.二、学情分析在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及个数的唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.三、目标分析教学目标●知识与技能目标1.了解立方根的概念,会用根号表示一个数的立方根.2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.●过程与方法目标1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.●情感与态度目标:1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.●教学重点:立方根的概念及计算.●教学难点:立方根的求法,立方根与平方根的联系及区别.四、教法学法:类比法.五、教学过程第一环节:创设问题情境:复习:1、平方根的定义( 填空:(1)16的平方根是______2、2)6(2)的平方根是;(3)若a的平方根只有一个,那么a = ;(4)若数b的一个平方根是 1.2,那么b的另一个平方根是;3.要做一个体积为27cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?思考:如果问题中正方体的体积为5cm3,正方体的棱长又该是多少?意图:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,有很快将问题归结为如何确定一个数,从而顺利引入新课。
2.2.1 算术平方根一、学生起点分析学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.三、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:问题情境 初步探究 反馈练习 学习小结 作业布置 深入探究=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗? 目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=;(4)14的算术平方根是14. 内容4:回解课堂引入问题 22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的. 内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根. 第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ;4.若22=+m ,则=+2)2(m . 二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展 在教学中,根据学生的实际情况,在学有余力的情况下,可以对a 的双重非负性的知识进行适当的拓展.。
北师大版八年级数学上册:2.1《认识无理数》教案一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。
本节课的主要内容是让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握一些估算无理数大小方法。
教材通过引入π和√2等实际例子,帮助学生建立起无理数的直观印象,进而引导学生通过观察、思考、探究,发现无理数的特点和性质。
二. 学情分析学生在学习本节课之前,已经学习了有理数的相关知识,对数的概念有一定的了解。
但是,学生对无理数的概念和性质可能感到陌生,理解起来有一定难度。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动具体的例子和实际操作,帮助学生理解和掌握无理数的概念。
三. 教学目标1.了解无理数的概念,理解无理数与有理数的关系。
2.能够运用逼近法估算无理数的大小。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.重点:无理数的概念和性质。
2.难点:理解无理数与有理数的关系,以及运用逼近法估算无理数的大小。
五. 教学方法1.采用情境教学法,通过引入实际例子,激发学生的学习兴趣。
2.采用探究教学法,引导学生通过观察、思考、动手操作,自主发现无理数的特点和性质。
3.采用讲解法,教师详细讲解无理数的概念和性质,引导学生理解和掌握。
4.采用小组合作学习法,鼓励学生互相讨论、交流,共同解决问题。
六. 教学准备1.准备相关课件和教学素材。
2.准备计算器、纸张等学习工具。
七. 教学过程1.导入(5分钟)利用课件展示π和√2的实际应用场景,如圆的周长和物体尺寸的测量等,引发学生对无理数的兴趣。
同时,提出问题:“你们认为π和√2是什么类型的数?”让学生思考并发表观点。
2.呈现(15分钟)教师讲解无理数的概念,通过PPT展示无理数的定义和性质,让学生了解无理数的特点。
同时,举例说明无理数与有理数的关系,如π和√2都是无理数,而2和3是有理数。
3.操练(10分钟)教师提出问题:“如何估算无理数的大小?”引导学生运用逼近法估算无理数的大小。
第二章实数1.了解平方根、立方根、二次根式、最简二次根式、实数及其相关概念;会求平方根、立方根;能进行有关实数的简单四则运算和简单的二次根式化简,发展运算能力.2.结合具体情境理解估算的意义,能进行简单的估算,进一步发展数感和估算能力.经历数系扩充、探求实数性质及其运算规律、借助计算器探索数学规律等活动过程,发展抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.一、本章主要内容及要求1.体验从具体情境中抽象出数学符号的过程,理解实数.2.掌握必要的运算(包括估算)技能.3.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.4.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.5.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.6.能用有理数估计一个无理数的大致范围.7.了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值.8.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算.二、教材分析从有理数扩充到实数是初中阶段数系扩充的最后一个阶段,中学阶段的多数问题是在实数范围内进行的,同时实数也是后继内容(如一元二次方程、函数等)学习的基础.因此,本章学习内容具有基础性,应要求学生能熟练掌握有关实数的运算,适应后续学习的需要.学生以前经历过数系的第一次扩充,已经积累了一些数系扩充的学习经验,感受到数系扩充是源于实际生活的需要.本章再次引领学生经历数系扩充的过程,感受数系扩充的必要性.本章大致按照如下线索展开内容:无理数的引入——无理数的表示——实数的相关概念及其运算(包括简单的二次根式的化简),实数的应用贯穿于内容的始终.具体地,教材首先通过拼图活动和计算器探索活动,给出无理数的概念;然后通过具体问题的解决,引入平方根、立方根的概念和开方运算.由于在实际生活和生产中,人们常常通过估算来求无理数的近似值,为此教材安排了一节“估算”,介绍估算的方法,包括通过估算比较大小、检验计算结果的合理性等.接着,教材用类比的方法引入实数的相关概念、运算律和运算性质等,最后,介绍了二次根式的概念及其化简和运算.在呈现具体内容时,教材关注现实性,力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题.但考虑到本章内容的特点,以及随着学生年龄的增长,他们的思维水平也在不断提高,因此本章在关注现实性的同时,更加关注数学知识内部的挑战性,为此提供了许多有趣而富有数学含义的问题,如a可能是整数吗?a可能是分数吗?……让学生进行数学的思考,进一步提高学生的抽象思维水平.【重点】1.经历无理数发现的过程,了解无理数的概念和意义.2.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;能用平方运算与立方运算求某些数的平方根与立方根;会用计算器求平方根和立方根,并能探索一些有趣的数学规律.3.能用有理数估计一个无理数的大致范围,包括通过估算比较大小,检验计算结果的合理性等.4.了解实数的概念,会按要求对实数进行分类,了解实数的相反数和绝对值的意义,知道实数与数轴上的点具有一一对应的关系,了解有理数的运算法则与运算律对实数仍然适用.5.能对带根号的数进行化简,并能利用化简进行有关实数的简单四则运算.6.能运用实数的运算解决简单的实际问题.【难点】1.无理数概念的理解及应用.2.解决与实数有关的实际问题时的思维转化.3.运算性质的掌握与应用.1.注重概念的形成过程,让学生在概念的形成过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合,去掉非本质特征,保持本质属性而形成的.加强概念形成过程的教学,对提高学生的思维水平是很有必要的.如无理数的引入,要让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义,在教学时,教师要鼓励学生动手、动脑、动口,与同伴进行合作,并充分地开展交流.再如平方根的概念,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的运算结果唯一的经验不符.对此,在平方根的引入时,教师可多提一些具体的问题,如9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?……旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.接着让学生去讨论:一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,特别是负数的情况,然后再通过具体的求平方根的练习,巩固新学的概念.2.鼓励学生自主探索和合作交流.本章为学生提供了许多有趣而富有数学含义的问题,教学中应当让学生进行充分的探索和交流.如面积为2的正方形的边长a是什么数?教师应引导学生充分进行交流、讨论与探索,从中感受无理数引入的必要性,并体会无限不循环的过程;再如二次根式的相关运算性质,教学中应让学生经历从具体问题到一般规律的探索过程,鼓励学生借助计算器等工具进行探索、猜测、验证,并用自己的语言清楚地表达.3.注意运用类比的方法,使学生清楚新旧知识的区别和联系.七年级时,学生已经学习过有理数的有关概念和运算,本章将学习实数的有关概念及运算.在这些概念、运算律、运算法则的教学中,应加强类比教学,通过新旧知识的类比、对比,认识新旧知识的区别和联系,促进知识系统的构建与完善.如实数的相反数、绝对值等概念是完全类比有理数建立起来的,运算律和运算法则也是通过类比得出的.1认识无理数2课时2平方根2课时3立方根1课时4估算1课时5用计算器开方1课时6实数1课时7二次根式3课时回顾与思考1课时1认识无理数1.通过拼图活动,感受无理数关系到的实际背景和引入的必要性.2.借助计算器探索无理数,并从中体会无限逼近思想.3.会判断一个数是不是无理数.1.在探究的过程中使学生感受到数的扩张,积累解决数学问题的经验和方法.2.在探索的过程中体会无理数的产生过程,积累解决数学问题的方法和经验.1.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.2.通过“再创造”的过程,体会数学发现的方法和乐趣.【重点】理解无理数的概念.【难点】判断一个数是不是无理数.第课时感受无理数产生的实际背景和引入的必要性.经历动手拼图过程,发展动手能力和探索精神.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.【重点】感受无理数产生的背景.【难点】会判断一个数是不是无理数.【教师准备】两张边长为1的正方形纸片,多媒体课件.【学生准备】两张边长为1的正方形纸片,复习有理数的运算法则及勾股定理有关知识.导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?探究活动1.已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 - 1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1拼成后的正方形是什么样的呢?问题2拼成后的大正方形面积是多少?问题3若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够用了”.巧设问题背景,顺利引入本节课题.思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.[知识拓展]正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA的对角线长度就不是有理数,数轴上的点P表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.通过生活中的实例,证实了确实存在不是有理数的数.1.在直角三角形中两个直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.4答案:B2.下列面积的正方形,边长不是有理数的是()A.16B.25C.2D.4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为,长度不是有理数的线段为.答案:略第1课时1.拼接正方形.2.做一做.3.a,b存在,但不是有理数.一、教材作业【必做题】教材第21页随堂练习及教材第22页习题2.1第1题.【选做题】教材第22页习题2.1第2题.二、课后作业【基础巩固】1.在正方形网格中,每个小正方形的边长为1,则网格上的ΔABC 中,边长不是有理数的线段有 ,在图中再画一条边长不是有理数的线段.【能力提升】2.在任意两个有理数之间都有无数个有理数. 假设a ,b 是两个有理数,且a <b ,在a ,b 两数之间插入一个数为 . 【拓展探究】3.把下列小数化成分数. (1)0.6;(2)0.7·;(3)0.3·4·.4.你会在下面的正方形网格(每个小正方形面积为1)中画出面积为10的正方形吗?试一试.【答案与解析】1.AB ,BC ,AC 略(解析:AB 2=42+12=17,BC 2=22+32=13,AC 2=22+42=20.)2.a+b2(解析:答案不唯一,如插入a 和b 正中间的数.)3.解析:(1)0.6=35; (2)设0.7·=x ,则10x =7.7·,∴9x =7,从而x =79;(3)设0.3·4·=x ,则100x =34.3·4·,∴99x =34,从而x =3499. 解:(1)0.6=35. (2) 0.7·=79. (3) 0.3·4·=3499. 4.略大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本课时通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.在教学过程中,没有刻意安排一些环节,帮助理解能力差的学生加深对“新数”的理解.设计更多的实例让理解能力差的学生较好地理解“新数”.为进一步学习“新数”,即第二课时的教学埋下伏笔.随堂练习(教材第21页)解:因为等边三角形中BC边上的高平分BC,所以h2=22-12=3,所以h不可能是整数,也不可能是分数.习题2.1(教材第22页)1.解:答案不唯一.如图(1)所示,线段AB,AD,AE,DE,BD,BC的长度都是有理数;线段AC,CE,BE的长度都不是有理数.2.解:答案不唯一.如图(2)所示的是几个符合要求的直角三角形.一个正方形木块的面积为8平方厘米,那么它的边长满足什么条件?可能是整数吗?可能是分数吗?解:它的边长的平方为8,没有整数的平方为8,所以边长不可能为整数,也没有一个分数的平方为8,所以边长不可能为分数.第课时掌握无理数的概念;能用所学定义正确判断所给数的属性.借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.在掌握估算方法的过程中,发展学生的数感和估算能力.【重点】能用所学定义正确判断所给数的属性.【难点】无理数概念的建立.【教师准备】计算器、立方体、多媒体课件.【学生准备】计算器、复习有理数的分类.导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如-1,0,2,3,…)分数(如13,-25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a2=2,b2=5中的a,b不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图]通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.一、数的小数表示面积为2的正方形的边长a究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?边长a面积S1<a<2 1<S<41.4<a<1.5 1.96<S<2.251.41<a<1.42 1.9881<S<2.01641.414<a<1.415 1.999396<S<2.0022251.4142<a<1.4143 1.99996164<S<2.00024449【思考】a的范围在哪两个数之间?左面的边长中,前面的数值和后面的数值相比,哪个更接近正方形的实际边长?【归纳总结】a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.【做一做】(1)请大家用上面的方法估计面积为5的正方形的边长b的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b≈2.2,精确到0.01,b≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.25992105…,它也是一个无限不循环小数.[设计意图]让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,c=1.25992105…是无限不循环小数的过程,体会无限逼近的思想.二、有理数的小数表示,明确无理数的概念思路一请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么? 3,45,59,-845,211.【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况? 思路二回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数. 【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数) 【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.三、例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2). 解:有理数有:3.14,-43,0.5·7·;无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2). 【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q的形式(q ≠0,p ,q 为整数且互质),而无理数不能.[设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类. [知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法: 1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数 答案:C2.以下各正方形的边长是无理数的是 ( ) A .面积为25的正方形 B .面积为425的正方形 C .面积为8的正方形 D .面积为1.44的正方形 解析:52=25,(25)2=425,(1.2)2=1.44.故选C .3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数. 4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n ,-1.4242242224…(相邻两个4之间2的个数逐次加1). (1)写出所有有理数; (2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n .(2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第2课时1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.一、教材作业【必做题】教材第24页随堂练习.【选做题】教材第25页习题2.2第2,4题.二、课后作业【基础巩固】1.面积为3的正方形的边长为x,则x()A.1<x<2B.2<x<3C.3<x<4D.4<x<52.一个正三角形的边长是4,高为h,则h是()A.整数B.分数C.有限小数D.无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是,则斜边长是数. 【拓展探究】4.设半径为a的圆的面积为20 π.(1)a是有理数吗?说说你的理由;(2)估计a的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数. (2)a≈4.5.(3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米. (2)1.73米.本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.随堂练习(教材第24页)解:有理数有:0.4583,3.7·,-17,18.无理数有:-π. 习题2.2(教材第25页) 1.解:-559180,3.97·,-234.10101010…(相邻两个1之间有1个0)是有理数,0.12345678910111213…(小数部分由相继的正整数组成)是无理数. 2.提示:(1)x 不是有理数. (2)x ≈3.2. (3)x ≈3.16. 3.(1)✕ (2) (3)✕ (4)✕4.解:5π,π-1,3.4141141114…(相邻两个4之间1的个数逐次加1)等,答案不唯一.由于本节的重点之一是让学生经历借助计算器探索无理数是无限不循环小数的过程,因此,要重视教材创设(或相同类型)的问题,针对内容应该花较多的时间,教师应积极引导,让学生有充足的时间借助计算器进行思考和交流,循序渐进地缩小范围,体会无限逼近的思想.本节渗透了用有理数近似地表示无理数和用有理数逼近无理数的数学思想,通过探索,学生容易理解“无限”,但对“不循环”一般不会有清楚的认识,只有逐步渗透理解,教学中不必多说.“逼近”思想可以借用中央电视台的“幸运52”的猜商品的价格游戏进行解释.为进一步让学生理解无理数的概念,应强调“无限不循环小数”与“无限循环小数”的联系和区别,前者不能化为分数,后者可以化为分数,但如何化成分数,教师不必深入讲解.鼓励学生自学教材中的“读一读”,了解无理数产生的历史背景和人类的科学精神,特别是对学有余力的学生,在教师引导下,可阅读“边长为1的正方形的对角线的长是无理数”的严格证明.一根长为5米的电线杆竖立于地面,为保证它的安全,要用三根钢丝把它固定,要求每根钢丝一头拉着电线杆的最上端,一头系在离电线杆3米远的地面木桩上,则每根钢丝的长要满足什么条件?它是有理数吗?大概是多长?〔解析〕每根钢丝的长要满足它的平方等于52+32,它不是有理数,大概是5.8米.解:由勾股定理,得钢丝长的平方等于52+32=34,但是找不到一个整数的平方是34,也找不到一个分数的平方是34,所以,它不是有理数,5.82=33.64,接近于34,所以大概为5.8米.2平方根1.了解数的算术平方根、平方根的概念,会用根号表示一个数的算术平方根和平方根.2.了解开方与平方是互逆运算,会利用平方运算求某些非负数的算术平方根和平方根.通过教学过程的参与,培养学生学习的主动性,提高数学表达和运算能力.。
第二章实数§2.1 认识无理数(一)教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法:引导—探究—归纳教学过程一、创设问题情境,引入新课【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.二、获取新知a=,请问:①a可能是整数吗?②a可能是分数吗?【议一议】:已知22a=的a为什么不是整数?【释一释】:释1.满足22a=的a为什么不是分数?释2.满足22【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣,产生了学习新数的必要性。
第二章一元一次不等式与一元一次不等式组1.不等关系一、学生知识状况分析学生的知识技能基础:在小学,学生已经学过一些关于不等关系的相关知识,知道生活大量存在着不等关系的量,了解“大于”、“小于”等符号的用法和意义,能比较两数的大小,并能用数学的语言表达。
学生活动经验基础:在相关的知识学习过程中,经历了建立方程模型和函数关系解决一些实际问题的数学化过程,初步具备了将生活中的数学现象抽象为数学问题或数学模型的能力,为分析量与量之间的关系积累了一定的经验,并在学习过程中形成了一定的合作交流能力,为进一步展开不等式的学习奠定了基础。
二、教学任务分析(一)教学目标:1、知识与技能目标①理解不等式的意义。
②能根据条件列出不等式。
③能用实际生活背景和数学背景解释简单不等式的意义。
2、过程与方法目标经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。
3、情感与态度目标感受生活中存在着的大量不等关系,通过用不等式解决实际问题,使学生进一步认识数学与人类生活的密切联系,激发学生学习数学的信心和兴趣。
(二)教学重点:①通过探寻实际问题中的不等式关系,认识不等式。
②根据实际问题建立合理的不等关系。
三、教学过程分析本节分为七个教学环节:第一环节引入新课、第二环节问题提出、第三环节活动探究、第四环节猜想归纳、第五环节运用巩固、第六环节课时小结、第七环节课后作业。
第一环节:创设情景,引入新课活动内容:寻找相等的量和不等的量师:我们学过等式,等式的定义是什么?生:表示相等关系的式子叫等式。
师:我们知道相等关系的量可以利用等式来描述。
同时,我们也知道现实生活中还存在许多反映不等关系的量。
师:比如,研究表明同学们每天睡觉的时间要不少于9小时;体育考试中合格的分数要不低于60分。
请同学们也举一些不等关系的例子。
生1:每天我都比他早起5分钟。
生2:我的年龄不小于13岁。
生3:我的体重不低于30公斤(同学们各抒己见)活动目的:通过这一活动,希望学生体会不等关系如相等关系一样处处存在,培养学生观察生活、乐于探究的品质。
活动效果:学生举出了许多反映不等关系的例子,不仅能从数字上,还能从实际生活中去体会不等关系。
第二环节:问题提出师:如何用式子来表示不等关系呢?师:展示投影片A(1)某厂今年的产值是a元,预计明年年产值增长率高于20%,如果明年的产值是b元,那么b和a满足的关系式是。
(2)如果某等腰三角形的底边用a cm表示,这边上的高为4 cm,如果这个三角形的面积不大于8 cm²,那么a应该满足的关系式为。
(注意:不大于的含义)(3)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高三边之和不得超过160cm。
设行李的长、宽、高分别为 a cm、b cm、c cm,请你列出行李的长、宽、高满足的关系式。
活动目的:在总结前面学生举例的基础上,提出问题,引起学生进一步思考,初步尝试运用不等式表示不等关系。
活动效果:学生尝试运用不等式表示不等关系。
第三环节:活动探究活动内容:投影B某中学准备在学校饭厅新添一个通风口,四周用长为xm(x≤5)的装潢条镶嵌(不计接缝),现有两种设计方案。
如下图:师:下面请大家讨论,按题意进行解答。
(学生讨论、解答后,教师根据情况进行点评) (1)问 题:(2)探 究:投影C通过测量一棵树围(树干的周长)可以计算出它的树龄。
通常规定以树干离地面1.5米的地方作为测量部位,某树栽种时的树围为5㎝,以后树围每年增加约为3㎝,这棵树至少生长多少年其树围才能超过2.4m ?(只列关系式)师:请大家互相讨论后列出关系式生:设这棵树至少生长x 年其树围才能超过2.4m ,得 3x+5>240活动目的:通过运用不等式表示不等关系,加深对不等式的理解,会用不等式表示实际问题中的不等关系。
活动效果:初步掌握运用不等式表示不等关系。
第四环节:归纳定义 活动内容:方案一圆的面积不小于1.5m 2正方形面积不大于1m 2 X 满足的关系式通风口规格a12 8 S 正与S 圆的关系圆的面积/m 2正方形的面积/m2x/m师:投影D观察由上述问题得到的关系式,比如:162l ≤1,π42l >1.5,π42l >162l ,3x+5>240, 它们的共同特点:都是用 连接的式子。
生:不等号师:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
(特别的,不等号还包含“≠”)活动目的:通过学生自己总结出不等式的概念,培养学生总结归纳的能力。
活动效果:通过学生自己观察式子特点,理解不等式的定义。
第五环节:运用巩固 活动内容:练习设计投影E1、用适当的符号表示下列关系:(1)a 是非负数;(2)直角三角形斜边 c 比它的两直角边 a 、b 都长; (3)x 与 17 的和比它的5倍小;(4)两数的平方和不小于这两数积的2倍。
2、表达式①x 2≥0;②2a+4b ≠3;③5m+2n ;④x+y<0;⑤3x+2=9中的不等式有3、801班班长拿了56元钱去给班内20名优秀学生买奖品,奖品有两种:钢笔和笔记本。
已知钢笔每支5元,笔记本每本3元,如果买x 支钢笔,则列出关于x 的不等式是 。
4、某厂今年的产值为100万元,预计明后两年平均每年增长率为x%,如果按此速度发展,后年该厂产值将超过a 万元,请用不等式表示a 与x 的关系式活动目的:对本节知识进行巩固练习,及时反馈。
活动效果:学生会运用适当的不等号表示不等关系。
第六环节:课时小结活动内容:师生相互交流,总结本节重难点。
投影E本课我主要学会了 。
引导学生回答:能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解。
通过不等关系的式子归纳出不等式的概念。
活动目的:归纳本课内容,培养学生的归纳意识及能力。
活动效果:学生能归纳自己的感受与收获。
第七环节:课后作业习题2.1: 第1、2、3、4题四、教学反思不等式是现实世界中不等关系的一种数学表示形式,它是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
本节课充分通过学生举例和老师的选例,让学生体会在现实生活中除了存在许多等量关系外,更多的是不等关系的存在,并通过感受生活中的大量不等关系,初步体会不等式是刻画量与量之间关系的重要数学模型。
经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。
在教学中,要充分相信学生的潜力,让学生真正成为学习的主体,让学生的思维在数学课堂上尽情地驰骋,老师要做好课堂的引导者、参与者、合作者,与学生平等地进行交流与学习。
2.不等式的基本性质一、学生知识状况分析本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。
学生已经掌握等式的基本性质,同时经历了解一元一次方程、二元一次方程组的研究过程及方法,为进一步学习不等式的基本性质奠定了基础。
学习时可以类比七年级上册学习的等式的基本性质。
二、教学任务分析不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。
本节课教学目标:(1)知识与技能目标:①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。
(2)过程与方法目标:①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。
③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
(3)情感与态度目标:①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。
②尊重学生的个体差异,关注学生对问题的实质性认识与理解。
三、教学过程分析本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。
第一环节:情景引入,提出问题活动内容:利用班上同学站在不同的位置上比高矮。
请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。
问题1:怎样比才公平?活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。
活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。
第二环节:活动探究,验证明确结论活动内容:参照教材与多媒体课件提出问题:(1)还记得等式的基本性质吗?请用字母表示它。
不等式有类似的性质吗?先猜一猜。
(2)用等号或不等号完成下面的填空。
如果2 < 3;那么2 × 53 × 5;2 ×3 × ; 2 × (-1) 3 × (- 1); 2 × (- 5) 3 × (- 5);2 × (-)3 × (-).(3) 验证你的结论,用字母表示你所发现的结论。
(4) 与同伴交流你的结论,并展示。
生1:等式的基本性质1用字母可以表示为:c b c a b a ±=±∴=, ,类似地得到,如果在不等式的两边都加上或都减去同一个整式,结果不等号方向不变。
字母表示为:∵a >b ,∴a ±c >b ±c ;或∵a >b ,∴a ±c <b ±c 。
生2:对于等式的基本性质2,用字母可以表示为:c b c a c b c a b a ÷=÷⨯=⨯∴=,, ,其中0≠c 。
经过前面的探索,可类似地得到:如果不等式两边同时乘以(或除以)同一个正数,不等号方向不变;如果不等式两边同时乘以(或除以)同一个负数,不等号的方向要发生改变。
字母表示如下:c b c a c b c a c b a ÷>÷⨯>⨯∴>>,,0, c b c a c b c a c b a ÷<÷⨯<⨯∴><,,0, c b c a c b c a c b a ÷<÷⨯<⨯∴<>,,0, c b c a c b c a c b a ÷>÷⨯>⨯∴<<,,0,活动目的:通过等式的基本性质对比不等式的基本性质,由特殊的数值到字母代表数,从中归纳出一般性结论。