固体分散体的制备
- 格式:pdf
- 大小:165.67 KB
- 文档页数:12
固体分散体制备技术进展[摘要]固体分散体是指高度分散于惰性载体中形成的以团体形式存在的分散体系,固体分散体制备技术是将难溶性药物高度分散在固体载体材料中,形成固体分散体的新技术。
研究表明,用适当的载体材料制备固体分散体,可以改善药物的溶解性能,加快溶出速度,提高生物利用度,实现药物高效、速效、长效化,也可控制药物靶向释放。
将药物加工成特定的剂型,用于增加药物稳定性,避免药物氧化、水解等。
固体分散体出现以来的各种实际应用表明,固体分散体的研究对于制剂的生产和新药的开发具有重要的意义。
[关键词]固体分散技术;固体分散体;溶解度;溶出速率;生物利用度固体分散技术是指制备制剂时将固体药物,特别是难溶性药物高度分数在另一种固体载体中的新技术。
其主要特点是提高难溶药物的溶出速率和溶解度,以提高药物的吸收和生物利用度。
1961年Sekiguchi等【1】提出了固体分散体(solid dispersion,SD)的概念,并以尿素为载体材料,用熔融法制备磺胺噻唑固体分散体,口服后吸收及排泄均比口服磺胺快,1963年Levy等制得分子分散的固体分散体,溶出速率增高,也更易吸收。
固体分散体在中药制剂上的应用始于1970年芸香油滴丸的上市。
Chiou等【2】于1971年对固体分散体的形成原理,制备工艺及老化等问题进行了研究,为固体分散技术的发展奠定了基础。
1978年Francois等【3】首次提出固体分散体在熔融时装入硬胶嚷中,在室温下固化。
此后,人们对固体分散体进行了广泛的研究,其目的多用于改变难溶性药物的溶解性能,制备高效,速效制剂,所采用辅料的品种越来越多,工艺也趋于成熟。
固体分散体是指将药物高度分散于惰性载体中,形成的一种以团体形式存在的分散体系[4]。
研究表明,将难溶性药物在水溶性载体中形成分子分散体系,可以改善药物的溶解性能,加快溶出速度,提高生物利用度。
而固体分散制剂技术是将药物与载体混合制成高度分散的固体分散体的一项新型制剂技术。
固体分散体制备技术进展[摘要]固体分散体是指高度分散于惰性载体中形成的以团体形式存在的分散体系,固体分散体制备技术是将难溶性药物高度分散在固体载体材料中,形成固体分散体的新技术。
研究表明,用适当的载体材料制备固体分散体,可以改善药物的溶解性能,加快溶出速度,提高生物利用度,实现药物高效、速效、长效化,也可控制药物靶向释放。
将药物加工成特定的剂型,用于增加药物稳定性,避免药物氧化、水解等。
固体分散体出现以来的各种实际应用表明,固体分散体的研究对于制剂的生产和新药的开发具有重要的意义。
[关键词]固体分散技术;固体分散体;溶解度;溶出速率;生物利用度固体分散技术是指制备制剂时将固体药物,特别是难溶性药物高度分数在另一种固体载体中的新技术。
其主要特点是提高难溶药物的溶出速率和溶解度,以提高药物的吸收和生物利用度。
1961年Sekiguchi等【1】提出了固体分散体(solid dispersion,SD)的概念,并以尿素为载体材料,用熔融法制备磺胺噻唑固体分散体,口服后吸收及排泄均比口服磺胺快,1963年Levy等制得分子分散的固体分散体,溶出速率增高,也更易吸收。
固体分散体在中药制剂上的应用始于1970年芸香油滴丸的上市。
Chiou等【2】于1971年对固体分散体的形成原理,制备工艺及老化等问题进行了研究,为固体分散技术的发展奠定了基础。
1978年Francois等【3】首次提出固体分散体在熔融时装入硬胶嚷中,在室温下固化。
此后,人们对固体分散体进行了广泛的研究,其目的多用于改变难溶性药物的溶解性能,制备高效,速效制剂,所采用辅料的品种越来越多,工艺也趋于成熟。
固体分散体是指将药物高度分散于惰性载体中,形成的一种以团体形式存在的分散体系[4]。
研究表明,将难溶性药物在水溶性载体中形成分子分散体系,可以改善药物的溶解性能,加快溶出速度,提高生物利用度。
而固体分散制剂技术是将药物与载体混合制成高度分散的固体分散体的一项新型制剂技术。
氟苯尼考固体分散体的制备
河南新纪元动物药业有限公司
郑州市中兽药现代化工程技术研究中心
一.目的:
利用固体分散技术,制备氟苯尼考固体分散体,增加其溶解性,掩盖氟苯尼考的苦味。
二.材料:
1.原料:氟苯尼考。
2.辅料:PEG6000、PVPK30。
3.仪器:粉碎机、烧杯、烘箱、托盘等
三.处方筛选
将氟苯尼考与PEG6000,按照不同的筛选比例,进行混合(如下表),粉碎,置于65℃水浴上,分别于5min、10min、15min、20min,进行观察。
氟苯尼考与PEG6000处方筛选表。
结果,在20min内,上述不同比例的药物均可以全部融化,氟苯尼考与PEG6000以1:5的比例,融化时间最快,融化最彻底,以1:1的比例融化时间最慢,且不能全部融化,所以,本实验以氟苯尼考与PEG6000以1:5的比例进行制备分散体。
四.制备方法:
1.将氟苯尼考、PEG6000,分别进行粉碎,过3号筛,备用,
2. 取氟苯尼考50g,PEG6000 250g,按照等量递增方法进
行混合。
3. 将上述混合物,置于65℃的烘箱中,放置20min,使其充分融化。
4.取出后,迅速放凉,使其凝固。
5.将凝固的混合物,进行粉碎,过筛,即可。
五.检查:
1.性状
取本样品,放于白纸上观察,本品为淡黄色的粉末,其色泽一致。
2.稳定性实验
将上述所配制的样品置于开放的环境中,放置7天,取出后观察样品无吸潮、结块现象。
3.水溶性实验
取本样品1g,加入500ml自来水中,搅拌5分钟,静止,样品完全溶解。
固体分散体的制备方法
固体分散体的制备方法有很多种,以下是几种常见的方法:
1. 共沉淀法:该方法适用于制备不同晶型的固体分散体。
先将一种溶剂或添加剂加入另一种固体颗粒中,使其溶解并形成过饱和溶液。
然后,通过缓慢冷却或添加第三种物质,可以将这种过饱和溶液转化为固体分散体。
2. 溶剂热法:该方法是指在溶剂中通过加热制备固体分散体。
首先将两种或多种不同的固体颗粒溶解在溶剂中,然后通过控制温度和溶剂量,可以使溶剂热反应转化为固体分散体。
3. 熔融法:该方法是指将两种或多种不同的固体颗粒熔融在一起,形成固体分散体。
首先将一种固体颗粒溶解在另一种固体颗粒的熔体中,然后通过控制温度和流量,可以将熔融物转化为固体分散体。
4. 乳液法:该方法是指通过制备乳液来制备固体分散体。
先将一种固体颗粒溶解在水中,然后添加另一种固体颗粒的乳液,使其在水中分散。
通过控制乳液的参数,可以制备出不同结构的固体分散体。
5. 粉末混合法:该方法是指将两种或多种不同的固体颗粒混合,形成固体分散体。
通过控制混合时间和比例,可以制备出不同结构的固体分散体。
以上是几种常见的固体分散体制备方法,每种方法都有其优缺点和适用范围,具体应用要根据具体情况来决定。
热熔挤出法制备固体分散体综述
以「热熔挤出法制备固体分散体综述」为题,在此将研究、介绍热熔挤出法制备固体分散体的过程、操作及其优缺点。
热熔挤出法是一种多功能的机械混合技术,它可以处理多种相容物质,包括固体、液体和气体,它是一种十分广泛应用的机械混合法。
热熔挤出法可以用于制备几乎所有类型的固体分散体,这些分散体通常具有高分散性和一致性。
混合物的粒度和复合物的稳定性也都得到了改善。
热熔挤出法的制备固体分散体的步骤如下:首先,将原料放入混合器,并加入必要的混合液,将混合物搅拌均匀。
接着,将原料放入热熔挤出机,采用适当的挤出参数操作,如温度、挤出压力等,挤出混合物,最后,将挤出的固体分散体即制成固体分散体。
热熔挤出法制备固体分散体的优点有:首先,可以用于多种物质,可以处理固体、液体和气体;其次,它可以有效地均匀混合原料,提高混合物的一致性;再次,可以更有效地改变粒度,使固体分散体的粒度更小;最后,它可以提高固体分散体的稳定性。
但是,热熔挤出法的制备固体分散体也有一些缺点,包括:首先,热熔挤出操作涉及高温、高压,使得该方法复杂难操作;其次,其消耗能源较大;最后,它因受温度、压力等因素的影响而影响最终产物的性能。
综上所述,热熔挤出法是一种多功能的机械混合技术,用于制备固体分散体,具有多项优点,但同时也存在一些缺点。
因此,在实际
应用中,应当综合考虑技术要求、操作复杂程度及最终产物的性能等因素,再确定是否采用该技术。
总之,热熔挤出法是一种制备固体分散体的有效技术,可以有效地均匀混合原料,提高混合物的一致性,更有效地改变粒度,同时也能提高固体分散体的稳定性,有助于提高产品的质量、性能及其应用价值。
龙血竭固体分散体制备龙血竭是一种常见的中药,它具有很多的药理作用,比如活血化瘀、解毒消肿、止痛平肝等。
但是,龙血竭的水溶性很差,不能直接应用于临床治疗,因此固体分散体制备技术成为了必要的手段。
本文将从以下几个方面介绍龙血竭固体分散体制备的相关内容。
一、龙血竭固体分散体制备方法目前,龙血竭的固体分散体制备方法主要包括以下几种:1、尺寸缩小法:即通过机械碾磨、球磨等方法,将龙血竭粉末分散在其他药物、载体或功能性材料中。
2、表面修饰法:通过表面活性剂、胶体、蛋白质、多糖等修饰剂,使固体颗粒外表增加亲水性,提高分散性。
3、超声波法:采用高能超声波产生的剪切力和湍流流体的效应,产生分散和混合作用,形成均匀的混合固体颗粒。
4、凝胶浸润法:替代传统的溶剂处理方法,通过胶体魔法将肌筋膜的微小颗粒固定在凝胶中,并通过这种方式获得稳定的分散体。
二、龙血竭固体分散体的制备机理龙血竭黑色树脂的水溶性非常差,因此固体分散体的制备需要对其适应性进行调整。
此外,固体分散体的制备过程中,需要考虑到颗粒的分布、粒径大小、荷电性以及表面性质等因素。
1、尺寸缩小法:这种方法可以大幅度降低龙血竭颗粒的大小,提高其比表面积,增强其分散稳定性,从而提高其生物利用率。
此外,通过增加平均尺寸,可以控制颗粒之间的作用力。
2、表面修饰法:以下几种方法可以增加龙血竭颗粒表面的亲水性:(1)阳离子表面活性剂:可以通过吸附在颗粒表面,改变其表面电荷,提高粒子稳定性。
(2)阴离子表面活性剂:可以形成外表亲水性的半透膜,使得颗粒表面被覆盖。
3、超声波法:通过超声波作用,龙血竭颗粒之间产生剪切力,加速其分散,提高颗粒之间的作用力。
4、凝胶浸润法:通过肌筋膜凝胶将龙血竭颗粒固定在凝胶中,使其保持稳定分散,同时改变颗粒表面电荷,增加颗粒与胶体之间的相互作用。
三、龙血竭固体分散体的应用和优点龙血竭固体分散体因其稳定性强、分散均匀、生物利用率高等优点,被广泛应用于制药、保健品、化妆品等领域。
固体分散体的制备
沈阳药科大学
药物制剂实验教学中心
一、实验目的
1.掌握共沉淀法及溶剂-熔融法制备固
体分散体的制备工艺。
2.初步掌握固体分散体形成的验证方法。
二、实验指导
固体分散体(solid dispersion)系指药物以分子、胶态、微晶等状态均匀分散在某一固态载体物质中所形成的分散体系。
固体分散体的主要特点是利用性质不同的载体使药物高度分散以达到不同要求的用药目的:增加难溶性药物的溶解度和溶出速率,从而提高药物的生物利用度;或控制药物释放及控制药物于小肠释放等。
固体分散体为中间产物,可以根据需要进一步制成胶囊剂、片剂、软膏剂、栓剂以及注射剂等。
固体分散体所用载体材料可分为水溶性载体材料、难溶性载体材料、肠溶性载体材料三大类。
载体材料在使用时可根据制备目的选择单一载体或混合使用载体。
若达到增加难溶性药物的溶解度和溶出速率用药目的,一般可选择水溶性载体材料,如聚乙二醇类,聚维酮类等。
固体分散体的类型有,固体溶液,简单低共溶混合物、共沉淀物。
固体分散物制备方法有熔融法、共沉淀法、溶剂熔融法。
固体分散体中药物分散状态可呈现分子状态、亚稳定态及无定形态、胶体状态、微晶状态。
可选择下列方法溶解度及溶出速率法、热分析法、粉末X射线衍射法、红外光谱法等进行物相鉴别,必要时可同时采用几种方法进行鉴别。
固体分散体的速释原理是药物分散状态或药物所形成的高能态可增加药物溶出度,同时载体材料对药物溶出具有促进作用。
三、实验内容与操作
尼莫地平-PVP共沉淀物的制备
1.处方
尼莫地平0.2g
PVPk30 1.0g
2.操作
(1)尼莫地平-PVP共沉淀物的制备取PVPk30 1.0g,置蒸发皿内,加入无水乙醇5ml,在80-90℃水浴上加热溶解,加入尼莫地平0.2g,搅匀使溶解,在搅拌下蒸去溶剂,取下蒸发皿置氯化钙干燥器内干燥、粉碎,过80目筛,即得。
(2)尼莫地平-PVP物理混合物的制备取PVPk30 1.0g,尼莫地平0.2g,置蒸发皿内混匀,即得。
3.操作注意
(1)尼莫地平-PVP共沉淀物的制备时, 溶剂蒸发速度是影响共沉淀物均匀性及防止药物结晶析出的重要因素,常在搅拌下快速蒸发,均匀性好,结晶不易析出,否则共沉淀物均匀性差,如果有药物结晶析出,将影响所制备固体分散物的溶出度。
(2)共沉淀物蒸去溶剂后,倾入不锈钢版上(下面放冰块)迅速冷凝固化,有利于提高共沉淀物的溶出速度。
4.共沉淀物物相鉴别
试验样品尼莫地平30mg, 相当于尼莫地平30mg的尼莫地平-PVP共沉淀物(1:5)及物理混合物。
除溶出速度测定外,(2)、(3)、(4)项还增加PVP样品。
(1)溶出速度测定
①溶出介质的配制:取乙醇100ml,加蒸馏水定容为1000ml,摇匀,即得。
②标准曲线的制作:精密称取干燥恒重的尼莫地平约20mg,置200ml量瓶中,加无水乙醇溶解、定容,摇匀;吸取溶液0.6、0.8、1.0、1.2、1.4、1.6ml分别置10ml量瓶中,加溶出介质定容;以溶出介质为空白,在237nm的波长处测定吸收度,以吸光度对浓度回归,得标准曲线方程。
③测定:按中国药典2000年版附录XC溶出度测定方法第二法。
转速100r/min,溶出介质为10%的乙醇溶液900ml,温度37±0.5℃。
当介质温度恒定为37±0.5℃,加入精密称取的样品,分别在2、5、10、15、20、30min 取样,每次取样7ml(同时补入溶出介质
7ml),过滤,弃去初滤液,取续滤液5ml,置10ml量瓶中,加上述溶出介质定容,摇匀,在237nm的波长处测定吸收度,按标准曲线方程计算不同时间累积溶出百分量。
(2)差热分析(DTA):工作条件,气氛为氮气或空气,升温速度10℃/min,扫描范围30~300℃。
(3)X-射线粉末衍射:工作条件,CuKd 石墨单色器衍射单色化,高压30kv,管流50mA,扫描速度2℃/min。
(4)熔点测定:按中国药典2000版二部附录VIC第一法测定。