药剂学:第十六章固体分散体制备技术
- 格式:ppt
- 大小:2.40 MB
- 文档页数:74
固体分散体在药剂学中的应用一、引言随着药物研究的不断发展和药剂学技术的不断提升,固体分散体在药剂学中的应用愈发广泛。
固体分散体是将水敏感的药物或者活性成分通过分散技术与固体载体结合,以实现药物的稳定性和生物利用度的提高。
本文将对固体分散体在药剂学中的应用进行深入探讨。
二、固体分散体的制备方法1. 湿法制备:通过将药物与固体载体混合,并添加适量的溶剂,再通过搅拌、撞击、喷雾等方式将药物均匀地分散在固体载体中。
2. 干法制备:采用粉碎、磨碎、搅拌等方法,将药物与固体载体直接混合均匀,制备成固体分散体。
3. 融熔法制备:通过将药物和固体载体一起加热并混合,使其在高温下相互融合形成固态分散体。
三、固体分散体的应用1. 提高药物的生物利用度固体分散体可以提高药物的溶解度和稳定性,从而增加药物在体内的吸收速度和生物利用度。
尤其是一些难溶性药物,通过制备成固体分散体,可以大大提高其口服药物的吸收率。
贝拉米特(Belamint)是一种难溶性药物,制备成固体分散体后,可以明显提高其生物利用度,使得患者在服用药物后能更快的达到治疗效果。
2. 控释药物释放将药物与固体载体制备成固体分散体后,可以有效地控制药物的释放速度和释放时间,使得药物在体内的作用更加持久和稳定。
这对于长效药物来说尤为重要。
通过将镁固体分散体与药物结合,可以制备成长效缓释药物,使得患者可以减少服药频次,提高治疗依从性。
3. 降低药物毒性一些药物本身有一定的毒性,通过将其制备成固体分散体,可以降低其对组织的刺激性和毒性,从而提高药物的安全性和耐受性。
某些抗癌药物在固体分散体中的应用可以降低其对消化道的损伤,减轻患者的不良反应。
四、固体分散体的应用前景随着制备技术的不断改进和药学研究的深入,固体分散体在药剂学中的应用前景十分广阔。
其应用将会有助于提高难溶性药物的可溶性和生物利用度、实现控释药物的长效作用、降低毒性药物的毒性等。
固体分散体制备技术的进步也将为制备更多种类的分散体提供有力支持,包括纳米分散体、微粒分散体等,这将进一步拓宽药物的应用范围。
简述固体分散体的速释原理固体分散体是将固体药物通过合适的方法加工成微小颗粒,并在合适的载体中分散,以实现药物的速释效果。
固体分散体的速释原理主要包括固体药物微粒的制备技术和载体选择两个方面。
首先是固体药物微粒的制备技术。
制备固体药物微粒的方法多种多样,常见的包括晶体工程方法、研磨法、颗粒法、共沉淀法、溶剂法、熔融法等。
晶体工程方法是通过优化结晶条件和晶体生长条件来控制晶体的形态和粒径。
这种方法可以得到具有匀一颗粒大小和大小分布的药物微粒。
研磨法是通过机械碾磨使药物颗粒粉碎成微粒。
这种方法可以控制颗粒的粒径和粒度分布,但可能会影响药物的物理性质和晶型。
颗粒法是通过物理或化学方法制备微粒,包括喷雾干燥、喷雾浓缩、凝固颗粒化、沉降结晶和喷雾晶化等。
这种方法可以得到颗粒大小可调的微粒。
共沉淀法是将药物与化合物共同沉淀,通过调控沉淀条件来获得所需的微粒。
这种方法可以控制颗粒尺寸和分布,并且可以调控药物的释放速率。
溶剂法是将药物溶解在溶剂中,通过浓缩或蒸发溶剂来形成微粒。
这种方法可以得到均匀的颗粒大小和分布。
熔融法是将药物加热至其熔点以上,形成熔融液滴,然后迅速冷却,形成固体微粒。
这种方法可以得到尺寸可控的微粒。
其次是载体的选择。
载体是固体分散体中的非药物成分,主要起到保护和稳定药物微粒的作用。
常见的载体包括聚合物、脂质、复合材料等。
聚合物载体是最常用的载体之一,可以通过溶液共混或浆料浸渍法制备固体分散体。
聚合物可以提供稳定的载体结构,保护药物颗粒,并改善药物的生物利用度。
脂质载体主要包括固体脂质和液晶相。
固体脂质具有良好的包覆性能,可以在固体颗粒表面形成一层保护膜,稳定药物微粒,抑制药物的氧化和光分解。
复合材料载体是将药物微粒包裹在纳米材料或多孔材料中,形成载体药物复合物。
这种载体具有较大的比表面积和容纳药物的能力,可以调控药物的释放行为。
固体分散体的速释效果和效果主要取决于药物的微粒特性和载体的选择。
药物微粒的大小和分布对药物的溶解速度和释放速率有显著影响。
第1章绪论1、区分药物、药品、剂型、制剂的概念。
⑴药剂学:Pharmaceutics是研究药物制剂的处方设计、基本理论、制备工艺、质量控制和合理使用等内容的综合性应用技术科学。
⑵药物剂型:dosage form 为了符合疾病诊断、治疗、预防等需要而制备的给药形式。
⑶药物制剂:Pharmaceultical preparations 剂型中的具体药品。
2、药剂学研究的主要内容。
⑴基本任务:将药物制成适合临床应用的的剂型,并能批量生产出安全、有效、稳定的制剂。
⑵具体任务:1、制剂学基本理论;2、新剂型研究与开发;3、新技术;4、中药新剂型/生物制药剂型;5、设备研究与开发3、药剂学有哪些分支学科?物理药剂学、工业药剂学、药用高分子材料学、生物药剂学、药物动力学、临床药剂学。
4、我国的第一部药典是什么时候出版发行?19535、 GMP:《药品生产质量管理规范》,good manufacturing practiceGLP:《药物非临床研究质量管理规范》,good laboratory practiceGCP:《药物临床试验管理规范》,good clinical practiceOTC:可在柜台上买到的药物,over the counter6、处方:系医疗或生产部门用于药剂调制一种书面文件。
.处方药:必须凭执业(或助理)医师的处方调配、购买,并在医生指导下使用的药品。
非处方药:可在柜台上买到的药物—over the counter第9章液体制剂1、液体制剂的特点和质量要求:①特点:(1)药物以分子或微粒分散在介质中,吸收快药效快。
(2)给药途径多,如口服、注射、黏膜、腔道。
(3)易于分剂量。
老少患者皆宜。
(4)可减少某些药物的刺激性。
②不足:(1)携带不便,(2)有的稳定性差。
③质量要求:⑴均匀相液体制剂应是澄明溶液;⑵非均匀相液体制剂的药物粒子应分散均匀;⑶口服的液体制剂应外观良好,口感适宜;⑷外用的液体制剂应刺激性;⑸液体制剂在保存和使用过程不应发生霉变;⑹包装容器适宜,方便患者携带和使用。
固体分散体制备技术进展[摘要]固体分散体是指高度分散于惰性载体中形成的以团体形式存在的分散体系,固体分散体制备技术是将难溶性药物高度分散在固体载体材料中,形成固体分散体的新技术。
研究表明,用适当的载体材料制备固体分散体,可以改善药物的溶解性能,加快溶出速度,提高生物利用度,实现药物高效、速效、长效化,也可控制药物靶向释放。
将药物加工成特定的剂型,用于增加药物稳定性,避免药物氧化、水解等。
固体分散体出现以来的各种实际应用表明,固体分散体的研究对于制剂的生产和新药的开发具有重要的意义。
[关键词]固体分散技术;固体分散体;溶解度;溶出速率;生物利用度固体分散技术是指制备制剂时将固体药物,特别是难溶性药物高度分数在另一种固体载体中的新技术。
其主要特点是提高难溶药物的溶出速率和溶解度,以提高药物的吸收和生物利用度。
1961年Sekiguchi等【1】提出了固体分散体(solid dispersion,SD)的概念,并以尿素为载体材料,用熔融法制备磺胺噻唑固体分散体,口服后吸收及排泄均比口服磺胺快,1963年Levy等制得分子分散的固体分散体,溶出速率增高,也更易吸收。
固体分散体在中药制剂上的应用始于1970年芸香油滴丸的上市。
Chiou等【2】于1971年对固体分散体的形成原理,制备工艺及老化等问题进行了研究,为固体分散技术的发展奠定了基础。
1978年Francois等【3】首次提出固体分散体在熔融时装入硬胶嚷中,在室温下固化。
此后,人们对固体分散体进行了广泛的研究,其目的多用于改变难溶性药物的溶解性能,制备高效,速效制剂,所采用辅料的品种越来越多,工艺也趋于成熟。
固体分散体是指将药物高度分散于惰性载体中,形成的一种以团体形式存在的分散体系[4]。
研究表明,将难溶性药物在水溶性载体中形成分子分散体系,可以改善药物的溶解性能,加快溶出速度,提高生物利用度。
而固体分散制剂技术是将药物与载体混合制成高度分散的固体分散体的一项新型制剂技术。
固体分散体在药剂学中的应用固体分散体是指在药物制剂中,药物以微细固体颗粒的形式分散在溶剂或载体中,形成悬浮体系的一种制剂形式。
它在药剂学中具有广泛的应用,可用于口服、注射、外用等各种给药途径。
固体分散体的应用主要有以下几个方面:1.提高药物的生物利用度:固体分散体制剂能够增加药物的溶解度和溶出速度,从而提高药物在体内的生物利用度。
一些溶解度较低的药物,如贝那普利、多西环素等,采用固体分散体制剂可以显著提高其生物利用度。
2.提高药物的物化稳定性:许多药物在固体状态下具有较好的稳定性,但在溶液中容易分解、变质。
通过制备固体分散体,可以将药物以固体形式分散在溶剂中,有效地抑制药物的分解和变质反应,提高药物的物化稳定性。
3.改善药物的口服制剂特性:一些药物在口服制剂中由于颗粒聚集、产品凝固等原因,导致制剂不均匀,难以分散,从而影响药物的释放和吸收。
通过制备固体分散体,可以将药物分散成微细颗粒,提高制剂的均匀性和分散性,改善药物的口服制剂特性。
4.提高药物的溶解度和溶出速度:一些药物由于其晶体结构的特殊性,导致其溶解度较低,溶出速度较慢。
通过制备固体分散体,可以将药物以微细颗粒的形式分散在溶剂中,增大药物与溶剂的接触面积,提高药物的溶解度和溶出速度,从而加快药物的作用速度。
5.改善药物的纳米化特性:纳米颗粒具有较大比表面积和较短的传质距离,可有效提高药物的溶解度和生物利用度。
通过制备固体分散体,可以将药物粉末制备成纳米颗粒,提高药物的纳米化特性,增加药物与生物体的相互作用,提高药物的疗效。
总之,固体分散体在药剂学中具有广泛的应用,可以提高药物的生物利用度、物化稳定性,改善药物的制剂特性,增加药物的溶解度和溶出速度,并改善药物的纳米化特性。
在药物研发和制剂设计中,固体分散体是一种重要的药物制剂形式,有助于改善药物的治疗效果,提高患者的生活质量。
药剂学在药物固体分散体中的应用在药物研发和制剂过程中,药剂学技术起着至关重要的作用。
药剂学是研究药物在制剂中的制备、稳定性、溶解度、生物利用度等问题的学科,其中一个重要的研究领域就是药物固体分散体。
药物固体分散体是指将药物微粒均匀地分散在固体载体中的制剂形式,它在药物制剂领域具有重要的应用价值。
本文将介绍药剂学在药物固体分散体中的应用。
一、药剂学在固体分散体制备中的应用1. 药剂选择和设计在制备药物固体分散体时,首先需要选择合适的药剂。
药剂的选择要考虑到药物的特性,包括其溶解度、稳定性等因素。
同时,药剂的设计也需要考虑到制剂的使用方式,如口服、注射等,以及所需的药物释放速率等因素。
2. 分散技术分散技术是指将药物微粒分散到载体中的过程,常见的技术包括搅拌法、乳化法、喷雾干燥法等。
具体选择哪种技术取决于药物的性质和所需的制剂性能。
3. 溶剂选择和处理在固体分散体制备中,溶剂的选择和处理对药物的稳定性和溶解度有很大的影响。
药剂学可以提供一系列的溶剂选择和处理技术,以保证药物在制剂中的稳定性和生物利用度。
二、药剂学在固体分散体稳定性研究中的应用1. 物理稳定性研究药剂学研究可以通过一系列物理稳定性测试来评估药物固体分散体的稳定性,如颗粒粒径分布、结晶度变化、流动性等。
通过这些研究可以确定最佳的分散体配方和制备工艺。
2. 化学稳定性研究药剂学还可以研究药物固体分散体的化学稳定性,包括药物在分散体中的分解反应、氧化反应等。
通过这些研究可以制定合理的保存条件和有效期。
三、药剂学在固体分散体性能研究中的应用1. 药物释放性能研究固体分散体中药物的释放性能是制剂的重要性能之一。
药剂学可以设计一系列的释放试验,评估药物在分散体中的释放速率和释放机制,以便优化制剂配方。
2. 生物利用度研究药物的生物利用度是指药物在体内被吸收并发挥药效的能力。
药剂学可以通过体外及体内试验研究药物在固体分散体中的生物利用度,以指导制剂的优化和临床应用。
固体分散体(solid dispersion,亦称固体分散物)通常是⼀种难溶性药物以分⼦、胶态、微晶或⽆定形状态分散在另⼀种⽔溶性材料中,或分散在难溶性、肠溶性材料中的固体分散在固体中的状态。
固体分散技术是利⽤不同性质的载体使药物在⾼度分散状态下,达到不同要求的⽤药⽬的:如增加难溶性药物的溶解度和溶出速率,提⾼药物⽣物利⽤度;延缓或控制药物释放;控制药物在⼩肠特定部位释放;利⽤载体的包蔽作⽤,增加药物稳定性;掩盖药物的不良臭味和刺激性;使液体药物固体化。
由于难溶性药物的⽣物利⽤度较低,药物的吸收速率常取决于其溶出速率,⽽药物的溶出速率与药物粒⼦的表⾯积、溶解度等有关。
因此,常采⽤微粉化和固体分散技术来增加药物的表⾯积,增加难溶性药物的溶解度和溶出速率,提⾼⽣物利⽤度。
⼀、固体分散体的载体材料 固体分散体的载体材料应具有下列要求:⽆毒、⽆致癌性、不与药物发⽣化学变化、不影响主药的化学稳定性、不影响药物的药效与含量检测、能使药物得到分散状态或缓释效果、价廉易得。
常⽤载体材料可分为⽔溶性、⽔不溶性和肠溶性三⼤类。
⼏种载体材料可联合应⽤,以达到速释与缓释效果。
1.⽔溶性载体材料 (1)聚⼄⼆醇类。
⼀般选⽤分⼦量1000~20000的peg类作固体分散体的载体材料,最常⽤的是peg4000或peg6000,它们的熔点低(50~63℃),毒性较⼩,能够显著增加药物的溶出速率,提⾼药物的⽣物利⽤度。
油类药物宜采⽤分⼦量更⾼的peg12000或peg6000与 peg20000的混合物作载体。
另外s-40可使某些在peg6000中溶解不良的药物明显增加溶解度,提⾼溶出速率和⽣物利⽤度。
[医学教育搜集整理] (2)聚维酮类。
易溶于⽔、⼄醇和氯仿,但成品对湿的稳定性较差,贮存过程中易吸湿⽽析出药物结晶。
由于熔点⾼(150℃变⾊),宜采⽤溶剂法(共沉淀法)制备固体分散体,不宜⽤熔融法,pvp共沉淀法主要使药物形成⾮结晶性⽆定形物。
龙血竭固体分散体制备龙血竭是一种常见的中药,它具有很多的药理作用,比如活血化瘀、解毒消肿、止痛平肝等。
但是,龙血竭的水溶性很差,不能直接应用于临床治疗,因此固体分散体制备技术成为了必要的手段。
本文将从以下几个方面介绍龙血竭固体分散体制备的相关内容。
一、龙血竭固体分散体制备方法目前,龙血竭的固体分散体制备方法主要包括以下几种:1、尺寸缩小法:即通过机械碾磨、球磨等方法,将龙血竭粉末分散在其他药物、载体或功能性材料中。
2、表面修饰法:通过表面活性剂、胶体、蛋白质、多糖等修饰剂,使固体颗粒外表增加亲水性,提高分散性。
3、超声波法:采用高能超声波产生的剪切力和湍流流体的效应,产生分散和混合作用,形成均匀的混合固体颗粒。
4、凝胶浸润法:替代传统的溶剂处理方法,通过胶体魔法将肌筋膜的微小颗粒固定在凝胶中,并通过这种方式获得稳定的分散体。
二、龙血竭固体分散体的制备机理龙血竭黑色树脂的水溶性非常差,因此固体分散体的制备需要对其适应性进行调整。
此外,固体分散体的制备过程中,需要考虑到颗粒的分布、粒径大小、荷电性以及表面性质等因素。
1、尺寸缩小法:这种方法可以大幅度降低龙血竭颗粒的大小,提高其比表面积,增强其分散稳定性,从而提高其生物利用率。
此外,通过增加平均尺寸,可以控制颗粒之间的作用力。
2、表面修饰法:以下几种方法可以增加龙血竭颗粒表面的亲水性:(1)阳离子表面活性剂:可以通过吸附在颗粒表面,改变其表面电荷,提高粒子稳定性。
(2)阴离子表面活性剂:可以形成外表亲水性的半透膜,使得颗粒表面被覆盖。
3、超声波法:通过超声波作用,龙血竭颗粒之间产生剪切力,加速其分散,提高颗粒之间的作用力。
4、凝胶浸润法:通过肌筋膜凝胶将龙血竭颗粒固定在凝胶中,使其保持稳定分散,同时改变颗粒表面电荷,增加颗粒与胶体之间的相互作用。
三、龙血竭固体分散体的应用和优点龙血竭固体分散体因其稳定性强、分散均匀、生物利用率高等优点,被广泛应用于制药、保健品、化妆品等领域。
药学考试资料归纳-固体分散体的制备方法药学虽然是基础学科,但是很多学员都觉得药学面试特别难,不好复习。
今天就带着大家总结归纳一下药学专业知识面试:固体分散体的制备方法,以便大家更好地记忆。
不同药物采用何种固体分散技术,主要取决于药物的性质和载体材料的结构、性质、熔点及溶解性能等。
(一)熔融法将药物与载体材料混匀,加热至熔融,在剧烈搅拌下迅速冷却成固体,或将熔融物倾倒在不锈钢板上成薄层,用冷空气或冰水使骤冷成固体。
再将此固体在一定温度下放置变脆成易碎物,放置的温度及时间视不同的品种而定。
本法的关键是需由高温迅速冷却,以达到高的过饱和状态,使多个胶态晶核迅速形成而得到高度分散的药物,而非粗晶。
本法简便、经济,适用于对热稳定的药物,多用熔点低、不溶于有机溶剂的载体材料,如PEG类、枸橼酸、糖类等。
也可将熔融物滴入冷凝液中使之迅速收缩、凝固成丸,这样制成的固体分散体俗称滴丸。
(二)溶剂法亦称共沉淀法。
将药物与载体材料共同溶解于有机溶剂中,蒸去有机溶剂后使药物与载体材料同时析出,即可得到药物与载体材料混合而成的共沉淀物,经干燥即得。
常用的有机溶剂有氯仿、无水乙醇、95%乙醇、丙酮等。
本法的优点为避免高热,适用于对热不稳定或挥发性药物。
可选用能溶于水或多种有机溶剂、熔点高、对热不稳定的载体材料,如PVP类、半乳糖、甘露糖、胆酸类等。
(三)物理机械法(研磨法)将药物与较大比例的载体材料混合后,强力持久地研磨一定时间,不需加溶剂而借助机械力降低药物的粒度,或使药物与载体材料以氢键相结合,形成固体分散体。
研磨时间的长短因药物而异。
常用的载体材料有微晶纤维素、乳糖、PVP类、PEG类等。
(四)溶剂-熔融法将药物先溶于适当溶剂中,将此溶液直接加入已熔融的载体材料中均匀混合后,按熔融法冷却处理。
本法可适用于液态药物,如鱼肝油、维生素A、D、E等,但只适用于剂量小于50mg的药物。
凡适用于熔融法的载体材料均可采用。
制备过程中一般不除去溶剂,受热时间短,产品稳定,质量好。