HEM法蓝宝石生长
- 格式:ppt
- 大小:538.00 KB
- 文档页数:9
不同生长方法的蓝宝石颜色问题浅析(2013-03-06 18:24:26)转载▼标签:分类:蓝宝石晶体蓝宝石晶体颜色问题掺杂问题杂谈蓝宝石晶体生长前言恭祝大家在新的一年里有新的气象;好久不发表文章了,在这就说说为何停顿这么久时间吧!首先肯定不会是因为接到某些官员的恐吓电话而不写博文了,是因为有很多更值得忙的事;这些就在最近的博文里慢慢论述吧!在我的《笑话连篇——真假自动化》(2012-09-15 10:25:34)的评论中有这么一段留言“............HEM 的创始人Fred Schmid差不多80岁了,天才的人物还奋战在第一线搞技术,国人惭愧啊!”。
不管是洋人还是国人,Fred Schmid作为一个晶体生长的老工程师是值得尊敬。
不过这么舔洋人屁眼的话语我实在看不过去。
说这话的人实在是没有什么专业知识,也没见过什么世面。
如果Fred Schmid能称上天才人物的话,中国晶体生长界有太多人需要用“宇宙无敌”来形容了。
为了防止有人再发表“碳是黑色的,掺入蓝宝石晶体,晶体应该也是黑色.........”的笑话,就给大家分析一下不同方法生长出来的蓝宝石的颜色问题。
我讲的未必都对,听不听是你的事,怎么讲是我的事。
宝石材料的显色机理众所周知,白光是一种混合光,由各种波长(各种颜色)混合显色的结果。
当白光入射的时候,如所有的光都通过的时候,则蓝宝石为无色;全部反射,则呈现白色;部分吸收,则呈现剩余光的颜色。
例如:吸收红光蓝宝石呈现青色;吸收黄光蓝宝石呈现紫色色;吸收绿光呈现蓝色;反之则反。
杂质离子的引入方式蓝宝石材料呈现颜色的时候,一定是引入了杂质离子。
杂质离子的引入途径只有两个:途径化铝原料中的杂质;途径2是热场包括保温、发热体和坩埚引入的杂质。
(在下一篇博文《VHGF 原理和优劣浅析》中顺带讲讲各种生长方法杂质离子引入的几率高低问题)不同生长方法的颜色分析同样呈现红色,不同方法生长的蓝宝石晶体是不一样的。
HEM藍寶石並非所有的藍寶石是平等的。
HEM藍寶石有著良好記錄的是最高的商業品質,同時還可以提供有競爭力的價格。
我們的廣大藍寶石生產能力為我們的客戶提供他們所需要的質量和靈活性。
大尺寸的晶體具有卓越品質的結晶,是我們的強項。
這種組合的高純度,結晶完美,低光散射給我們的客戶在其應用程序的優勢。
讓我們經驗豐富的人員配備最先進的製造工藝在世界上幫助您與藍寶石的需要。
∙晶體尺寸/產品類型∙藍寶石分級系統∙HEMEX藍寶石∙取向可用∙傳輸∙屬性∙HEM光學性質∙HEM物理和力學性能∙藍寶石應用質量體系我們成熟的過程,供應商和製造技術以及我們的ISO標準的質量體系,確保您的訂單將被運上的時間和規範。
HEM藍寶石晶體尺寸/產品類型水晶系統,公司有兩個獨立的晶體生長的設施設在美國。
這些設施都採用了最先進的設備,以確保最大的時間,產量,質量和價值,最終為我們的客戶。
我們的設施,最近經過升級的所有增長的基礎設施系統和備份系統,以確保我們的客戶提供不間斷的優質HEM藍寶石。
點擊這裡HEM藍寶石屬性∙HEM藍寶石水晶大小:8“直徑,11”直徑13.5“直徑,15“直徑26”直徑****(R&D生產只)∙棒材和管材製造的15“長∙空白到15“直徑,正方形和長方形,以14“長∙藍寶石坯和棒材可高達15“厚!產品類型∙藍寶石棒製造不同方向,大小和表面處理,以符合您進料的要求。
這些桿都採用先進的加工技術和工具,最大限度地提高效率而不傳授損壞敏感外徑。
∙藍寶石空白的切片使用我們的專利FAST(固定砂輪切片技術),線鋸對我們的一個或多個車床。
空白可製造的“為切片”表面光潔度或細地完成。
CSI有許多不同的研磨技術,提供高品質,低完成地下損害。
研磨技術使用的確定是根據您的要求為空白厚度,表面平整度,粗糙度和經濟上的考慮。
∙藍寶石窗戶都採用了最先進的製造,方向以及測試和測量設備。
我們的藍寶石窗口可以製作十分之一波傳播波前值與激光表面拋光質量。
蓝宝石晶体的生长方法自1885年由Fremy、Feil和Wyse利用氢氧火焰熔化天然红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”,迄今人工生长蓝宝石的研究已有100多年的历史。
在此期间,为了适应科学技术的发展和工业生产对于蓝宝石晶体质量、尺寸、形状的特殊要求,为了提高蓝宝石晶体的成品率、利用率以及降低成本,对蓝宝石的生长方法及其相关理论进行了大量的研究,成果显著。
至今已具有较高的技术水平和较大的生产能力,为之配套服务的晶体生长设备——单晶炉也随之得到了飞速的发展。
随着蓝宝石晶体应用市场的急剧膨胀,其设备和技术也在上世纪末取得了迅速的发展。
晶体尺寸从2吋扩大到目前的12吋。
低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。
总体说来,蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。
目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有焰熔法、提拉法、区熔法、导模法、坩埚移动法、热交换法、温度梯度法、泡生法等。
而泡生法工艺生长的蓝宝石晶体约为目前市场份额的70%。
LED蓝宝石衬底晶体技术正属于一个处于正在发展的极端,由于晶体生长技术的保密性,其多数晶体生长设备都是根据客户要求按照工艺特点定做,或者采用其他晶体生长设备改造而成。
下面介绍几种国际上目前主流的蓝宝石晶体生长方法。
图9 蓝宝石晶体的生长技术发展1 凯氏长晶法(Kyropoulos method)简称KY法,中国大陆称之为泡生法。
泡生法是Kyropoulos于1926年首先提出并用于晶体的生长,此后相当长的一段时间内,该方法都是用于大尺寸卤族晶体、氢氧化物和碳酸盐等晶体的制备与研究。
上世纪六七十年代,经前苏联的Musatov改进,将此方法应用于蓝宝石单晶的制备。
该方法生长的单晶,外型通常为梨形,晶体直径可以生长到比坩锅内径小10~30mm的尺寸。
CZ,KY,HEM法比較1:柴氏拉晶法(Czochralski method),簡稱CZ法.先將原料加熱至熔點後熔化形成熔湯,再利用一單晶晶種接觸到熔湯表面,在晶種與熔湯的固液介面上因溫度差而形成過冷。
於是熔湯開始在晶種表面凝固並生長和晶種相同晶體結構的單晶。
晶種同時以極緩慢的速度往上拉升,並伴隨以一定的轉速旋轉,隨著晶種的向上拉升,熔湯逐漸凝固於晶種的液固介面上,進而形成一軸對稱的單晶晶錠.2:凱氏長晶法(Kyropoulos method),簡稱KY法,大陸稱之為泡生法.其原理與柴氏拉晶法(Czochralskimethod)類似,先將原料加熱至熔點後熔化形成熔湯,再以單晶之晶種(SeedCrystal,又稱籽晶棒)接觸到熔湯表面,在晶種與熔湯的固液介面上開始生長和晶種相同晶體結構的單晶,晶種以極緩慢的速度往上拉升,但在晶種往上拉晶一段時間以形成晶頸,待熔湯與晶種介面的凝固速率穩定後,晶種便不再拉升,也沒有作旋轉,僅以控制冷卻速率方式來使單晶從上方逐漸往下凝固,最後凝固成一整個單晶晶碇.3.美國Crystal Systems用於生長單晶藍寶石(Sapphire)的熱交換法(Heat exchange method,HEM熱交換法),它的長晶特點是通過氦氣冷卻坩堝的中心底部,保持籽晶不被熔化,並在長晶過程中帶走熱量,控制單晶不斷地生長,HEM法制得的晶體缺陷少且可生產大尺寸晶體以上三種方法是現在各國最常用的,各有各的好處,但已成本來算,基本上能長得大,缺點少就是最佳的,以現在來說HEM法與泡生法在生長尺寸上來說,沒有太大差異,但成本上泡生法較低,而現在CrystalTech HEM法爐體,生長晶體,最大只能到60kg,故二者必須做一抉擇,依本人建議使用泡生法的爐子較佳,至少他目前已經可以長到85kg,且餘料還可做其他應用之銷售,更可降低成本三種方法之成本藍寶石晶體之成本,是需要將各項所發生的項目,累積計算的,但基本上只要生產出所需要的產品量越多,加工及耗材越少,成本就越低,這是不爭的事實,如同MOCVD生長片數少是一樣的,但現在無法計算其成本,只有等操作時,才可詳細計算,至於兆晶與華夏的成本相差很大,是因為 1.華夏晶體長的小而少,切,磨,拋,都必須委外,而兆晶是自己加工且晶棒由鑫晶鑽提供,自然成本低,在加上在加工制程中,不斷的改進成本更可掌握1、蓝宝石详细介绍蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。
蓝宝石晶体的生长方法自1885年由Fremy、Feil和Wyse利用氢氧火焰熔化天然红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”,迄今人工生长蓝宝石的研究已有100多年的历史。
在此期间,为了适应科学技术的发展和工业生产对于蓝宝石晶体质量、尺寸、形状的特殊要求,为了提高蓝宝石晶体的成品率、利用率以及降低成本,对蓝宝石的生长方法及其相关理论进行了大量的研究,成果显著。
至今已具有较高的技术水平和较大的生产能力,为之配套服务的晶体生长设备——单晶炉也随之得到了飞速的发展。
随着蓝宝石晶体应用市场的急剧膨胀,其设备和技术也在上世纪末取得了迅速的发展。
晶体尺寸从2吋扩大到目前的12吋。
低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。
总体说来,蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。
目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有焰熔法、提拉法、区熔法、导模法、坩埚移动法、热交换法、温度梯度法、泡生法等。
而泡生法工艺生长的蓝宝石晶体约为目前市场份额的70%。
LED蓝宝石衬底晶体技术正属于一个处于正在发展的极端,由于晶体生长技术的保密性,其多数晶体生长设备都是根据客户要求按照工艺特点定做,或者采用其他晶体生长设备改造而成。
下面介绍几种国际上目前主流的蓝宝石晶体生长方法。
图9 蓝宝石晶体的生长技术发展1 凯氏长晶法(Kyropoulos method)简称KY法,中国大陆称之为泡生法。
泡生法是Kyropoulos于1926年首先提出并用于晶体的生长,此后相当长的一段时间内,该方法都是用于大尺寸卤族晶体、氢氧化物和碳酸盐等晶体的制备与研究。
上世纪六七十年代,经前苏联的Musatov改进,将此方法应用于蓝宝石单晶的制备。
该方法生长的单晶,外型通常为梨形,晶体直径可以生长到比坩锅内径小10~30mm的尺寸。
蓝宝石生产相关信息一、蓝宝石生长设备厂家 (2)1. 晶棒生长设备厂家 (2)2. 晶圆切割设备厂家 (2)3. 晶片研磨抛光设备厂家 (2)二、蓝宝石生长技术 (3)1. 提拉法(Cz) (3)2. 热交换法 (4)三、蓝宝石研磨抛光技术 (5)四、蓝宝石质量检测体系 (6)1. 国内外标准 (6)2. 质量要求 (6)3. 检测方法和设备 (6)一、蓝宝石生长设备厂家1. 晶棒生长设备厂家(1) 公司名称:美国thermal technology llc网址:/产品:Model 7215-CIB Czochralski Crystal Grower蓝宝石生长设备以俄罗斯装置较好。
但俄罗斯利用泡生法生长蓝宝石居多,因此,泡生法生长设备相对较多。
一般情况下,可以采用turkey技术,购买设备由设备厂家提供生长技术。
下面两家不知道是不是俄罗斯比较有名的设备厂家。
(2) 公司名称:俄罗斯pryroda网址:/产品:OMEGA系列。
(3) 公司名称:俄罗斯tsagriol网址:http://eng.tsagriol.ru/about/partners/国内基本上没有成熟的蓝宝石晶棒生长设备厂家,有两家自称是制造该设备,但不知道是否有蓝宝石晶片制造商使用其设备。
(4) 西安百瑞科技网址:/(5) 上海晨华电炉有限公司网址:/2. 晶圆切割设备厂家(1) 日本安永(2) 日本高鸟(3) 德国Gn单线切割机3. 晶片研磨抛光设备厂家(1) 公司名称:英国莱玛特,沈阳有工厂网站:/客户:日本NICHIA(兰宝石衬底最大的公司)(2) 公司名称:美国英格斯,香港有工厂,深圳有办事处网站:/controller.php?module=range&act=Show&id=48 (3) 韩国NTS,北京有办事处网址:/二、蓝宝石生长技术1. 提拉法(Cz)提拉法又称丘克拉斯基,是丘克拉斯基((J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
藍寶石單晶生長方法介紹藍寶石單晶的長晶方法有很多種,其中最常用的主要有九種,介紹如下:1凱氏長晶法(Kyropoulos method)簡稱 KY 法,中國大陸稱之為泡生法。
其原理與柴氏拉晶法(Czochralski method)類似,先將原料加熱至熔點後熔化形成熔湯,再以單晶之晶種(Seed Crystal,又稱籽晶棒)接觸到熔湯表面,在晶種與熔湯的固液界面上開始生長和晶種相同晶體結構的單晶,晶種以極緩慢的速度往上拉升,但在晶種往上拉晶一段時間以形成晶頸,待熔湯與晶種界面的凝固速率穩定後,晶種便不再拉升,也沒有作旋轉,僅以控制冷卻速率方式來使單晶從上方逐漸往下凝固,最後凝固成一整個單晶晶碇,凱氏長晶法是利用溫度控制來生長晶體,它與柴氏拉晶法最大的差異是只拉出晶頸,晶身部分是靠著溫度變化來生長,並在拉晶頸的同時,調整加熱電壓,使熔融的原料達到最合適的長晶溫度範圍,讓生長速度達到最理想化,因而長出品質最理想的藍寶石單晶。
國外許多生長藍寶石的廠商,也是採用此方法以生長藍寶石單晶,凱氏長晶法在生長過程中,除了晶頸需拉升外,其餘只需控制溫度的變化,就可使晶體成型,少了拉升及旋轉的干擾,比較好控制製程,因而可得到較佳的品質。
所以生長的藍寶石單晶具有以下的優點: 1.高品質(光學等級)。
2.低缺陷密度。
3.大尺寸。
4.較快的生長率。
5.高產能。
6.較佳的成本效益。
凱氏長晶法原理示意圖2柴氏拉晶法(Czochralski method)簡稱 CZ 法。
柴氏拉晶法之原理,先將原料加熱至熔點後熔化形成熔湯,再利用一單晶晶種接觸到熔湯表面,在晶種與熔湯的固液界面上因溫度差而形成過冷。
於是熔湯開始在晶種表面凝固並生長和晶種相同晶體結構的單晶。
晶種同時以極緩慢的速度往上拉升,並伴隨以一定的轉速旋轉,隨著晶種的向上拉升,熔湯逐漸凝固於晶種的液固界面上,進而形成一軸對稱的單晶晶棒。
在拉升的過程中,透過控制拉升速度的快慢的調配,分別生長晶頸(Neck)、晶冠(Shoulder)、晶身(Body)以及晶尾。
冷心放肩微量提拉法生长蓝宝石位错分析冷心放肩微量提拉法生长蓝宝石位错分析1、简介蓝宝石(Al2O3)是一种很重要的单晶,因其出众的物理和化学特性,有很广泛的应用。
大尺寸、高质量蓝宝石在军事窗口材料领域占有优势。
然而,众所周知,位错是蓝宝石中非常重要且很常见的一种缺陷,会对蓝宝石的生长,特性和塑性形变产生重要的影响。
迄今为止,只有少数几种方法如热交换法(HEM),温度梯度法(TGT)等能够生产出大尺寸的蓝宝石。
然而,这些方法都因其生长方式而具有固有的位错特性,在本文中,我们基于直拉法和泡生法,发明出一种新的长晶方法:冷心放肩微量提拉法(SAPMAC),并通过化学蚀刻,电子显微镜扫描和伯格- 巴雷特X射线形貌探测等方法来研究蓝宝石的位错。
2、实验2.1 SAPMAC法生长蓝宝石单晶SAPMAC法是基于直拉法和泡生法而发明的一种生长大尺寸蓝宝石单晶的方法,通过使用一种Ikal-200改进型单晶生长炉,其中包含钼制坩锅,钨发热体和钼制隔热屏等。
钨发热体设计成鸟笼状,顶端焊接在具有水冷的铜电极上,通过调整发热体的电阻和水冷系统来建立合适的温度梯度。
在长晶开始前,需要先把钼坩埚空烧至1800°数个小时,用以排除坩埚表面杂质,从而减少污染。
把准备好的氧化铝颗粒块(纯度至少99.995%)装入坩埚中,把具有一定晶相的籽晶通过籽晶夹安装在热交换器底部。
把炉内抽真空至小于1.0×10-4Pa。
加热至熔化氧化铝原料并保持恒温数个小时。
缓慢降低溶液温度,旋转并下降籽晶至其几何中心接触溶液的冷心位置,进行引晶。
引晶结束后,通过微量提拉籽晶和降温来完成晶体生长过程中的扩肩、等径、退火等过程。
一些技术参数参见Table1。
2.2 样品制备蓝宝石单晶通过SAPMAC法生长,从晶锭不同的方位垂直的截取(0001)晶相的蓝宝石样品(10mm×10mm×2mm),所有的样品表面都经机械化学抛光(CMP)处理过。
1 蓝宝石晶体的特质蓝宝石晶体是一种理想的晶体材料,具有良好的导热性、透光性、化学稳定性,且耐高温、耐腐蚀、高强度、高硬度,被广泛应用于抗高压器件、耐磨损器件、红外制导、导弹整流罩等太空、军事、科研等高科技领域[1]。
由于天然蓝宝石稀少,成本高以及化学成分不纯,因而不能被工业材料广泛使用,工业上大量应用的蓝宝石是人工合成。
本文对蓝宝石晶体的主要生长方法作了较详细介绍,综述了国内外的一些研究成果并讨论了目前存在的问题。
2 蓝宝石晶体主要生长方法2.1 坩埚下降法(VGF )坩埚下降法的基本原理如图1所示,其生长过程为:将晶体生长的原料装入坩埚内,使其通过具有单向温度梯度的生长炉(温度上高下低),随着坩埚逐渐向下的连续运动,固液界面沿着与其运动相反的方向定向生长,熔体自下而上凝固,从而实现晶体生长过程的连续性。
坩埚形状对于是否能成功获得优质的单晶具有决定性的作用,通过设计合适的坩埚尖端形状,使得只有一个晶粒长大,终止其他晶粒的生长,以成功获得单晶,也可以在坩埚底部放置加工成一定形状和取向的籽晶,以实现单晶生长。
采用坩埚下降法生长出的晶体内应力及位错密度大,但由于坩埚密封,晶体不易被污染,纯度较高。
2.2 热交换法(HEM)热交换法应用于蓝宝石晶体生长最早在1970年,由Schmid 和Viechnicki 提出[2]。
美国Crystal Systems 公司的S.Frederick 等人[3]将热交换法用于蓝宝石晶体生长已有30多年的历史。
目前热交换法所生长的晶体直径可达430mm [4]。
热交换法的长晶原理为:在电阻加热炉底部装有热交换器,内有冷却氦气流过。
装有原料的坩埚置于热交换器的上方,籽晶放于坩埚底部中心处。
当坩埚里面的原料被加热熔化后,籽晶由于底部热交换器的冷却作用并未熔化,此时加大氦气流量,从熔体中带走的热量增加,籽晶逐渐长大,最后使坩埚内的熔体全部结晶。
生长过程中,固液界面处的温度梯度是晶体生长的驱动力,熔体的温度可通过调节石墨加热器的功率来改变,而晶体的热量可以调节通过氦气的流量带走。
HEM&KY长晶方法比对1.简述表2.工艺分析热交换法(HEM)1970年,美国的Schmid和Viechnicki发明了一种新的单晶生长方法,称为Gradient Furnace Technique,1974年将该方法正式命名为热交换法(HEM)。
热交换法的基本原理是利用热交换器带走热量,使生长炉内形成一个下冷上热的纵向温度梯度,通过控制热交换器内气体流量及加热功率的大小来控制温场,从而实现晶体的生长,其实质是熔体在坩埚内的直接凝固。
将装有原料的坩埚放在热交换器中心,籽晶置于坩埚底部中心处并固定于热交换器一端,加热坩埚内的原料至完全熔化,由于氦气流过热交换器冷却,籽晶并不熔化。
待温场稳定后,逐渐加大氦气流量,从熔体中带走的热量随之加剧,使熔体延籽晶逐渐凝固并长大,同时逐渐降低加热温度,直至整个坩埚内的熔体全部凝固。
Schmid认为,对于热交换法,生长过程中应严格控制降温的速率,其值要小于15K/h,而当炉内环境温度接近熔点(Tm)+5K时,降温速率最好控制在5K/h以下,否则,单晶体内极易产生气泡,而且晶体内的位错密度也会迅速增加[28]。
由此可见,愈小的降温速率愈有助于获得良好的晶体。
利弊分析:热交换法的主要优势在于:固液界面位于坩锅内,坩埚不做任何移动,受外力作用干扰少;通过改变坩锅形状可以改变晶体生长的形状,减少对流的影响,因此该工艺较适于制造大尺寸的蓝宝石单晶。
缺点:氦气问题:氦气冷却,需要建氦气站、氦气循环系统,成本高,密封难;湍流引起缺陷;同时非真空生长容易引入微气泡。
HEM法籽晶置于坩埚底部,晶体生长过程晶体生长率以及生长界面的位置不能直接观察或测量问题,是个靠测温度模拟的过程,温度变化是无法真正反应晶体生长率和界面的位置,十分容易生长过快引起大量的缺陷,所以对电压的稳定是苛刻。
所以HEM的晶体的云层和微散点较难于很好的控制。
单晶性问题:HEM法籽晶在底部以及晶体和坩埚壁接触,会产生应力或寄生成核,容易多晶,单晶性一定不好。
蓝宝石晶体生长方法研究作者:周林来源:《硅谷》2013年第18期摘要蓝宝石单晶由于其优良的综合性能而成为当前重要的技术晶体材料之一,在各个领域都具有广泛的应用。
本文简述了蓝宝石单晶的主要性能,主要介绍了几种重要的蓝宝石单晶生长方法,并分析了各种方法的特点,最后概括了蓝宝石单晶目前及今后的主要发展方向,指出稳定工艺才是企业成熟的基础。
目前使用热交换法生长蓝宝石,最有可能在不断地增加晶体直径的情况下保持甚至提高晶锭的利用率,从而降低生产成本,在未来赢得更多更大的市场。
关键词大尺寸蓝宝石单晶;提拉法;泡生法;导模法;热交换法中图分类号:TB321 文献标识码:A 文章编号:1671-7597(2013)18-0069-02蓝宝石又称为刚玉,是一种氧化铝的单晶,这种晶体的机械、光学性能和抗化学稳定性都很稳定,而且可以在接近2000℃的温度下使用,并保持其优异的力学和热血性能,这些都源于蓝宝石独特的晶格结构。
几年来,蓝宝石市场不断地被开发,已经覆盖了国防、科技和民用工业等很多新的领域,特别是作为现在最理想的衬底材料被应用在半导体二极管的生产中,成为一种重要的高新技术晶体。
目前国内已有多家生长蓝宝石晶体的公司,生长的蓝宝石最大可以重达130 kg,直径达400 mm以上(如图1)。
但这些技术都不太成熟,随之科学技术的发展,蓝宝石市场对晶体材料的重量、形状等要求也日益苛刻。
而且由于在实际生长和加工过程的难度很大,对设备、人员的要求也很大,所需要的蓝宝石晶坯的规格也越来越多,所以能够低成本、高质量地生长蓝宝石单晶成为目前蓝宝石上游商家的主要发展方向,如果技术成熟可以极大的满足当前对大尺寸蓝宝石晶体的需求。
1 蓝宝石生长方法从最早的火焰法生长蓝宝石到如今的热交换法,已经有无数的生长方法被不断的研究及改进,但总体来说只有一个目的,能够得到低成本、高质量的大尺寸蓝宝石单晶。
整体看来,大部分的蓝宝石晶体都是采用熔体生长的方式。
蓝宝石各种生长方法2011-03-09 14:341.1蓝宝石生长方法1.1.1焰熔法Verneuil (flame fusion)最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳叶法。
1)基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种晶上固结逐渐生长形成晶体。
2)合成装置与条件、过程焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在一个冷却的结晶杆上结成单晶。
下图是焰熔生长原料及设备简图。
这个方法可以简述如下。
图中锤打机构的小锤7按一定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。
氢经入口流进,在喷口和氧气一起混合燃烧。
粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。
炉体4设有观察窗。
可由望远镜8观看结晶状况。
为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。
焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。
A.供料系统原料:成分因合成品的不同而变化。
原料的粉末经过充分拌匀,放入料筒。
如果合成红宝石,则需要Al2O3粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。
三氧化二铝可由铝铵矾加热获得。
料筒:圆筒,用来装原料,底部有筛孔。
料筒中部贯通有一根震动装置使粉末少量、等量、周期性地从筛孔漏出。
震荡器:驱动震动棒震动,使料筒不断抖动,以便原料的粉末能从筛孔漏出。