蓝宝石晶体生长方法
- 格式:pdf
- 大小:2.91 MB
- 文档页数:35
蓝宝石材料的制备和性能研究蓝宝石是一种非常具有价值和观赏性的宝石,其高端的价值使得其在珠宝、光学和电子等领域得到广泛的应用。
然而,对于蓝宝石材料的制备和其性能的研究仍然是一个热门的研究领域。
这篇文章将从蓝宝石材料的制备方法、研究现状和未来发展方向进行探讨。
一、蓝宝石材料的制备方法蓝宝石是一种氧化铝,其晶体结构为六方最密堆积。
制备蓝宝石具有多种不同的方法,例如:1. 单晶生长法单晶生长法是一种比较常用的制备蓝宝石的方法,具体原理是在高温高压的环境下,通过控制显微镜下小晶核的生长,从而得到高质量的蓝宝石晶体。
这种方法需要掌握严格的温度和压力条件,同时还需要对种子晶体的选择进行严格控制。
2. 溶胶-凝胶法溶胶-凝胶法是一种相对简单的制备方法,它通过将氧化铝溶解在水中,加入草酸等化学试剂,产生凝胶状物质,再通过干燥和煅烧,最终得到高质量的蓝宝石材料。
这种方法的优点在于成本低廉,操作简单,但是制备出的材料质量有一定的限制。
3. 水热合成法水热合成法是一种新型的合成方法,它通过在高温高压的水溶液中反应氧化铝和碱金属碱土金属等化学试剂,制备蓝宝石材料。
这种方法具有高效、环保等优点,但是对反应条件的控制比较困难。
二、蓝宝石材料的性能研究现状蓝宝石材料的性能研究主要包括其物理性质和光学性质等方面,下面将分别进行介绍。
1. 物理性质在物理性质方面,蓝宝石材料具有较高的硬度、抗腐蚀性和耐高温性等特点,这些特性决定了蓝宝石在各种领域的应用价值。
此外,蓝宝石材料还具有较好的导热性和导电性能,在电子、光电、导热等领域也具有广泛的应用前景。
2. 光学性质在光学性质方面,蓝宝石材料具有非常优异的特性,例如高透明度、高折射率、高反射度、高旋光性等等。
这些性质使得蓝宝石在光学器件、激光技术、LED等领域有着不可替代的地位。
三、蓝宝石材料未来的发展方向随着材料科学和技术的不断发展,蓝宝石材料在未来的发展方向也发生了一系列的改变。
1. 晶体品质的提高在蓝宝石单晶生长领域,人们一直在追求晶体品质的提高,例如单晶中晶陷、丝状晶等缺陷的减少,这样才能获得更高质量的蓝宝石晶体,从而满足高端市场的需求。
蓝宝石晶体材料蓝宝石是一种十分珍贵的宝石,它以其独特的蓝色和高贵的气质而受到了人们的喜爱。
蓝宝石晶体是蓝宝石的原始形态,它具有很高的价值和广泛的应用。
蓝宝石晶体的化学组成是铝和氧的化合物,化学式为Al2O3。
它的结晶系统为三斜晶系,晶体形状多为长方体或六角柱状。
蓝宝石晶体的硬度非常高,达到9级,仅次于钻石,因此被广泛用作宝石和工业用途。
蓝宝石晶体的最大特点就是它的蓝色。
这种蓝色有时被形容为“天空般的蓝色”或“夜空中的星星”。
蓝宝石晶体的蓝色来源于其中微量的铁和钛元素,而这些元素的含量和晶体的色调有很大关系。
蓝宝石晶体的颜色越深越纯净,价值也就越高。
蓝宝石晶体具有很高的折射率和色散率,使得它在光学领域有重要的应用。
蓝宝石晶体常被用来制作光学镜头、激光器和红外窗口。
由于蓝宝石晶体具有非常好的透明度,可以在可见光和红外光波段中传导光线,因此非常适合用作光学材料。
此外,蓝宝石晶体还具有一些特殊的物理性质。
它具有较高的热导率和导电率,因此常被用作散热材料和电子元器件的基底。
另外,蓝宝石晶体还具有较低的热膨胀系数,能够在高温和压力环境下保持稳定性,因此广泛应用于高温热力学和科学研究。
蓝宝石晶体的制备过程相对较复杂。
一般来说,蓝宝石晶体是通过熔融法生长的。
首先,将铝和氧化物混合在一起,并在非常高的温度下熔化,形成蓝宝石熔体。
然后,将熔体缓慢冷却,使蓝宝石晶体逐渐生长。
最后,将生长的晶体从熔体中分离出来并进行加工,形成成品。
总之,蓝宝石晶体是一种非常珍贵和有价值的材料,具有广泛的应用前景。
它的独特蓝色和高贵气质使其成为宝石行业和光学工业中的重要材料。
它的独特物理性质和制备过程也使其在其他领域得到了广泛的应用。
泡生法生长蓝宝石晶体1 引言无色蓝宝石(α- Al2O3)属六方晶系,最高工作温度可以达到1900 ℃。
目前以其特殊的物理化学性质、价格优势和晶体尺寸而成为光电子和微电子产业中用量最大的无机氧化物晶体材料,尤其是在本世纪的固体光源革命中,以蓝宝石为衬底的GaN基蓝绿光LED产业的大力发展,不断推动着对蓝宝石生长技术和晶体质量的研究。
此外,由于蓝宝石晶体易于获得大尺寸单晶,而且其热噪音仅为石英玻璃的1.9倍,模式因子Q比石英玻璃高两个数量级,故以蓝宝石晶体作为干涉仪光学介质将极大地提高光学灵敏度。
蓝宝石晶体已经被美国国家自然科学基金委员会作为L IGO (Laser Interferometer Gravitational Wave Observatory)计划中首选的光学材料。
因此高光学质量和大尺寸蓝宝石晶体生长技术仍然是产业界探索和研究的热点内容之一。
2 蓝宝石晶体的生长技术蓝宝石晶体的合成方法主要有焰熔法、助熔剂法和熔体法, 其中熔体法又可分为几种。
焰熔法生长的宝石晶体尺寸较小, 具有大量的镶嵌结构, 质量欠佳;助熔剂法生长的宝石晶体也很小, 且含有助熔剂阳离子, 质量也不太好;而熔体法生长的宝石晶体具有较高的纯度和完整性, 尺寸较大。
其基本原理是将晶体原料放入耐高温坩埚中加热熔化, 然后在受控条件下通过降温使熔体过冷却, 从而生长晶体。
由于降温的受控条件不同, 因此, 从熔体中生长宝石晶体的方法也稍有不同。
目前, 世界上主要的熔体法生长技术有4种晶体提拉法、导模法、热交换法和泡生法。
本文着重报道的是利用泡生法生长无色蓝宝石晶体。
2.1 晶体提拉法晶体提拉法( cr ystal pulling metho d) 由J.Czochralski 于1918 年发明, 故又称 丘克拉斯基法 , 简称Cz 提拉法, 是利用籽晶从熔体中提拉生长出晶体的方法, 能在短期内生长出高质量的单晶。
这是从熔体中生长晶体最常用的方法之一。
蓝宝石晶体的生长方法自1885年由Fremy、Feil和Wyse利用氢氧火焰熔化天然红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”,迄今人工生长蓝宝石的研究已有100多年的历史。
在此期间,为了适应科学技术的发展和工业生产对于蓝宝石晶体质量、尺寸、形状的特殊要求,为了提高蓝宝石晶体的成品率、利用率以及降低成本,对蓝宝石的生长方法及其相关理论进行了大量的研究,成果显著。
至今已具有较高的技术水平和较大的生产能力,为之配套服务的晶体生长设备——单晶炉也随之得到了飞速的发展。
随着蓝宝石晶体应用市场的急剧膨胀,其设备和技术也在上世纪末取得了迅速的发展。
晶体尺寸从2吋扩大到目前的12吋。
低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。
总体说来,蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。
目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有焰熔法、提拉法、区熔法、导模法、坩埚移动法、热交换法、温度梯度法、泡生法等。
而泡生法工艺生长的蓝宝石晶体约为目前市场份额的70%。
LED蓝宝石衬底晶体技术正属于一个处于正在发展的极端,由于晶体生长技术的保密性,其多数晶体生长设备都是根据客户要求按照工艺特点定做,或者采用其他晶体生长设备改造而成。
下面介绍几种国际上目前主流的蓝宝石晶体生长方法。
图9 蓝宝石晶体的生长技术发展1 凯氏长晶法(Kyropoulos method)简称KY法,中国大陆称之为泡生法。
泡生法是Kyropoulos于1926年首先提出并用于晶体的生长,此后相当长的一段时间内,该方法都是用于大尺寸卤族晶体、氢氧化物和碳酸盐等晶体的制备与研究。
上世纪六七十年代,经前苏联的Musatov改进,将此方法应用于蓝宝石单晶的制备。
该方法生长的单晶,外型通常为梨形,晶体直径可以生长到比坩锅内径小10~30mm的尺寸。
人工晶体学报第40卷管理想的衬底材料¨。
从熔体中生长蓝宝石单晶的方法主要有提拉法、导模法、坩埚下降法、泡生法等,其中泡生法是生长大尺寸蓝宝石单晶最常用的方法。
其主要特点是晶体向熔体内生长,可以一直长到距坩埚壁10—30iTim的位置,在整个生长过程中晶体不被提拉出坩埚。
晶体内温差小,从而有效地减小了残余应力,防止晶体开裂,并降低了位错密度旧J。
由于蓝宝石生长过程不可视,无法对生长过程进行实时观测,给晶体质量控制带来了障碍。
利用计算机数值模拟可以方便、快捷地对晶体生长过程进行优化仿真,并提供无法通过观察和测量得到的信息,大大降低了实验成本和周期。
本文采用数值模拟和对比分析的方法,对泡生法生长蓝宝石单晶的热场进行改进和优化。
目的是通过优化泡生炉内的热场,减小结晶前沿的温度梯度,降低晶体内部由于温度梯度过大而产生的缺陷,并减小加热器功耗,从而获得更高的产率和更好的晶体质量。
2模型简化与边界设定2.1物理模型和数学描述本文采用常用的坩埚外径为250lllm的泡生法单晶炉[4】。
物理模型采用简化的二维轴对称模型,如图1。
数值模拟采用俄罗斯STR公司开发的晶体生长专业模拟软件CGSim,该软件用于泡生法蓝宝石单晶的生长模拟和实验验证已被大量文献所报道"引。
模拟过程考虑了晶体、熔体和坩埚内的能量守恒,高温熔体内的湍流流动,以及半透明晶体内的镜面辐射热交换。
由于长晶过程十分缓慢,故模拟过程设为稳态。
长晶过程由以下守恒方程决定:熔体内的连续性方程:X7·PⅡ=0图1炉体结构简图Fig.1Structureoffurnace(1)熔体内的动量守恒方程:‘p面du=一Vp+V·(29。
行专)+p归(ro—r>g(2)晶体和熔体内的能量守恒方程:pqidT=V·(A甜Vr)一V·’q。
其它固体区域的热平衡方程:V·(AVT)一q=0固体表面问的辐射换热:g≯‘=Ek盯Z+(1一占。
蓝宝石晶体生长技术蓝宝石是一种非常珍贵的宝石,其具有高度的透明度和魅力的蓝色光泽。
然而,天然蓝宝石的价格昂贵且稀缺,因此科技界提出了人工合成蓝宝石的方法。
本文将介绍蓝宝石晶体的生长技术。
高温高压生长法是较为传统的一种方法。
它模拟了地球内部的高温高压环境,利用合适的矿物质和金属盐在高温高压条件下进行晶体生长。
在这个过程中,先将金属盐溶解在熔剂中,然后将蓝宝石种子放置在溶液中促进晶体生长。
这种方法由于需要高温高压环境,相对较难控制,但可以制备更大尺寸和更高质量的蓝宝石晶体。
化学气相沉积法是一种相对较新的技术,它采用气相材料进行晶体生长。
在这个过程中,将金属源和气相原料(如铝和气氙)连续供应到高温反应室中,使其在晶体基底上沉积,并逐渐形成完整的蓝宝石晶体层。
与HPHT法相比,化学气相沉积法更容易控制和扩展生产规模,适用于生产更薄的蓝宝石晶片。
无论采用哪种生长方法,蓝宝石晶体的质量都受到很多因素的影响。
其中,晶体的化学纯度、温度、压力、溶液成分和生长速度等因素都非常重要,直接影响着蓝宝石晶体的结构和质量。
为了获得高质量的蓝宝石晶体,科研人员还在不断研究改进这些生长技术。
例如,改变晶体生长的初始条件、优化晶体的生长环境、选择合适的基底材料等方法,都有助于提高蓝宝石晶体的质量和产率。
蓝宝石晶体的人工合成在很大程度上满足了市场对宝石的需求。
它不仅可以大量生产高质量的蓝宝石晶体,还可以根据市场和消费者需求来调整颜色、尺寸和形状。
此外,与天然蓝宝石相比,人工合成的蓝宝石更加经济实惠,也更环保可持续。
总的来说,蓝宝石晶体的生长技术是一项重要的宝石制造技术。
通过不断改进和创新,可以生产出高质量、低成本的蓝宝石晶体,满足市场需求,并为宝石行业带来巨大的发展潜力。
摘要蓝宝石具有一些列优异的光学、力学、热学性能,是理想的红外窗口材料之一。
也是氮化镓外延生长最常用的沉底材料之一。
但蓝宝石晶体生长实验成本高、周期长,只靠郑家实验频率获得理想的生长工艺,已不能满足蓝宝石向着更高质量、更大尺寸方向发展的需求。
引入晶体生长数值模拟技术,可以有效的减少试验次数。
节省成本。
采用热交换发生长老宝石晶体,一句晶体生长理论,对生长系统进行合理近似,建立晶体生长数值分析模型,并引入晶体生长模拟软件CryMas,通过优化网格划分精度及选择气体对流方程迭代次数等手段,最终使得模拟结果与实验结果一致。
本文通过多种介质的对比,结合热交换法生长蓝宝石的具体特点,确定氦气为优选的热交换介质;研究了进气温度对热交换效率的影响,发现热交换效率随进气温度身高而单调降低;控制点温度从2345K升高到2370K的过程中,热交换效率几乎不变;热交换效率随进气口与出气口面积比Sin/Sout及进气口距离热交换器顶端的距离D的变化关系是非常单调的,确定了优选的工艺参数。
模拟了热交换器中气流量增大引起温场的变化过程,晶体和熔体中温度降低,温度梯度增大固液界面以近弧面的形式向前推进;结合生长系统的具体特点喝本实验室条件,确定了优选的保温材料;模拟了坩埚在加热器中的位置,对坩埚中温场的影响,确定了优选的坩埚位置;坩埚长径比增大,干活中温度梯度喝固液界面凸度变小;圆筒形加热器的长径比对蓝宝石生长过程中温度梯度和固液界面凸度影响较大。
长径比的增大,有利于得到较小的温度梯度和固液界面凸度;圆筒形加热器小角度(≤4°)倾斜对坩埚中温场无明显影响;热交换法蓝宝石晶体生长过程中难以避免地因异质形核出现多晶,因蓝宝石晶体热膨胀系数不匹配而相互挤压,导致晶体开裂。
为此,将热交换器至于干过的上方,表面固液界面和生长的晶体与坩埚壁接触。
模拟了相应的晶体生长过程,发现随气流量增大,晶体自籽晶处开始生长,在扩肩、等径生长过程中,晶体与熔体中的温度降低,温度梯度增大;通过改变坩埚在加热器中的位置,有效地避免了锅边结晶和锅底结晶,获得了合适的温场;对比了热交换器在不同位置时的生长特点,发现热交换器在坩埚上方时,能有效避免开裂问题。
蓝宝石晶体生长方式介绍目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有熔焰法、提拉法、区熔法、坩埚移动法、热交换法、温度梯度法和泡生法等。
蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。
但是,上述方法都存在各自的缺点和局限性,较难满足未来蓝宝石晶体的大尺寸、高质量、低成本发展需求。
例如,熔焰法、提拉法、区熔法等方法生长的晶体质量和尺寸都受到限制,难以满足光学器件的高性能要求;热交换法、温度梯度法和泡生法等方法生长的蓝宝石晶体尺寸大,质量较好,但热交换法需要大量氦气作冷却剂,温度梯度法、泡生法生长的蓝宝石晶体坯料需要进行高温退火处理,坯料的后续处理工艺比较复杂、成本高。
α-Al2O3单晶又称蓝宝石,俗称刚玉,是一种简单配位型氧化物晶体。
蓝宝石晶体具有优异的光学性能、机械性能和化学稳定性,强度高、硬度大、耐冲刷,可在接近2000℃高温的恶劣条件下工作,因而被广泛的应用于红外军事装置、卫星空间技术、高强度激光的窗口材料。
其独特的晶格结构、优异的力学性能、良好的热学性能使蓝宝石晶体成为实际应用的半导体GaN/Al2O3发光二极管(LED),大规模集成电路SOI和SOS及超导纳米结构薄膜等最为理想的衬底材料。
低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务蓝宝石晶体检测加工设备蓝宝石掏棒机X射线晶向测试仪金刚石线锯切割机蓝宝石掏棒机自动精密研磨抛光机AMEST-302010-11-18 15:21:55AMEST-30该设备是使用微拉旋转泡生法培育单晶蓝宝石,用这个设备长出来的蓝宝石最高质量35kg,最大直径220mm,最大长度260mm。
技术特性在熔炉中原料的最大负载:35kg熔融物最高温度:2100℃炉内最低气压:5 x 10-5pa载晶棒的运转最大路程:280mm载晶棒的运转速度:0.1-1.2mm/小时能量功耗:最大55千瓦冷却水使用:3.6立方米/小时惰性气体使用:0.18立方米/周期重量:1500kg附加参数加热方式:电阻式作业环境:真空,5 x 10-5 Pa晶棒转速(速度变化差异在0.1mm/小时的增量之内):——最低速率:0.1mm/时——最高速率:1.2mm/时晶棒的加速运动速率:最大25mm/时)晶棒运动速率维持精确性:±2%晶棒自转频率:——最低速率:0.045转/秒(3转/分钟)——最高速率:0.135转/秒(8转/分钟)加热器电压稳定的精确性——在2.6V到5V之间:±2——在5V到7V之间:±1%——在7V到11V之间:±0.1%安装要求一个符合下列微型气候参数的车间:——温度:22±5°С——相对湿度低于90%——车间10平方米以上——地面有排污管道,或者低于地面至少75mm的管道。
晶体生长方法1. 底部籽晶法 (2)2. 冷坩埚法 (2)3. 高温高压法 (4)4. 弧熔法 (9)5. 提拉法 (9)6. 焰熔法 (12)7. 熔剂法 (14)8. 水平区熔 (16)9. 升华法 (17)10. 水热法生长晶体 (19)11. 水溶液法生长晶体 (21)12. 导向温梯法(TGT)生长蓝宝石简介 (22)1. 底部籽晶法图1 底部籽晶水冷实验装置示意图与提拉法相反,这种生长方法中坩埚上部温度高,下部温度低。
将一管子处在坩埚底部,通入水或液氮使下面冷却,晶体围绕着籽晶从坩埚底部生长2. 冷坩埚法图2 冷坩埚生长示意图人工合成氧化锆即采用冷坩埚法,因为氧化锆的熔点高(~2700℃),找不到合适的坩埚材料。
此时,用原料本身作为"坩埚"进行生长,装置如图2所示。
原料中加有引燃剂(如生长氧化锆时用的锆片),在感应线圈加热下熔融。
氧化锆在低温时不导电,到达一定温度后开始导热,因此锆片附近的原料逐渐被熔化。
同时最外层的原料不断被水冷套冷却保持较低温度,而处于凝固状态形成一层硬壳,起到坩埚的作用,硬壳内部的原料被熔化后随着装置往下降入低温区而冷却结晶。
3. 高温高压法图3 四面顶高压机(左)及六面顶高压机(右)的示意图图4 两面顶高温高压设备结构图图5 两面顶高温高压设备结构图图6 人工晶体研究院研制的6000吨压机图7 人造金刚石车间图8 六面顶高压腔及其试验件图9 钢丝缠绕高压模具图10 CVD生长金刚石薄膜的不同设计图11 南非德·拜尔公司合成的金刚石薄膜窗口图12 德·拜尔公司在1991年合成的14克拉单晶钻石温高压法可以得到几万大气压,1500℃左右的压力和温度,是生长金刚石,立方氮化硼的方法。
目前,高温高压法不但可以生长磨料级的金刚石,还可以生长克拉级的装饰性宝石金刚石。
金刚石底膜可用化学气相沉积方法在常压下生长。
4. 弧熔法图13 弧熔法示意图料堆中插入电极,在一定的电压下点火,发出电弧。
1 蓝宝石晶体的特质蓝宝石晶体是一种理想的晶体材料,具有良好的导热性、透光性、化学稳定性,且耐高温、耐腐蚀、高强度、高硬度,被广泛应用于抗高压器件、耐磨损器件、红外制导、导弹整流罩等太空、军事、科研等高科技领域[1]。
由于天然蓝宝石稀少,成本高以及化学成分不纯,因而不能被工业材料广泛使用,工业上大量应用的蓝宝石是人工合成。
本文对蓝宝石晶体的主要生长方法作了较详细介绍,综述了国内外的一些研究成果并讨论了目前存在的问题。
2 蓝宝石晶体主要生长方法2.1 坩埚下降法(VGF )坩埚下降法的基本原理如图1所示,其生长过程为:将晶体生长的原料装入坩埚内,使其通过具有单向温度梯度的生长炉(温度上高下低),随着坩埚逐渐向下的连续运动,固液界面沿着与其运动相反的方向定向生长,熔体自下而上凝固,从而实现晶体生长过程的连续性。
坩埚形状对于是否能成功获得优质的单晶具有决定性的作用,通过设计合适的坩埚尖端形状,使得只有一个晶粒长大,终止其他晶粒的生长,以成功获得单晶,也可以在坩埚底部放置加工成一定形状和取向的籽晶,以实现单晶生长。
采用坩埚下降法生长出的晶体内应力及位错密度大,但由于坩埚密封,晶体不易被污染,纯度较高。
2.2 热交换法(HEM)热交换法应用于蓝宝石晶体生长最早在1970年,由Schmid 和Viechnicki 提出[2]。
美国Crystal Systems 公司的S.Frederick 等人[3]将热交换法用于蓝宝石晶体生长已有30多年的历史。
目前热交换法所生长的晶体直径可达430mm [4]。
热交换法的长晶原理为:在电阻加热炉底部装有热交换器,内有冷却氦气流过。
装有原料的坩埚置于热交换器的上方,籽晶放于坩埚底部中心处。
当坩埚里面的原料被加热熔化后,籽晶由于底部热交换器的冷却作用并未熔化,此时加大氦气流量,从熔体中带走的热量增加,籽晶逐渐长大,最后使坩埚内的熔体全部结晶。
生长过程中,固液界面处的温度梯度是晶体生长的驱动力,熔体的温度可通过调节石墨加热器的功率来改变,而晶体的热量可以调节通过氦气的流量带走。
蓝宝石晶体导模法生长装置及生长方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!蓝宝石晶体导模法生长装置及生长方法引言蓝宝石晶体是一种在光学、电子等领域应用广泛的材料,在激光、LED等器件中有着重要作用。