圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(六)含答案新人教版高中数学名师一点通
- 格式:doc
- 大小:562.50 KB
- 文档页数:10
黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l与C 交于D ,E 两点,且12AF F 的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛ ⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.9.(2024·江苏南通·二模)已知双曲线E的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.12.(2024·河北·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率e =(1)若椭圆E过点(,求椭圆E 的标准方程.(2)若直线1l ,2l 均过点()()*,00,n n P p p a n <<∈N 且互相垂直,直线1l 交椭圆E 于,A B 两点,直线2l 交椭圆E于,C D 两点,,M N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点(),0n Q t ,设13n np =.(ⅰ)求n t ;(ⅱ)记n a PQ =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .13.(2024·辽宁沈阳·二模)P 为大圆上一动点,大圆半径OP 与小圆相交于点,B PP x '⊥轴于,P BB PP ⊥'''于,B B ''点的轨迹为Ω.(1)求B '点轨迹Ω的方程;(2)点()2,1A ,若点M N 、在Ω上,且直线AM AN 、的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求AOG ∠的余弦值.14.(2024·广东佛山·二模)两条动直线1y k x =和2y k x =分别与抛物线()2:20C y px p =>相交于不同于原点的A ,B 两点,当OAB 的垂心恰是C 的焦点时,AB =(1)求p ;(2)若124k k =-,弦AB 中点为P ,点()2,0M -关于直线AB 的对称点N 在抛物线C 上,求PMN 的面积.15.(2024·广东深圳·二模)设抛物线C :22x py =(0p >),直线l :2y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线=2y -于点M .对任意R k ∈,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN 的面积不小于16.(2024·湖南·一模)已知双曲线2222:1(1)x y C b a a b-=>>的渐近线方程为y =,C 的半焦距为c ,且44244a b c ++=.(1)求C 的标准方程.(2)若P 为C 上的一点,且P 为圆224x y +=外一点,过P 作圆224x y +=的两条切线12,l l (斜率都存在),1l 与C 交于另一点2,M l 与C 交于另一点N ,证明:(ⅰ)12,l l 的斜率之积为定值;(ⅱ)存在定点A ,使得,M N 关于点A 对称.17.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值.18.(2024·湖北·二模)已知双曲线P 的方程为()()221,,0,,04x y B a C a -=-,其中()()00002,,,0a D x y x a y >≥>是双曲线上一点,直线DB 与双曲线P 的另一个交点为E ,直线DC 与双曲线P的另一个交点为F ,双曲线P 在点,E F 处的两条切线记为121,,l l l 与2l 交于点P ,线段DP 的中点为G ,设直线,DB DC 的斜率分别为12,k k .(1)证明:12114k k <+≤(2)求GBGC的值.19.(2024·湖北·模拟预测)已知椭圆2212:1x C y a +=和()2222:10x C y a b b +=>>的离心率相同,设1C 的右顶点为1A ,2C 的左顶点为2A ,()0,1B ,(1)证明:12BA BA ⊥;(2)设直线1BA 与2C 的另一个交点为P ,直线2BA 与1C 的另一个交点为Q ,连PQ ,求PQ 的最大值.参考公式:()()3322m n m n m mn n +=+-+20.(2024·山东·二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,设C 的右焦点为F ,左顶点为A ,过F 的直线与C 于,D E 两点,当直线DE 垂直于x 轴时,ADE V 的面积为92.(1)求椭圆C 的标准方程;(2)连接AD 和AE 分别交圆22(1)1x y ++=于,M N 两点.(ⅰ)当直线DE 斜率存在时,设直线DE 的斜率为1k ,直线MN 的斜率为2k ,求12k k ;(ⅱ)设ADE V 的面积为1,S AMN △的面积为2S ,求12S S 的最大值.21.(2024·山东潍坊·二模)已知双曲线C :()222210,0x y a b a b -=>>的实轴长为2F 到一条渐近线的距离为1.(1)求C 的方程;(2)过C上一点(1P 作C 的切线1l ,1l 与C 的两条渐近线分别交于R ,S 两点,2P 为点1P 关于坐标原点的对称点,过2P 作C 的切线2l ,2l 与C 的两条渐近线分别交于M ,N 两点,求四边形RSMN 的面积.(3)过C 上一点Q 向C 的两条渐近线作垂线,垂足分别为1H ,2H ,是否存在点Q ,满足122QH QH +=,若存在,求出点Q 坐标;若不存在,请说明理由.22.(23-24高三下·湖北武汉·阶段练习)已知抛物线2:=E y x ,过点()1,2T 的直线与抛物线E 交于,A B 两点,设抛物线E 在点,A B 处的切线分别为1l 和2l ,已知1l 与x 轴交于点2,M l 与x 轴交于点N ,设1l 与2l 的交点为P .(1)证明:点P 在定直线上;(2)若PMN ,求点P 的坐标;(3)若,,,P M N T 四点共圆,求点P 的坐标.23.(2024·福建漳州·一模)已知过点()11,0F -的直线l 与圆2F :()22116x y -+=相交于G ,H 两点,GH 的中点为E ,过1GF 的中点F 且平行于2EF 的直线交2G F 于点P ,记点P 的轨迹为C .(1)求轨迹C 的方程.(2)若,A B 为轨迹C 上的两个动点且均不在y 轴上,点M 满足OM OA OB λμ=+(λ,μ∈R ),其中O 为坐标原点,从下面①②③中选取两个作为条件,证明另外一个成立.①点M 在轨迹C 上;②直线OA 与OB 的斜率之积为34-;③221λμ+=.注:若选择不同的组合分别解答,则按第一个解答计分.24.(2024·福建福州·模拟预测)点P 是椭圆E :22221x y a b +=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF d 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.25.(2024·福建三明·三模)已知平面直角坐标系xOy 中,有真命题:函数(0,0)ny mx m n x =+≥>的图象是双曲线,其渐近线分别为直线y mx =和y 轴.例如双曲线4y x=的渐近线分别为x 轴和y 轴,可将其图象绕原点O 顺时针旋转π4得到双曲线228x y -=的图象.(1)求双曲线1y x=的离心率;(2)已知曲线22:2E x y -=,过E 上一点P 作切线分别交两条渐近线于,A B 两点,试探究AOB 面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y x =Γ,直线:30l x -=,过F 的直线与Γ在第一象限交于,M N 两点,过,M N 作l 的垂线,垂足分别为,C D ,直线,MD NC 交于点H ,求MNH △面积的最小值.26.(2024·浙江绍兴·二模)已知抛物线C :()220y px p =>的焦点到准线的距离为2,过点()2,2A 作直线交C 于M ,N 两点,点()1,1B -,记直线BM ,BN 的斜率分别为1k ,2k .(1)求C 的方程;(2)求()121232k k k k -+的值;(3)设直线BM 交C 于另一点Q ,求点B 到直线QN 距离的最大值.27.(2024·浙江绍兴·模拟预测)已知抛物线C :22y px =的焦点F ,直线l 过F 且交C 于两点M N 、,已知当3MF NF =时,MN (1)求C 的标准方程.(2)令,02p F ⎛⎫'- ⎪⎝⎭,P 为C 上的一点,直线F P ',FP 分别交C 于另两点A ,B .证明:·1AF PF PF BF '='.(3)过,,A B P 分别作C 的切线123,,l l l , 3l 与1l 相交于D ,同时与2l 相交于E ,求四边形ABED 面积取值范围.28.(2024·河北保定·二模)平面几何中有一定理如下:三角形任意一个顶点到其垂心(三角形三条高所在直线的交点)的距离等于外心(外接圆圆心)到该顶点对边距离的2倍.已知ABC 的垂心为D ,外心为E ,D 和E 关于原点O 对称,()13,0A .(1)若()3,0E ,点B 在第二象限,直线BC x ⊥轴,求点B 的坐标;(2)若A ,D ,E 三点共线,椭圆T :()222210x y a b a b+=>>与ABC 内切,证明:D ,E 为椭圆T 的两个焦点.29.(2024·浙江杭州·模拟预测)设双曲线22:12x C y -=,直线:l y x m =+与C 交于,A B 两点.(1)求m 的取值范围;(2)已知C 上存在异于,A B 的,P Q 两点,使得PA PB QA QB t ⋅=⋅=.(i )当4t =时,求,P Q 到点()2,m m --的距离(用含m 的代数式表示);(ii )当2t =时,记原点到直线PQ 的距离为d ,若直线PQ 经过点(),m m -,求d 的取值范围.30.(2024·湖北·一模)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为12,A ,B 分别为椭圆的左顶点和上顶点,1F 为左焦点,且1ABF(1)求椭圆M 的标准方程:(2)设椭圆M 的右顶点为C 、P 是椭圆M 上不与顶点重合的动点.(i )若点31,2P ⎛⎫⎪⎝⎭,点D 在椭圆M 上且位于x 轴下方,直线PD 交x 轴于点F ,设APF 和CDF 的面积分别为1S ,2S 若1232S S -=,求点D 的坐标:(ii )若直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N ,求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.【答案】(1)2214x y +=;【分析】(1)根据所给条件求出,a b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA OB ⊥,列出方程求k 即可.【详解】(1)设椭圆的标准方程为22221(0)x y a b a b+=>>.由题意可知22224c a a b c ⎧=⎪=⎨⎪=+⎩,解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆的标准方程为2214x y +=.(2)设()()1122,,,A x y B x y ,如图,联立方程2214y kx x y ⎧=⎪⎨+=⎪⎩,消去y ,得()221440k x +++=,则12122414x x x x k +==+,从而(1212y y kx kx =+()212122k x x x x =+++222414kk-=+,因为,0OA OB OA OB ⊥⋅=,即12120x x y y +=,所以22222424640141414k k k k k --+==+++,解得k =或,经验证知Δ0>,所以k.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,且12AF F的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.【答案】(1)2214x y +=【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出,a b ,得椭圆C 的方程;(2)设直线1l ,2l 的方程,与椭圆联立,利用韦达定理和32AB DE =求出DE 和2l 的方程,再求出O 到直线2l 的距离,可求ODE 的面积.【详解】(1)由题意知,222224a c ca b a c ⎧+=+⎪⎪=⎨⎪=-⎪⎩,解得2,1,a b c ===所以椭圆C 的方程为2214x y +=;(2)若直线1l 的斜率不存在,则直线2l 的斜率为0,不满足32AB DE =,直线1l 的的斜率为0,则12,,A F F 三点共线,不合题意,所以直线1l 的斜率存在且不为0,设直线1l的方程为x my =由2214x my x y ⎧=⎪⎨+=⎪⎩,消去x得2211044m y y ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y,则12y y +=1221414y y m =-+,()2241.4m AB m +∴===+同理可得()222214141.1144m m DE m m ⎛⎫+ ⎪+⎝⎭==++,由32AB DE =,得()()2222414134214m m m m++=⋅++,解得22m =,则43DE =,∴直线2l的方程为y x =,∴坐标原点O 到直线2l的距离为d ==1423ODE S =⨯= 即ODE【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,M N ⎛ ⎝两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k=-,直线DA 为1y kx =+,直线DB 为11y x k =-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k--++,同理可得22284(,44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414ABk k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k kk k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.【答案】(1)22182x y +=(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点,P Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得()28,,0a E a = ,()()120,,0,B b B b -,1EB ∴的中点为,22a b G ⎛⎫ ⎪⎝⎭,2221233(,),1,2,2222a b a bEB GB a b b ⎛⎫⋅=-⋅--=-=∴= ⎪⎝⎭ 故椭圆C 的方程为22182x y +=;(2)依题意可知直线l 的斜率存在,设直线l 的方程为()4y k x =+,由()224182y k x x y ⎧=+⎪⎨+=⎪⎩消去y 并化简得()222214326480k x k x k +++-=,由()()422Δ10244146480k k k =-+->,得2111,422k k <-<<.设()(),,,M M N N M x y N x y ,则222232648,1414M N M N k k x x x x k k -+=-=++,依题意可知直线,MA NA 的斜率存在,直线MA 的方程为()1122M M y y x x ++=++,令4x =-,得()2442422M M M M P M M k x x y x y x x -+-----==++()()()2184212424221222M M M M M k x k k x k k k x x x ------+--+===---+++,同理可求得42212Q N k y k x +=---+,()N 4242114242422222P Q M N M k k y y k k k x x x x ⎛⎫++∴+=----=---++ ⎪++++⎝⎭()()4424224M N M N M N x x k k x x x x ++=---+⋅+++()22222232414424242(42)064832241414k k k k k k k k k k -++=---+⋅=--++=⎛⎫-+-+ ⎪++⎝⎭,∴线段PQ 的中点为定点()4,0-.【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)22143x y +=(2)点Q 在定直线上,定直线方程为330x y +-=【分析】(1)设点,,P A B 的坐标,利用平面向量的坐标表示消参得0032x x y ⎧=⎪⎨⎪=⎩,结合正方形面积得Γ的方程;(2)设:14l y kx k =+-,,,Q M N 的坐标,与椭圆联立并根据韦达定理得,M N 横坐标关系,再根据线段乘积关系化为比值关系得01120244x x x x x x --=--,化简得0243kx k+=+,代入直线方程即可0y ,从而求出定直线方程.【详解】(1)设()()()00,,,0,0,P x y A x B y ,由0000222(,0))()333OP OA x y x y ==+=,得0023x x y y ⎧=⎪⎪⎨⎪=⎪⎩,所以032x x y ⎧=⎪⎨⎪=⎩,因为正方形ABCD 的面积为29AB =,即22009x y +=,所以223())92x +=,整理可得22143x y +=,因此C 的轨迹方程为22143x y +=.(2)依题意,直线l 存在斜率,设l :1(4)y k x -=-,即14y kx k =+-,设点()00,Q x y ,()11,M x y ,()22,N x y ()102x x x <<,由22143412y kx kx y =+-⎧⎨+=⎩,消y 得2234(14)12x kx k ++-=,即222(34)8(14)4(14)120k x k k x k ++-+--=,由()()()2222Δ64141634143k k k k ⎡⎤=--+--⎣⎦()()()()()22222216144344834483414k k k k k k ⎡⎤⎡⎤=--+++=+--⎣⎦⎣⎦()()22481282966410k k k k =-++=-++>,k <<所以3k ≠-,可得1228(14)34k k x x k -+=-+,21224(14)1234k x x k --=+,由||||||||EM QN QM EN ⋅=⋅ ,得||||||||QM EM QN EN =,所以01120244x x x x x x --=--,可得222121201228(14)4(14)124234344()28(14)8()834k k k k k x x x x x k k x x k ⎡⎤---⎡⎤--⎢⎥⎢⎥+++-⎣⎦⎣⎦==--+⎡⎤--⎢⎥+⎣⎦()()2222232148142432128128648242432824248k k k k k k k k k k k----+-+-+-+==++-+1632242483k kk k++==++,所以()()200143243914333k k k k ky kx k k k k-++-=+-=+=+++,因为00612393333k kx y k k+-+=+=++,所以点Q 在定直线上,定直线方程为330x y +-=.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.【答案】(1)24y x =;(2)(.【分析】(1)先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出()221,2R m m +,进而可求,P Q 的坐标,可得直线//QR x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,代入22y px =,可得2220y mpy p --=,所以122y y mp +=,212y y p =-,则()21212222MN x x p m y y p m p p =++=++=+,由题意可知当斜率为1时,1m =,又8MN =,即228p p +=,解得2p =,所以C 的方程为24y x =;(2)由(1)知2p =,直线l 的方程为1x my =+,抛物线方程24y x =,124y y m +=,124y y =-所以R 的纵坐标1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得221x m =+,所以R 的坐标()221,2m m +,易知抛物线的准线为=1x -,又因为l 与C 的准线交于点P ,所以P 的坐标21,m ⎛⎫-- ⎪⎝⎭,则直线OP 的方程为2m x y =,把2mx y =代入24y x =,得22y my =,即2y m =或0y =,因为点Q 异于原点,从而Q 的纵坐标为2m ,把2y m =代入2m x y =,得22mx y m ==,所以()2,2Q m m ,因为R 的坐标()221,2m m +,所以R ,Q 的纵坐标相同,所以直线//QR x 轴,且222211QR m m m =+-=+,所以MNQ △面积1212MNQ MRQ NRQ S S S QR y y =+=- ,因为()22212121241616y y y y y y m -=+-=+,所以12y y -==,所以()332222112122MNQS m m QR =+⨯=+= ,因为点Q 异于原点,所以0m ≠,所以210m +>,因为3QR ≤,所以13QR <≤,所以3222QR <≤MNQ △面积的取值范围为(.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.【答案】(1)1(2)221499x y ⎛⎫-+=⎪⎝⎭【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为()()()11220,,,,x my t m A x y B x y =+>,则()()11,,,0C x y M t -,由24x my ty x =+⎧⎨=⎩,消去x ,得2440y my t --=,()22Δ1600m t m t =+>⇒+>,所以12124,4y y m y y t +==-,直线BC 的方程为()211121y y y y x x x x ++=--,化简得1221214y y xy y y y y =---,令0y =,得124Q y y x t ==-,所以(),0Q t -因此1OM t OQt==-.(2)因为点Q 的横坐标为1-,由(1)可知,()()1,0,1,0Q M -,设QA 交抛物线于D ,()()()()11221144,,,,,,,A x y B x y C x y D x y -,如图所示又由(1)知,124y y =-,同理可得144y y =,得42y y =-,又()212121211242x x my my m y y m +=+++=++=+,()22212121214416y y y y x x =⋅==,又()()22111,,1,MB x y MC x y =-=-- ,则()()()221121212111444MB MC x x y y x x x x m ⋅=---=-+++=- ,故2844,9m -=结合0m >,得m =所以直线AB的方程为330,x -=又12163y y -===,则141414221214141412443444AD y y y y y y k y y x x x x y y y y ---======--+--,所以直线AD 的方程为3430x y -+=,设圆心(,0)(11)T s s -<<,因为QM 为AQB ∠的平分线,故点T 到直线AB 和直线AD 的距离相等,所以333354s s +-=,因为11s -<<,解得19s =,故圆T 的半径33253s r +==,因此圆T 的方程为221499x y ⎛⎫-+= ⎪⎝⎭.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)23122y x x =-+;(2)0b <或1b >;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线2C 的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点,M N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得(1,)PA x y =-- ,(,1)PB x y =-- ,(1,1)PC x y =--,则22(1)()()(1)PA PB x x y y x y x y ⋅=-⋅-+-⋅-=+--,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=-⋅-+-⋅-=+--+,又2y 是PA PB ⋅ ,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+--++--+=,整理得点(,)P x y 的轨迹方程为23122y x x =-+.(2)由(1)知2131:22C y x x =-+,又31,416a ⎛⎫=- ⎪⎝⎭ ,∴平移公式为34116x x y y ⎧=-⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=-'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫-=+-++ ⎪ ⎪⎝⎭⎝⎭',即2y x ¢¢=.曲线2C 的方程为2y x =.如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b --=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b +=⎧⎨=-⎩,()()21111,,OM x y x x ∴== ,()()22222,,ON x y x x == ,又MON ∠ 为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅ ,2212120x x x x ∴+>,又12x x b =-,2()0b b ∴-+->,得0b <或1b >.(3)当2b =时,由(2)可得12122x x kx x b +=⎧⎨=-=-⎩,对2y x =求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x -=-,()2222:2N l y x x x x -=-,由()()()211112222222y x x x x x x y x x x x ⎧-=-⎪≠⎨-=-⎪⎩,解得交点R 的坐标(,)x y .满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=-⎩,R ∴点在定直线=2y -上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9.(2024·江苏南通·二模)已知双曲线E 的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)2213x y -=(2)①⎫⎪⎪⎭;②27π16S >且7π4S ≠【分析】(1)根据渐近线方程及顶点求出,a b 得双曲线方程;(2)①设(),0D t ,由四点共圆可得1AG OH k k ⋅=,根据斜率公式转化为,B C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为22221x y a b-=(0a >,0b >),从而渐近线方程为:b y x a =±,由题条件知:b a =因为双曲线的左顶点为()A ,所以a =1b =,所以双曲线的方程为:2213x y -=.(2)如图,①(),0D t ,设直线BC 的方程为:my x t =-,将x my t =+代入方程:22330x y --=,得()2223230m y mty t -++-=,当230m -≠且()22Δ1230t m =+->时,设()11,B x y ,()22,C x y ,则12223mt y y m +=--,212233t y y m -=-.设直线AG 的倾斜角为α,不妨设π02α<<,则π2AGH α∠=-,由于O ,A ,G ,H 四点共圆知:HOD AGH ∠=∠,所以直线OH 的倾斜角为π2α-,πsin πsin 2tan tan 1π2cos cos 2AG OH k k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭.直线AC的方程为:y x =,令x t =,则y =H t ⎛ ⎝,所以OH k=AGABk k==1=((1212t y y t x x ⇒=,又11x my t =+,22xmy t =+代入上式得:((1212t y yt my t my t =++,((()(22121212t y y t m y y m t y y t ⎡⎤⇒=+++⎢⎥⎣⎦,(((2222222332333t t mtt t m m t t m m m ⎛⎤---⇒⋅=⋅+⋅++ ⎥---⎝⎦,化简得:2430t +-=,解得:t =(舍)或t =故点D 的坐标为⎫⎪⎪⎭.②直线AG 的方程为(tan y x α=⋅,由①知:t =所以G α⎫⎪⎪⎭.直线OH 方程;1tan y x α=,所以H ,若G ,H 在x 轴上方时,G 在H 的上方,即tan 0α>α>若G ,H 在x 轴下方时,即t an 0α<α<所以tan α>tan α<又直线AG 与渐近线不平行,所以tan α≠所以0πα<<,tan α>tan α<tan α≠因为OG ==设圆P 的半径为R ,面积为S ,则2sin OG R α==所以()()()2222222125tan 125tan sin cos 3164sin 64sin R αααααα+⋅++=⨯=⨯()()22222125tan 1tan 33125tan 2664tan 64tan ααααα++⎛⎫=⨯=++ ⎪⎝⎭327266416⎛⎫≥= ⎪ ⎪⎝⎭,当且仅当22125tan tan αα=即tan α=tan α>tan α<tan α≠所以22716R >且274R ≠,从而27π16S >且7π4S ≠.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出πsin πsin 2tan tan 1π2cos cos 2AG OHk k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.【答案】(1)y x =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,a ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围.【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =.由222+=a b c,得a ,所以E的渐近线的方程为y =(2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,11112OP OQ y +=+设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,1AF2p =由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2213y x -=(2)(i )证明见解析;(ii )是,12【分析】(1)设曲线C 上任意一点坐标为(),x y ,利用坐标可得曲线C 的方程;(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,联立方程组可得1221231my y m +=--,122931y y m =-,求得直线AM :()1111y y x x =++,求得P ,H ,进而可得Q 的坐标,求得FQ 的坐标,直线MN 的方向向量的坐标,利用向量法可证结论.(ii) 法一:利用(i )可求得()226113mMN m +=-;QF=()()322329112213m S MN QF m+=⋅=-,进而求得()1212114S S PH x x +=⋅+-,代入运算可求得()()32212291413m S S m++=-,可求结论.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,计算可得1218S S PH MN +=⋅,又312S MN QF =⋅,12314PH S S S QF +=,进而计算可得结论成立.【详解】(1)设曲线C 上任意一点坐标为(),x y ,则由题意可知:()2222222212444441123y x y x x x y x x x ⎛⎫-+=-⇒-++=-+⇒-= ⎪⎝⎭,故曲线C 的方程为2213y x -=.(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,其中m <<且11x >,21x >()22222311290330x my m y my x y =+⎧⇒-++=⎨--=⎩,故1221231my y m +=--,122931y y m =-;直线AM :()1111y y x x =++,当12x =时,()11321y y x =+,故()1131,221y P x ⎛⎫⎪ ⎪+⎝⎭,同理()2231,221y H x ⎛⎫⎪ ⎪+⎝⎭,Q 为PH 中点,故()()()()1221121212111332211411Q y x y x y y y x x x x +++⎛⎫=⋅+=⋅ ⎪++++⎝⎭;()()()()()()222212121212293693111333931m m m x x my my m y y m y y m -+-++=++=+++=-2931m =--;(*)()()()()()122112211212221836181133233131m m my x y x y my y my my y y y m m -+++=+++=++==---;故3183492Q m m y =⋅=,即13,22m Q ⎛⎫⎪⎝⎭,则33,22m FQ ⎛⎫=- ⎪⎝⎭ ,直线MN 的方向向量(),1a m =,33022m m a FQ ⋅=-+= ,故QF MN ⊥.(ii)法一:12y y -===(**)故()2226113m MN y m +=-=-;QF==又QF MN ⊥,故()()322329112213mSMN QF m+=⋅=-.()12121211111122224S S PQ x HQ x PH x x ⎛⎫⎛⎫+=⋅-+⋅-=⋅+- ⎪ ⎪⎝⎭⎝⎭;()()222121222311293133113m m m x x m y y m m +-+-+-=++==--;()()()()()()1221121212113332121211y x y x y y PH x x x x +-+=-=++++,()()()()()()12211212123339211211y my y my y y x x x x +-+-==++++,由(*)知()()12291113x x m ++=-,由(**)知12y y -=,故291329m PH -==故()()()3222122231911413413m mS S m m+++=⋅=--,则12312S S S +=.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,故()()12121111488S S PH x x PH MF NF PH MN +=+-=⋅+=⋅,又312S MN QF =⋅,故12314PH S S S QF +=,又()()12129411P H y y y y x x =++,且由(*)知229993194431P Hm y y m -==--,记直线PH 与x 轴相交于点K ,由94P Hy y =可得2PK HK FK ⋅=,即PK FK FK HK =,即PKF PFH ∽△△,故PF HF ⊥;又Q 为PH 的中点,故12QF PH =,即1231142PH S S S QF +==.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.。
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
2.2.1 双曲线及其标准方程[学生用书P105(单独成册)])[A 根底达标]1.平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,那么点M 的轨迹方程是( )A.x 216-y 29=1 B .x 216-y 29=1(x ≥4)C.x 29-y 216=1 D .x 29-y 216=1(x ≥3)解析:选D.由|MA |-|MB |=6,且6<|AB |=10,得a =3,c =5,b 2=c 2-a 2=16. 故其轨迹为以A ,B 为焦点的双曲线的右支. 所以方程为x 29-y 216=1(x ≥3).2.双曲线方程为x 2-2y 2=1,那么它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0 B .⎝⎛⎭⎪⎫52,0 C.⎝⎛⎭⎪⎫62,0 D .(3,0)解析:选C.将双曲线方程化成标准方程为x 21-y 212=1, 所以a 2=1,b 2=12,所以c =a 2+b 2=62,故右焦点坐标为⎝⎛⎭⎪⎫62,0. 3.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( )A.x 23-y 2=1 B .y 2-x 23=1C.x 23-y 24=1 D .y 23-x 24=1解析:选B.由题意知,双曲线的焦点在y 轴上,且a =1,c =2,所以b 2=3,所以双曲线的方程为y 2-x 23=1.4.(2021·绍兴高二检测)双曲线Γ:x 2λ-y 29=1上有一点M 到Γ的右焦点F 1(34,0)的距离为18,那么点M 到Γ的左焦点F 2的距离是( )A .8B .28C .12D .8或28解析:选D.因为双曲线Γ:x 2λ-y 29=1的右焦点F 1(34,0),所以λ=34-9=25,所以双曲线Γ:x 225-y 29,可知||MF 1|-|MF 2||=2a =10,又|MF 1|=18,那么|MF 2|D.5.(2021·邯郸高二检测)设F 1,F 2是双曲线x 24-y 2=1的左、右焦点,点P 在双曲线上,当△F 1PF 2的面积为1时,PF 1→·PF 2→的值为( )A .0B .1 C.12D .2解析:选A.易知F 1(-5,0),F 2(5,0). 不妨设P (x 0,y 0)(x 0,y 0>0), 由12×2c ×y 0=1,得y 0=55, 所以P ⎝ ⎛⎭⎪⎫2305,55,所以PF 1→=⎝ ⎛⎭⎪⎫-5-2305,-55,PF 2→=⎝⎛⎭⎪⎫5-2305,-55,所以PF 1→·PF 2→=0.6.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有一样的焦点,那么a 的值是________.解析:依题意得⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.答案:17.在平面直角坐标系xOy 中,双曲线x 24-y 212=1上一点M 的横坐标为3,那么点M 到此双曲线的右焦点的距离为________.解析:双曲线右焦点为(4,0), 将x =3代入x 24-y 212=1,得y =±15.所以点M 的坐标为(3,15)或(3,-15),所以点M 到双曲线右焦点的距离为〔4-3〕2+〔±15〕2=4.答案:48.双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,假设PF 1⊥PF 2,那么|PF 1|+|PF 2|的值为____________.解析:不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2, 所以|F 1F 2|2=|PF 1|2+|PF 2|2=(22)2, 又|PF 1|-|PF 2|=2, 所以(|PF 1|-|PF 2|)2=4, 可得2|PF 1|·|PF 2|=4,那么(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3. 答案:2 39.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.解:因为双曲线的焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0).因为双曲线过点P (42,-3),所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 解得c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1.10.如图,假设F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)假设双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)假设P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.解:(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,那么|16-x |=6,解得x =10或x =22. 由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22.(2)将||PF 2|-|PF 1||=2a =6两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, 所以|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2= |PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,所以∠F 1PF 2=90°,所以S △F 1PF 2=12×32=16.[B 能力提升]11.(2021·保定检测)双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,那么m 的值为( )A .8B .9C .16D .20解析:选B.由,|AB |+|AF 2|+|BF 2|=20.又|AB |=4,那么|AF 2|+|BF 2|,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.12.(2021·西安高二检测)如图,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为点A ,B ,线段MN 的中点Q 在双曲线的右支上,假设|AN |-|BN |=12,那么a =( )A .3B .4C .5D .6解析:选A.连接QF 1,QF 2.因为线段MN 的中点为Q ,点F 2为MB 的中点,所以|QF 2|=12|BN |,同理可得|QF 1|=12|AN |.因为点Q 在双曲线C 的右支上,所以|QF 1|-|QF 2|=2a ,所以12(|AN |-|BN |)=2a ,所以12×12=2a ,解得a A.13.求与椭圆x 2+4y 2=8有公共焦点的双曲线的方程,使得以此双曲线与椭圆的四个交点为顶点的四边形的面积最大.解:椭圆的方程可化为x 28+y 22=1,①所以c 2=8-2=6.因为椭圆与双曲线有公共焦点,所以在双曲线中,a 2+b 2=c 2=6,即b 2=6-a 2.设双曲线的方程为x 2a 2-y 26-a2=1(0<a 2<6).②由①②解得⎩⎪⎨⎪⎧x 2=4a 23,y 2=6-a 23.由椭圆与双曲线的对称性可知四个交点构成一个矩形, 其面积S =4|xy |=4·4a 23·6-a 23=83 a 2〔6-a 2〕≤83·a 2+〔6-a 2〕2=8, 当且仅当a 2=6-a 2,即a 2=3,b 2=6-3=3时,取等号. 所以双曲线的方程是x 23-y 23=1. 14.(选做题)双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有一样的焦点. (1)求双曲线的标准方程;(2)假设点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.解:(1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).依题意得⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2,所以双曲线的标准方程为x 23-y 22=1.(2)不妨设点M 在双曲线的右支上,那么有|MF 1|-|MF 2|=23,因为|MF 1|+|MF 2|=63,所以|MF 1|=43,|MF 2|=2 3.又|F 1F 2|=25,因此在△MF 1F 2中,边MF 1最长,而cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22|MF 2|·|F 1F 2|<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年高考课标Ⅱ卷(文))设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F P 是C 上的点21212,30PF FF PF F ⊥∠=︒,则C 的离心率为( )A .B .C .D .2.2 .(汇编年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )OxyA BF 1F 2(第9题A .2 B .3C .23 D .26 3.3 .(汇编江西文)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 ( ) A .14B .55C .12D .5-24.(汇编全国1理)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 (A )23(B )23(C )26(D )3325.(汇编江西理)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( ) A .22B .33C .12D .13【解析】因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a=从而可得33c e a ==,故选B6.(汇编山东理)(12) 椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|P F 1|是|P F 2|的 ( )(A) 7倍 (B) 5倍 (C) 4倍 (D) 37.(汇编广东卷)若焦点在轴上的椭圆2212x y m +=的离心率为12,则m=( )(A)3(B)32(C)83(D)238.(汇编天津卷理)设抛物线2y =2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则∆BCF 与∆ACF 的面积之比BCFACFS S ∆∆=( ) A.45 B.23 C.47 D.12642-2-4-6-5510x=-0.5F: (0.51, 0.00)A BFC【解析】由题知12122121++=++==∆∆A B A B ACFBCFx x x x ACBC S S , 又323221||-=⇒=⇒=+=B B B y x x BF 由A 、B 、M 三点共线有B M B M A M A M x x y y x x y y --=--即23330320-+=--AA x x ,故2=A x ,∴5414131212=++=++=∆∆A B ACF BCF x x S S ,故选择A 。
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编年高考浙江卷(文))如图F1.F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点()A.B分别是C1.C2在第二.四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A. 2 B. 3 C.32D.622.1 .(汇编年高考课标Ⅱ卷(文))设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A, B两点.若|AF|=3|BF|,则L的方程为()(第9题图)A .y=x-1或y=-x+1B .y=(X-1)或y=-(x-1)C .y=(x-1)或y=-(x-1)D .y=(x-1)或y=-(x-1)3.(汇编福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是( )A .3332B .32 C .22 D .234.(汇编全国11)过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( ) A .2a B .a21 C .4a D .a4 5.(汇编全国理2)椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( ) A .7倍B .5倍C .4倍D .3倍6.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A .必在圆222x y +=内 B .必在圆222x y +=上C .必在圆222x y +=外 D .以上三种情形都有可能(汇编江西理)9.7.(汇编湖南卷文)抛物线28y x =-的焦点坐标是( )A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0) 【解析】由28y x =-,易知焦点坐标是(,0)(2,0)2p-=-,故选B.8.(汇编江西卷文)设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( )A .32B .2C .52D .39.(汇编全国卷2)已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为( )A .365B .566C .65D .5610.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编宁夏理)已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .114⎛⎫- ⎪⎝⎭,B .114⎛⎫ ⎪⎝⎭,C .(12),D .(12)-,2.(汇编大纲文)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 答案C3.(汇编湖北理)与直线042=+-y x 的平行的抛物线2x y =的切线方程是( )A .032=+-y xB .032=--y xC .012=+-y xD .012=--y x4.(汇编湖北文9)若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是( )A.[122-,122+]B.[12-,3]C.[-1,122+]D.[122-,3]5.(汇编广东文7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A.54 B.53 C. 52 D. 516.(汇编福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是( )A .3332B .32 C .22 D .237.(汇编湖北理)与直线042=+-y x 的平行的抛物线2x y =的切线方程是( )DA .032=+-y xB .032=--y xC .012=+-y xD .012=--y x8.(汇编) 曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( )(A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同9.(汇编全国卷Ⅱ文)双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r = ( )A.3B.2C.3D.610.(汇编全国7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为( )A .43 B .32C .21D .41第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.已知抛物线2:(0)C y ax a =>的焦点到准线的距离为14,且C 上的两点1122(,),(,)A x y B x y 关于直线y x m =+对称,并且1212x x =-,那么m =_______ 12. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为13.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则双曲线离心率为_________.14.椭圆1422=+m y x 的离心率为21,则m = . 15.在平面直角坐标系xOy 中,点F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过F 作双曲线C 的一条渐近线的垂线,垂足为A ,延长FA 与另一条渐近线交于点B .若FB →=2FA →,则双曲线的离心率为 ▲ .16.椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是34, (江苏省宿豫中学汇编年3月高考第二次模拟考试)评卷人得分三、解答题17. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF 1交椭圆C 于另一点Q .(1)求椭圆C 的方程;(2)若点P 的坐标为(0,b ),求过P ,Q ,F 2三点的圆的方程; (3)若F 1P →=λQF 1→,且λ∈[12,2],求OP →·OQ →的最大值.(1)解:由题意得⎩⎪⎨⎪⎧2c =2,a 2c=2, 解得c =1,a 2=2,所以b 2=a 2-c 2=1.所以椭圆的方程为x 22+y 2=1. …………………………………………2分(2)因为P (0,1),F 1(-1,0),所以PF 1的方程为x -y +1=0. 由⎩⎪⎨⎪⎧x +y +1=0,x 22+y 2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分 解法一:因为k PF 1·k PF 2=-1,所以△PQF 2为直角三角形. ……………………6分 因为QF 2的中点为(-16,-16),QF 2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分 解法二:设过P ,Q ,F 2三点的圆为x 2+y 2+Dx +Ey +F =0,则⎩⎨⎧1+E +F =0,1+D +F =0,179-43D -13E +F =0,解得⎩⎪⎨⎪⎧D =13,E =13,F =-43.所以圆的方程为x 2+y 2+13x +13y -43=0. …………………………………………8分(3)解法一:设P (x 1,y 1),Q (x 2,y 2),则F 1P →=(x 1+1,y 1),QF 1→=(-1-x 2,-y 2).因为F 1P →=λQF 1→,所以⎩⎨⎧x 1+1=λ(-1-x 2),y 1=-λy 2,即⎩⎨⎧x 1=-1-λ-λx 2,y 1=-λy 2,所以⎩⎪⎨⎪⎧(-1-λ-λx 2)22+λ2y 22=1,x 222+y 22=1,解得x 2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x 1x 2+y 1y 2=x 2(-1-λ-λx 2)-λy 22=-λ2x 22-(1+λ)x 2-λ =-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2 λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号. 所以OP→·OQ→≤12,即OP→·OQ→最大值为12. …………………………………………16分 解法二:当PQ 斜率不存在时,在x 22+y 2=1中,令x =-1得y =± 2 2. 所以2211(1)()222O P O Q ⋅=-⨯-+⨯-,此时11,22λ⎡⎤=∈⎢⎥⎣⎦ (2)当PQ 斜率存在时,设为k ,则PQ 的方程是y =k (x +1), 由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1.得(1+2k 2)x 2+4k 2x +2k 2-2=0, 韦达定理 22121222422==1212k k x x x x k k --+++, (4)设P (x 1,y 1),Q (x 2,y 2) ,则212121212(1)(1)OP OQ x x y y x x k x x ⋅=+=+++22212122222222222(1)()224(1)12122 61215122(12)2k x x k x x k k k k k kk k k k k =++++--=+++++-=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=-<+分。
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。
2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。
3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。
4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。
5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。
6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。
7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。
重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。
2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。
3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。
4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
章末复习一、圆锥曲线的定义及标准方程 1.求圆锥曲线方程的常用方法(1)直接法:动点满足的几何条件本身就是几何量的等量关系,只需把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.(2)定义法:动点满足已知曲线的定义,可先设定方程,再确定其中的基本量.(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,再根据条件确定待定的系数. 2.求圆锥曲线方程体现了逻辑推理和数学运算、直观想象的数学素养.例1 (1)已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .以上都不对答案 C解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与它到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.(2)在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .求曲线C 的方程.解 方法一 由PD →=2MD →,知点M 为线段PD 的中点,设点M 的坐标为(x ,y ),则点P 的坐标为(x ,2y ).因为点P 在圆x 2+y 2=4上, 所以x 2+(2y )2=4,所以曲线C 的方程为x 24+y 2=1.方法二 设点M 的坐标为(x ,y ),点P 的坐标是(x 0,y 0), 由PD →=2MD →,得x 0=x ,y 0=2y , 因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4,(*)把x 0=x ,y 0=2y 代入(*)式,得x 2+4y 2=4, 所以曲线C 的方程为x 24+y 2=1.反思感悟 (1)应用定义解题时注意圆锥曲线定义中的限制条件.(2)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.跟踪训练1 (1)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________. 答案 x 2-y 23=1解析 由题意得⎩⎪⎨⎪⎧c =2,ca=2,解得⎩⎪⎨⎪⎧a =1,c =2,则b 2=c 2-a 2=3,因此双曲线方程为x 2-y 23=1.(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.解 抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如图所示,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小, 且最小值为|MD |=2-(-2)=4, 所以|PM |+|PF |的最小值是4.此时点P 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3. 二、圆锥曲线的几何性质1.本类问题主要有两种考查类型:(1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点. (2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定位、后定量”.2.圆锥曲线的性质的讨论和应用充分体现了直观想象和逻辑推理的数学素养.例2 (1)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4, 所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8, 所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案 x ±2y =0解析 设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a.因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝ ⎛⎭⎪⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±ba x =±22x , 即x ±2y =0.反思感悟 求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =c a,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.跟踪训练2 (1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距是c ,A ,B 分别是长轴、短轴的一个端点,O 为原点,若△ABO 的面积是3c 2,则此椭圆的离心率是( ) A.12 B.32 C.22 D.33 答案 A解析 12ab =3c 2,即a 2(a 2-c 2)=12c 4,所以(a 2+3c 2)(a 2-4c 2)=0,所以a 2=4c 2,a =2c ,故e =c a =12.(2)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为_________.答案 x ±y =0 解析 c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎪⎫c ,-p 2,即c 2a 2-p 24b2=1.② 由|FA |=c ,得c 2=a 2+p 24,③由①③得p 2=4b 2.④将④代入②,得c 2a 2=2.∴a 2+b 2a 2=2,即ba=1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 三、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式.2.借用直线与圆锥曲线问题培养数学运算的数学核心素养.例 3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1, ∴椭圆的方程为x 24+y 23=1. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4m 2-3]=1524-m 2. 由|AB ||CD |=534,得 4-m25-4m2=1, 解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.反思感悟 (1)直线与圆锥曲线的位置关系可以通过代数法判断. (2)一元二次方程的判别式Δ、弦长公式是代数法解决问题的常用工具.跟踪训练3 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x +2y-2=0与x 轴,y 轴分别交于点A ,B .(1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围. 解 (1)由椭圆的离心率为22,得a =2c , 由A (2,0),得a =2, ∴c =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由e =22,设椭圆方程为x 2a 2+2y2a2=1,联立⎩⎪⎨⎪⎧x 2a 2+2y 2a2=1,x +2y -2=0,得6y 2-8y +4-a 2=0,若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧Δ≥0,f 0≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0,∴43≤a 2≤4, 故a 的取值范围是⎣⎢⎡⎦⎥⎤233,2. 四、圆锥曲线的综合问题1.圆锥曲线的综合问题包括位置关系证明及定值、最值问题,解决的基本思路是利用代数法,通过直线与圆锥曲线的方程求解.2.圆锥曲线的综合问题的解决培养学生的逻辑推理和数学运算素养.例4 已知抛物线C :y 2=2px (p >0)经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA ⊥OB ,求△AOB 面积的最小值.解 (1)由抛物线C :y 2=2px 经过点P (2,2)知4p =4,解得p =1. 则抛物线C 的方程为y 2=2x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.(2)由题意知,直线AB 不与y 轴垂直,设直线AB :x =ty +a ,由⎩⎪⎨⎪⎧x =ty +a ,y 2=2x ,消去x ,得y 2-2ty -2a =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a . 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即y 21y 224+y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-4. 所以-2a =-4,解得a =2.所以直线AB :x =ty +2. 所以直线AB 过定点(2,0).S △AOB =12×2×||y 1-y 2=y 21+y 22-2y 1y 2=y 21+y 22+8≥2||y 1y 2+8=4. 当且仅当y 1=2,y 2=-2或y 1=-2,y 2=2时,等号成立. 所以△AOB 面积的最小值为4.反思感悟 (1)解决最值问题常见的题型,可用建立目标函数的方法求解.(2)圆锥曲线的综合问题可以从分析问题的数量关系入手,利用直线系或曲线系方程或函数方程思想,通过联想与类比,使问题获解.跟踪训练4 已知动圆P 与圆O 1:x 2-x +y 2=0内切,且与直线x =-1相切,设动圆圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过曲线C 上一点M (2,y 0)(y 0>0)作两条直线l 1,l 2与曲线C 分别交于不同的两点A ,B ,若直线l 1,l 2的斜率分别为k 1,k 2,且k 1k 2=1.证明:直线AB 过定点.(1)解 由题意可知,动圆圆心P 到点⎝ ⎛⎭⎪⎫12,0的距离与到直线x =-12的距离相等,所以点P 的轨迹是以⎝ ⎛⎭⎪⎫12,0为焦点,直线x =-12为准线的抛物线,所以曲线C 的方程为y 2=2x .(2)证明 易知M (2,2),设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +b ,联立⎩⎪⎨⎪⎧x =my +b ,y 2=2x ,得y 2-2my -2b =0,所以⎩⎪⎨⎪⎧y 1+y 2=2m ,y 1y 2=-2b ,所以⎩⎪⎨⎪⎧x 1+x 2=2m 2+2b ,x 1x 2=b 2,因为k 1k 2=y 1-2x 1-2·y 2-2x 2-2=1, 即y 1y 2-2(y 1+y 2)=x 1x 2-2(x 1+x 2), 所以b 2-2b -4m 2+4m =0, 所以(b -1)2=(2m -1)2, 所以b =2m 或b =-2m +2.当b =-2m +2时,直线AB 的方程为x =my -2m +2过定点(2,2)与M 重合,舍去; 当b =2m 时,直线AB 的方程为x =my +2m 过定点(0,-2),所以直线AB 过定点(0,-2).1.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50°D.1cos 50°答案 D解析 由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130° =1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.2.(2019·全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p 等于( )A .2B .3C .4D .8 答案 D解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0), 所以p2=2p ,解得p =8,故选D.3.(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 由题意设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=c a=1a.在等腰三角形ABF 1中,cos 2θ=2m2+3m 2-3m 22×2m ·3m=13,因为cos 2θ=1-2sin 2θ,所以13=1-2⎝ ⎛⎭⎪⎫1a 2,得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1,故选B.4.(2019·北京)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k t -1x 1+x 2+t -12=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).。
2019年高中数学单元测试卷圆锥曲线与方程学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2008陕西理)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABCD2.(2002北京文10)已知椭圆222253n y m x +和双曲线222232ny m x -=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±y 215B .y =±x 215C .x =±y 43D .y =±x 43二、填空题3.椭圆1422=+m y x 的离心率为21,则m = . 4.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的没岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2 km.现要在曲线PQ 上选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、M 到C 修建公路的费用分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是____________5.在直角坐标系xOy 中,双曲线2213y x -=的左准线为l ,则以l 为准线的抛物线的标准方程是 。
6.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则12F PF ∠的大小为 _______________.7.若双曲线经过点,渐近线方程是13y x =±,则这条双曲线的方程是 ▲ .8.设双曲线2221(0)9x y a a -=>的渐近线方程 为320,x y ±=则a 的值为 .9.已知抛物22(0)y px p =>,过定点(),0p 作两条互相垂直的直线12,l l 若1l 与抛物线交于P 、Q 两点,2l 与抛物线交于M 、N 与两点,1l 的斜率为k ,某同学已正确求得弦PQ 的中点坐标为2,p p p kk ⎛⎫+⎪⎝⎭,请你写出弦MN 的中点坐标:10.如图,设共有一条对称轴PQ 、一个顶点P 和一个焦点F 的2个椭圆和焦距,给出下列判断①1122a c a c +>+ ②1122a c a c ->-③1212c c a a > ④ 1212b b a a < ⑤221212b b a a <2(14题图)11.抛物线24x y =的准线方程为 ▲ . 12.若椭圆1C :1212212=+b y a x (011>>b a )和椭圆2C :1222222=+b y a x (022>>b a )的焦点相同且12a a >.给出如下四个结论: ①椭圆1C 和椭圆2C 一定没有公共点; ②1122a b a b >; ③ 22212221b b a a -=-; ④1212a a b b -<-.其中,所有正确结论的序号是___________.13.以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则长轴长的最小值为 14.6=的化简结果是______________.15.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为___▲___.16.双曲线221412x y -=的渐近线方程为 。
第三讲圆锥曲线的综合问题1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=(x1+x2)2-4x1x2,|y2-y1|=(y1+y2)2-4y1y2.②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.3.圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O为坐标原点,则有①|OP |∈[b ,a ]. ②|PF 1|∈[a -c ,a +c ]. ③|PF 1|·|PF 2|∈[b 2,a 2]. ④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1、F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有 ①|OP |≥a . ②|PF 1|≥c -a . (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥p2.②A (m ,n )为一定点,则|P A |+|PF |有最小值.1. (20xx·课标全国Ⅰ)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 答案 D解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎨⎧x 21a 2+y 21b2=1x 22a 2+y 22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a2,设直线方程为y =b2a2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0,所以x 1+x 2=6b 2a 2+b 2=2;又因为a 2-b 2=9,解得b 2=9,a 2=18.2. (20xx·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33B .-33C .±33D .- 3答案 B解析 ∵S△AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan ∠OPH =-33).3. (20xx·大纲全国)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]答案 B解析 利用直线P A 2斜率的取值范围确定点P 变化范围的边界点,再利用斜率公式计算直线P A 1斜率的边界值. 由题意可得A 1(-2,0),A 2(2,0), 当P A 2的斜率为-2时,直线P A 2的方程式为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P ⎝⎛⎭⎫2619,2419,此时直线P A 1的斜率k =38. 同理,当直线P A 2的斜率为-1时,直线P A 2方程为y =-(x -2), 代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P ⎝⎛⎭⎫27,127,此时直线P A 1的斜率k =34.数形结合可知,直线P A 1斜率的取值范围是⎣⎡⎦⎤38,34.4. (20xx·四川)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,当△F AB 的周长最大时,△F AB 的面积是________. 答案 3解析 直线x =m 过右焦点(1,0)时,△F AB 的周长最大,由椭圆定义知,其周长为4a =8,此时,|AB |=2×b 2a =2×32=3,∴S △F AB =12×2×3=3.5. (20xx·北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为______. 答案3解析 ∵y 2=4x 的焦点F (1,0), 又直线l 过焦点F 且倾斜角为60°, 故直线l 的方程为y =3(x -1), 将其代入y 2=4x 得3x 2-6x +3-4x =0,即3x 2-10x +3=0.∴x =13或x =3.又点A 在x 轴上方,∴x A =3.∴y A =2 3.∴S △OAF =12×1×23= 3.题型一 圆锥曲线中的范围、最值问题例1 已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为 3.(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围; (3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围. 审题破题 (2)直接利用判别式和根与系数的关系确定k 的范围;(3)寻找b 和k 的关系,利用(2)中k 的范围求解.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎨⎪⎧1-3k 2≠0,Δ=36(1-k 2)>0,x A+x B=62k1-3k 2<0,x A x B=-91-3k 2>0,解得33<k <1. 所以当33<k <1时,直线l 与双曲线的左支有两个交点. (3)由(2),得x A +x B =62k1-3k 2,所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2,所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎫32k 1-3k 2,21-3k 2.设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2,∵33<k <1,∴-2<1-3k 2<0,∴b <-2 2. ∴b 的取值范围是(-∞,-22).反思归纳 求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练1 (20xx·广东)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.解 (1)依题意知|c +2|2=322,c >0,解得c =1.所以抛物线C 的方程为x 2=4y .(2)由y =14x 2得y ′=12x ,设A (x 1,y 1),B (x 2,y 2),则切线P A ,PB 的斜率分别为12x 1,12x 2,所以切线P A 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0, 又点P (x 0,y 0)在切线P A 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0 的两组解, 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0, ∴y 1+y 2=x 20-2y 0,y 1y 2=y 20,∴|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1 =y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5=2⎝⎛⎭⎫y 0+122+92, ∴当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.题型二 圆锥曲线中的定点、定值问题例2 (20xx·福建)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q ,证明以PQ 为直径的圆恒过y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线方程,可得p 的值;(2)假设在y 轴上存在定点M ,使得以线段PQ 为直径的圆经过点M ,转化为MP →·MQ →=0,从而判断点M 是否存在.(1)解 依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12. 因为点B (43,12)在x 2=2py 上, 所以(43)2=2p ×12,解得p =2. 故抛物线E 的方程为x 2=4y .(2)证明 方法一 由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝⎛⎭⎫x 20-42x 0,-1.设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝⎛⎭⎫x 20-42x 0,-1-y 1,由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).方法二 由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝⎛⎭⎫x 20-42x 0,-1. 取x 0=2,此时P (2,1),Q (0,-1), 以PQ 为直径的圆为(x -1)2+y 2=2, 交y 轴于点M 1(0,1)、M 2(0,-1);取x 0=1,此时P ⎝⎛⎭⎫1,14,Q ⎝⎛⎭⎫-32,-1, 以PQ 为直径的圆为⎝⎛⎭⎫x +142+⎝⎛⎭⎫y +382=12564, 交y 轴于点M 3(0,1)、M 4⎝⎛⎭⎫0,-74. 故若满足条件的点M 存在,只能是M (0,1). 以下证明点M (0,1)就是所要求的点.因为MP →=(x 0,y 0-1),MQ →=⎝⎛⎭⎫x 20-42x 0,-2,所以MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).反思归纳 定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.变式训练2 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b2=1(a >b >0)的离心率e=33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.(1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3, ∴b =5-3= 2. 由题意得⎩⎪⎨⎪⎧c a =33a 2=b 2+c2b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k (x -x 0)+y 0y 23+x 22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0,整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1. 题型三 圆锥曲线中的存在性问题例3 如图,椭圆的中心为原点O ,离心率e =22,且a 2c=2 2.(1)求该椭圆的标准方程;(2)设动点P 满足OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.审题破题 (1)列方程组求出a 、c 即可;(2)由k OM ·k ON =-12先确定点M 、N 坐标满足条件,再根据OP →=OM →+2ON →寻找点P 满足条件:点P 在F 1、F 2为焦点的椭圆上.解 (1)由e =c a =22,a 2c =22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2), 即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM ,ON 的斜率,由题设条件知k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20. 所以P 点是椭圆x 2(25)2+y 2(10)2=1上的点,设该椭圆的左、右焦点为F 1、F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =(25)2-(10)2=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).反思归纳 探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论. 变式训练3 已知点P 是圆O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q满足DQ →=23DP →.(1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使OE →=12(OM →+ON →)(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由. 解 (1)设P (x 0,y 0),Q (x ,y ),依题意,点D 的坐标为D (x 0,0),所以DQ →=(x -x 0,y ),DP →=(0,y 0),又DQ →=23DP →,故⎩⎪⎨⎪⎧ x -x 0=0,y =23y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=32y , 因为P 在圆O 上,故有x 20+y 20=9,所以x 2+⎝⎛⎭⎫3y 22=9,即x 29+y 24=1,所以点Q 的轨迹方程为x 29+y 24=1.(2)假设椭圆x 29+y24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)满足OE →=12(OM →+ON →),则E (1,1)是线段MN 的中点, 且有⎩⎨⎧x 1+x22=1,y 1+y22=1,即⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2. 又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,所以⎩⎨⎧x 219+y 214=1,x 229+y 224=1,两式相减,得(x 1-x 2)(x 1+x 2)9+(y 1-y 2)(y 1+y 2)4=0,所以k MN =y 1-y 2x 1-x 2=-49,故直线MN 的方程为4x +9y -13=0.所以椭圆上存在点M ,N 满足OE →=12(OM →+ON →),此时直线MN 的方程为4x +9y -13=0.典例 (12分)抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. 规范解答解 (1)根据题意可设直线l 的方程为y =kx -2,抛物线的方程为x 2=-2py (p >0). 由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.[2分]设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12, 解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线的方程为x 2=-2y .[6分](2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大.对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离 d =|2·(-2)-(-2)-2|22+(-1)2=45=455.[9分]由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0, 则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4·(-4)=410.于是,△ABP 面积的最大值为12×410×455=8 2.[12分]评分细则 (1)由OA →+OB →=(-4,-12)得到关于p ,k 的方程组得2分;解出p 、k 的值给1分;(2)确定△ABP 面积最大的条件给1分;(3)得到方程x 2+4x -4=0给1分. 阅卷老师提醒 最值问题解法有几何法和代数法两种,本题中的曲线上一点到直线的距离的最值可以转化为两条平行线的距离;代数法求最值的基本思路是转化为函数的最值.1. 由椭圆x22+y 2=1的左焦点作倾斜角为45°的直线l 交椭圆于A ,B 两点,设O 为坐标原点,则OA →·OB →等于 ( )A .0B .1C .-13D .-3答案 C解析 直线l 的方程为:y =x +1, 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1得3x 2+4x =0. ∴x 1=0或x 2=-43,则y 1=1,y 2=-13.∴OA →·OB →=x 1x 2+y 1y 2=-13.2. 已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48答案 C解析 不妨设抛物线的标准方程为y 2=2px (p >0),由于l 垂直于对称轴且过焦点,故直线l 的方程为x =p2.代入y 2=2px 得,y =±p ,即|AB |=2p ,又|AB |=12,故p =6,所以抛物线的准线方程为x =-3,故S △ABP =12×6×12=36.3. 已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点( )A .(2,0)B .(1,0)C .(0,1)D .(0,-1)答案 B解析 因为动圆的圆心在抛物线y 2=4x 上,且x =-1是抛物线y 2=4x 的准线,所以由抛物线的定义知,动圆一定过抛物线的焦点(1,0),所以选B.4. 设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案 C解析 ∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|FM |=y 0+2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.5. 已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为________. 答案 y 2=4x解析 设抛物线方程为y 2=ax .将y =x 代入y 2=ax ,得x =0或x =a ,∴a2=2.∴a =4.∴抛物线方程为y 2=4x .6. 已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b2=1的两个焦点,P 为椭圆上一点且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是____________.答案 ⎣⎡⎦⎤33,22解析 设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a 2x 2代入①式解得x 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],所以2c 2≤a 2≤3c 2,所以离心率e =c a ∈⎣⎡⎦⎤33,22.专题限时规范训练一、选择题1. 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p 等于 ( )A .1B .2C .3D .4答案 B解析 如图,由AB 的斜率为3,知α=60°,又AM →=M B →,∴M 为AB 的中点.过点B 作BP 垂直准线 l 于点P ,则∠ABP =60°,∴∠BAP =30°. ∴||BP =12||AB =||BM .∴M 为焦点,即p2=1,∴p =2.2. 已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为( )A .-2B .-8116C .1D .0答案 A解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2.3. 设AB 是过椭圆x 2a 2+y2b2(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为( )A .bcB .abC .acD .b 2答案 A解析 如图,由椭圆对称性知O 为AB 的中点,则△F 1OB 的面积为△F 1AB 面积的一半.又OF 1=c ,△F 1OB 边OF 1上的高为y B ,而y B 的最大值为b .所以△F 1OB 的面积最大值为12cb .所以△F 1AB 的面积最大值为bc .4. 已知点A (-1,0),B (1,0)及抛物线y 2=2x ,若抛物线上点P 满足|P A |=m |PB |,则m 的最大值为( )A .3B .2C. 3D. 2答案 C解析 据已知设P (x ,y ),则有m =|P A ||PB |= (x +1)2+y 2(x -1)2+y 2= (x +1)2+2x(x -1)2+2x=x 2+4x +1x 2+1=1+4x x 2+1= 1+4x +1x ,据基本不等式有m =1+4x +1x≤1+42x ×1x=3,即m 的最大值为 3.故选C.5. 直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为 ( )A .16B .116C .4D .14答案 B解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y 得x 2-3x -4=0,∴x A =-1,x D =4,直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5,∴|AB ||CD |=|AF |-1|DF |-1=116.故选B. 6. 过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是 ( )A .(14,94)B .(23,1)C .(12,23)D .(0,12)答案 C解析 点B 的横坐标是c ,故B 的坐标(c ,±b 2a),已知k ∈(13,12),∴B (c ,b2a).又A (-a,0),则斜率k =b 2a c +a =b 2ac +a 2=a 2-c 2ac +a 2=1-e 2e +1.由13<k <12,解得12<e <23.7. 已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值 ( )A .等于1B .最小值是1C .等于4D .最大值是4 答案 A解析 设直线l :x =ty +1,代入抛物线方程, 得y 2-4ty -4=0. 设A (x 1,y 1),D (x 2,y 2),根据抛物线定义|AF |=x 1+1,|DF |=x 2+1, 故|AB |=x 1,|CD |=x 2,所以|AB |·|CD |=x 1x 2=y 214·y 224=(y 1y 2)216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A. 8. 设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c上存在P 使线段PF 1的中垂线过点F 2,则此椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22B.⎝⎛⎦⎤0,33C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1 答案 D解析 设P ⎝⎛⎭⎫a 2c ,y ,F 1P 的中点Q 的坐标为⎝⎛⎭⎫b 22c ,y2, 当kQF 2存在时,则kF 1P =cy a 2+c 2,kQF 2=cyb 2-2c 2, 由kF 1P ·kQF 2=-1,得y 2=(a 2+c 2)·(2c 2-b 2)c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0,即3c 2-a 2>0,即e 2>13,故33<e <1.当kQF 2不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c -c =2c ,得e =33,综上,得33≤e <1,即所求的椭圆离心率的范围是⎣⎡⎭⎫33,1.二、填空题9. 已知椭圆的焦点是F 1(-22,0)和F 2(22,0),长轴长是6,直线y =x +2与此椭圆交于A 、B 两点,则线段AB 的中点坐标是________.答案 ⎝⎛⎭⎫-95,15 解析 由已知得椭圆方程是x 29+y 2=1,直线与椭圆相交有⎩⎪⎨⎪⎧x 2+9y 2=9,y =x +2,则10x 2+36x+27=0,AB 中点(x 0,y 0)有x 0=12(x A +x B )=-95,y 0=x 0+2=15,所以,AB 中点坐标是⎝⎛⎭⎫-95,15. 10.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|P A |最小,则相应P 的坐标为________.答案 ⎝⎛⎭⎫-1,14 解析 由抛物线定义可知PF 的长等于点P 到抛物线准线的距离,所以过点A 作抛物线准线的垂线,与抛物线的交点⎝⎛⎭⎫-1,14即为所求点P 的坐标,此时|PF |+|P A |最小. 11. 斜率为3的直线l 过抛物线y 2=4x 的焦点且与该抛物线交于A ,B 两点,则|AB |=_______.答案 163解析 如图,过A 作AA1⊥l ′,l ′为抛物线的准线.过B 作BB 1⊥ l ′,抛物线y 2=4x 的焦点为F (1,0),过焦点F 作FM ⊥A 1A 交A 1A 于M 点,直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos 60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.12.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________. 答案 32解析 (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y-16k =0,由题意知k ≠0,则y 1+y 2=4k ,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32.综合(1)(2)知(y 21+y 22)min =32.三、解答题13.(20xx·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A 、B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解 (1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 求解可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以 AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则 d =(x -0)2+(y -2)2=x 2+(y -2)2=3b 2-3y 2+(y -2)2=-2(y +1)2+3b 2+6, ∴当y =-1时,d 取得最大值,d max =3b 2+6=3, 解得b 2=1,∴a 2=3.∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1,d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=2 1-1m 2+n2.∴S △OAB =12|AB |d ′=12·2 1-1m 2+n 2·1m 2+n 2= 1m 2+n 2⎝⎛⎭⎫1-1m 2+n 2. ∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0.∴S △OAB = 1m 2+n 2⎝⎛⎭⎫1-1m 2+n 2 ≤⎝ ⎛⎭⎪⎪⎫1m 2+n 2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n2得⎩⎨⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为 ⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22或 ⎝⎛⎭⎫-62,-22,此时△OAB 的面积为12.。
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年高考湖北卷(文))已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等2.(汇编重庆理)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e =5k ,则双曲线方程为(A )22x a -224y a =1(B)222215x y a a-=(C)222214x y b b-=(D)222215x y b b-=3.(汇编陕西理)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) A .6 B .3C .2D .334.(汇编山东理)在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为( ) (A)2 (B)22 (C) 21(D)425.(汇编大纲文)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 答案C6.(汇编全国2文)抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )(A )2 (B )3(C )4 (D )57.(汇编山东理)(11) 过抛物线()02>=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( ) (A) a 2 (B)a 21 (C) a 4 (D) a4 8.(汇编京春文9理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )9.给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x+y -5=0仅有一个交点的曲线是( )A .①②③B .②③④C .①②④D .①③④(汇编北京理6)10.已知抛物线x y 42=的准线与双曲线1222=-y ax )0(>a 相交于B A ,两点,且F是抛物线的焦点,若FAB ∆是直角三角形,则双曲线的离心率为( ) A .3 B .6C .2D .3第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题11. 抛物线x =8y 2的焦点坐标为 .12.(汇编年高考北京卷(文))若抛物线22y px =的焦点坐标为(1,0)则p =____;准线方程为_____.13.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦所在直线为_________14.过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF = .15.若实数m 、∈n {2-,1-, 1,2,3},且n m ≠,则方程122=+ny m x 表示焦点在y 轴上的双曲线的概率是___310_______.16.在ABC ∆中,60ACB ∠=,sin :sin 8:5A B =,则以,A B 为焦点且过点C 的椭圆的离心率为 . 评卷人得分三、解答题17.(本小题共16分)已知a 为实数, (1)求导数)(x f ';(2)若0)1(=-'f ,求)(x f 在上的最大值和最小值; (3)若)(x f 在和上都是递增的,求a 的取值范围;18.如图,已知定点R (0,-3),动点P ,Q 分别在x 轴和y 轴上移动,延长PQ 至点M ,使12PQ QM =,且0PR PM ⋅=.(1)求动点M 的轨迹C 1;(2)圆C 2: 22(1)1x y +-=,过点(0,1)的直线l 依次交C 1于A ,D 两点(从左到右),交C 2于B ,C 两点(从左到右),求证:AB CD ⋅为定值.19.已知椭圆)0(1:22221>>=+b a by a x C 的离心率为33,直线2:+=x y l 与以原点为圆心、椭圆1C 的短半轴长为半径的圆相切。
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编年高考山东卷(文))抛物线)0(21:21>=p x py C 的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )A .163 B .83 C .332 D .334 2.(汇编全国2文)(9)已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )323.1 .(汇编大纲理)已知12,F F 为双曲线22:2C x y -=的左右焦点,点P 在C上,12||2||PF PF =,则12cos F PF ∠= ( )A .14B .35 C .34D .45答案C 【解析】4.(汇编辽宁文)曲线221(6)106x y m m m +=<--与曲线221(59)59x y n n n+=<<--的( ) A.离心率相等 B.焦距相等 C.焦点相同 D.准线相同5.(汇编全国I 理(汇编)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为( )A .32B .62C .3D .66.(汇编江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) ( A )1617 ( B ) 1615 ( C ) 87 ( D ) 0 7.(汇编山东理)13.已知两点,45,4,45,1⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛N M 给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是 ( ) (A) ①③ (B) ②④ (C) ①②③ (D) ②③8.(汇编年高考上海)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在9.(汇编湖北理)已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 ( ) A .59 B .3 C .779 D .4910.已知椭圆222253n y m x +和双曲线222232ny m x -=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±y 215B .y =±x 215 C .x =±y 43D .y =±x 43(汇编北京文,10)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.若17222=-y x ,点),(y x P 到点)0,3(-的距离为23,则点P 到点)0,3(的距离为12. 双曲线08222=+-y x 的焦点坐标为13.若关于y x ,的方程11122=--+k y k x 表示的曲线为焦点在x 轴上的双曲线,则k 的取值范围为 ▲14.已知,A B 是抛物线22(0)y px p =>上两点,O 为坐标原点。
圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1(2024·山东·二模)已知椭圆的焦点分别是F 13,0 ,F 2-3,0 ,点M 在椭圆上,且MF 1 +MF 2 =4.(1)求椭圆的标准方程;(2)若直线y =kx +2与椭圆交于A ,B 两点,且OA ⊥OB ,求实数k 的值.【答案】(1)x 24+y 2=1;(2)62或-62.【分析】(1)根据所给条件求出a ,b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA ⊥OB ,列出方程求k 即可.【详解】(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由题意可知c =32a =4a 2=b 2+c 2,解得a =2,b =1,c =3,所以椭圆的标准方程为x 24+y 2=1.(2)设A x 1,y 1 ,B x 2,y 2 ,如图,联立方程y =kx +2x 24+y 2=1,消去y ,得1+4k 2 x 2+82kx +4=0,则x 1+x 2=-82k 1+4k 2,x 1x 2=41+4k2,从而y 1y 2=kx 1+2 kx 2+2 =k 2x 1x 2+2k x 1+x 2 +2=2-4k 21+4k 2,因为OA ⊥OB ,OA ⋅OB=0,即x 1x 2+y 1y 2=0,所以41+4k 2+2-4k 21+4k 2=6-4k 21+4k 2=0,解得k =62或-62,经验证知Δ>0,所以k 的值为62或-62.2(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆C :x 2a 2+y2b2=1a >b >0 的离心率为32,F 1,F 2分别是椭圆的左、右焦点,过F 2作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,且△AF 1F 2的周长是4+23.(1)求椭圆C 的方程;(2)当AB =32DE 时,求△ODE 的面积.【答案】(1)x 24+y 2=1(2)223【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出a ,b ,得椭圆C 的方程;(2)设直线l 1,l 2的方程,与椭圆联立,利用韦达定理和AB =32DE 求出DE 和l 2的方程,再求出O 到直线l 2的距离,可求△ODE 的面积.【详解】(1)由题意知,2a +2c =4+23c a =32b 2=a 2-c 2 ,解得a =2,b =1,c=3,所以椭圆C 的方程为x 24+y 2=1;(2)若直线l 1的斜率不存在,则直线l 2的斜率为0,不满足AB =32DE ,直线l 1的的斜率为0,则A ,F 1,F 2三点共线,不合题意,所以直线l 1的斜率存在且不为0,设直线l 1的方程为x =my +3,由x =my +3x24+y 2=1,消去x 得m 24+1 y 2+3m 2y -14=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-3m2m 24+1,y 1y 2=-14m 24+1,∴AB =1+m 2y 1+y 2 2-4y 1y 2=1+m 2⋅4m 2+1m 2+4=4m 2+1 m 2+4.同理可得DE =41m2+11m 2+4=4m 2+1 1+4m 2.,由AB =32DE ,得4m 2+1 m 2+4=32⋅4m 2+1 1+4m 2,解得m 2=2,则DE =43,∴直线l 2的方程为y =±2x -3 ,∴坐标原点O 到直线l 2的距离为d =63=2,S △ODE =12×43×2=223.即△ODE 的面积的面积为223.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过M 2,0 ,N 1,-32 两点.(1)求C 的方程.(2)A ,B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)x24+y2=1(2)存在,3个【分析】(1)设椭圆C的方程为mx2+ny2=1(m>0,n>0,m≠n),根据条件得到4m=1m+34n=1,即可求出结果;(2)设直线DA为y=kx+1,直线DB为y=-1kx+1,当k=1时,由椭圆的对称性知满足题意;当k2≠1时,联立直线与椭圆方程,求出A,B的坐标,进而求出AB中垂线方程,根据条件中垂线直经过点D(0,1),从而将问题转化成方程k4-7k2+1=0解的个数,即可解决问题.【详解】(1)由题设椭圆C的方程为mx2+ny2=1(m>0,n>0,m≠n),因为椭圆过M2,0,N1,-3 2两点,所以4m=1m+34n=1,得到m=14,n=1,所以椭圆C的方程为x24+y2=1.(2)由(1)知D(0,1),易知直线DA,DB的斜率均存在且不为0,不妨设k DA=k(k>0),k DB=-1k,直线DA为y=kx+1,直线DB为y=-1kx+1,由椭圆的对称性知,当k=1时,显然有DA=DB,满足题意,当k2≠1时,由y=kx+1x24+y2=1,消y得到14+k2x2+2kx=0,所以x A=-8k1+4k2,y A=-8k21+4k2+1=1-4k21+4k2,即A-8k1+4k2,1-4k21+4k2,同理可得B8kk2+4,k2-4k2+4,所以k AB=k2-4k2+4-1-4k21+4k28kk2+4+8k1+4k2=(k2-4)1+4k2-(k2+4)(1-4k2)8k(1+4k2+k2+4)=k2-15k,设AB中点坐标为(x0,y0),则x0=-8k1+4k2+8kk2+42=12k(k2-1)(k2+4)(1+4k2),y0=1-4k21+4k2+k2-4k2+42=-15k2(k2+4)(1+4k2),所以AB中垂线方程为y+15k2(k2+4)(1+4k2)=-5kk2-1x-12k(k2-1)(k2+4)(1+4k2),要使△ADB为AB为底边的等腰直角三角形,则直AB中垂线方程过点(0,1),所以1+15k2(k2+4)(1+4k2)=-5kk2-10-12k(k2-1)(k2+4)(1+4k2),整理得到k4-7k2+1=0,令t=k2,则t2-7t+1=0,Δ=49-4>0,所以t有两根t1,t2,且t1+t2=7>0,t1t2=1>0,即t2-7t+1=0有两个正根,故有2个不同的k2值,满足k4-7k2+1=0,所以由椭圆的对称性知,当k2≠1时,还存在2个符合题意的三角形,综上所述,存在以D为顶点,AB为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为y =kx +1,直线DB 为y =-1kx +1,联立椭圆方程求出A ,B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点D (0,1),再转化成关于k 的方程的解的问题.4(2024·广东广州·模拟预测)已知椭圆C :x 28+y 2b2=1(0<b <22),右顶点为E ,上、下顶点分别为B 1,B 2,G 是EB 1的中点,且EB 1 ⋅GB 2=1.(1)求椭圆C 的方程;(2)设过点D -4,0 的直线l 交椭圆C 于点M ,N ,点A -2,-1 ,直线MA ,NA 分别交直线x =-4于点P ,Q ,求证:线段PQ 的中点为定点.【答案】(1)x 28+y 22=1(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点P ,Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得a 2=8,∵E a ,0 ,B 10,b ,B 20,-b ,∴EB 1的中点为G a 2,b2,∵EB 1 ⋅GB 2 =(-a ,b )⋅-a 2,-3b 2 =a 22-3b 22=1,∴b 2=2,故椭圆C 的方程为x 28+y 22=1;(2)依题意可知直线l 的斜率存在,设直线l 的方程为y =k x +4 ,由y =k x +4x 28+y 22=1消去y 并化简得1+4k 2 x 2+32k 2x +64k 2-8=0,由Δ=1024k 4-41+4k 2 64k 2-8 >0,得k 2<14,-12<k <12.设M x M ,y M ,N x N ,y N ,则x M +x N =-32k 21+4k 2,x M x N =64k 2-81+4k 2,依题意可知直线MA ,NA 的斜率存在,直线MA 的方程为y +1=y M +1x M +2x +2 ,令x =-4,得y P =-2y M -x M -4x M +2=-2k x M +4 -x M -4x M +2=-2k -1 x M -8k -4x M +2=-2k -1 x M +2 -4k -2x M +2=-2k -1-4k +2x M +2,同理可求得y Q =-2k -1-4k +2x N +2,∴y P +y Q =-4k -2-4k +2x M +2-4k +2x N +2=-4k -2-4k +2 1x M +2+1x N +2=-4k -2-4k +2 ⋅x M +x N +4x M x N +2x M +x N +4=-4k -2-4k +2 ⋅-32k 21+4k 2+464k 2-81+4k 2+2-32k 21+4k2+4=-4k -2+(4k +2)=0,∴线段PQ 的中点为定点-4,0 .【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点A ,B 分别在x 轴和y 轴上滑动,且OP =23OA +33OB,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点E 4,1 的动直线l 与曲线Γ交于不同的两点M ,N 时,在线段MN 上取点Q ,满足|EM |⋅|QN|=|QM |⋅|EN|.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)x 24+y 23=1(2)点Q 在定直线上,定直线方程为3x +y -3=0【分析】(1)设点P ,A ,B 的坐标,利用平面向量的坐标表示消参得x 0=32x y 0=3y,结合正方形面积得Γ的方程;(2)设l :y =kx +1-4k ,Q ,M ,N 的坐标,与椭圆联立并根据韦达定理得M ,N 横坐标关系,再根据线段乘积关系化为比值关系得x 0-x 1x 2-x 0=4-x 14-x 2,化简得x 0=2+4k3+k,代入直线方程即可y 0,从而求出定直线方程.【详解】(1)设P x ,y ,A x 0,0 ,B 0,y 0 ,由OP =23OA +33OB =23(x 0,0)+33(0,y 0)=23x 0,33y 0 ,得x =23x 0y =33y 0,所以x 0=32x y 0=3y,因为正方形ABCD 的面积为AB 2=9,即x 20+y 20=9,所以32x 2+(3y )2=9,整理可得x 24+y 23=1,因此C 的轨迹方程为x 24+y 23=1.(2)依题意,直线l 存在斜率,设l :y -1=k (x -4),即y =kx +1-4k ,设点Q x 0,y 0 ,M x 1,y 1 ,N x 2,y 2 x 1<x 0<x 2 ,由y =kx +1-4k3x 2+4y 2=12,消y 得3x 2+4(kx +1-4k )2=12,即(3+4k 2)x 2+8k (1-4k )x +4(1-4k )2-12=0,由Δ=64k 21-4k 2-163+4k 2 1-4k 2-3=161-4k 24k 2-3+4k 2 +483+4k 2 =483+4k 2 -1-4k 2 =48-12k 2+8k +2 =96-6k 2+4k +1 >0,可以得到2-106<k <2+106,所以k ≠-3,可得x 1+x 2=-8k (1-4k )3+4k 2,x 1x 2=4(1-4k )2-123+4k 2,由|EM |⋅|QN |=|QM |⋅|EN |,得|QM ||QN |=|EM||EN |,所以x 0-x 1x 2-x 0=4-x 14-x 2,可得x 0=4(x 1+x 2)-2x 1x 28-(x 1+x 2)=4-8k (1-4k )3+4k 2 -24(1-4k )2-123+4k 28--8k (1-4k )3+4k 2=-32k 1-4k -81-4k 2+2424+32k 2+8k -24k 2=-32k +128k 2-128k 2+64k -8+2424+8k =16+32k 24+8k =2+4k 3+k,所以y 0=kx 0+1-4k =2k +4k 23+k +1-4k 3+k 3+k =3-9k3+k,因为3x 0+y 0=6+12k 3+k +3-9k3+k=3,所以点Q 在定直线上,定直线方程为3x +y -3=0.6(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线C :y 2=2px (p >0)的焦点为F ,过F 的直线l 与C 交于M ,N 两点,且当l 的斜率为1时,MN =8.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若QR ≤3,求△MNQ 面积的取值范围.【答案】(1)y 2=4x ;(2)2,63 .【分析】(1)先设l 的方程为x =my +p2,M x 1,y 1 ,N x 2,y 2 ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出R 2m 2+1,2m ,进而可求P ,Q 的坐标,可得直线QR ⎳x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为x =my +p2,M x 1,y 1 ,N x 2,y 2 ,代入y 2=2px ,可得y 2-2mpy -p 2=0,所以y 1+y 2=2mp ,y 1y 2=-p 2,则MN =x 1+x 2+p =m y 1+y 2 +2p =2m 2p +2p ,由题意可知当斜率为1时,m =1,又MN =8,即2p +2p =8,解得p =2,所以C 的方程为y 2=4x ;(2)由(1)知p =2,直线l 的方程为x =my +1,抛物线方程y 2=4x ,y 1+y 2=4m ,y 1y 2=-4所以R 的纵坐标y R =y 1+y 22=2m ,将R 的纵坐标2m 代入x =my +1,得x =2m 2+1,所以R 的坐标2m 2+1,2m ,易知抛物线的准线为x =-1,又因为l 与C 的准线交于点P ,所以P 的坐标-1,-2m ,则直线OP 的方程为x =m2y ,把x =m2y 代入y 2=4x ,得y 2=2my ,即y =2m 或y =0,因为点Q 异于原点,从而Q 的纵坐标为2m ,把y =2m 代入x =m 2y ,得x =m2y =m 2,所以Q m 2,2m ,因为R 的坐标2m 2+1,2m ,所以R ,Q 的纵坐标相同,所以直线QR ⎳x 轴,且QR =2m 2+1-m 2 =m 2+1 ,所以△MNQ 面积S △MNQ =S △MRQ +S △NRQ =12QR y 1-y 2 ,因为y 1-y 2 2=y 1+y 2 2-4y 1y 2=16m 2+16,所以y 1-y 2 =16m 2+16=4m 2+1,所以S △MNQ =12m 2+1 ×4m 2+1=2m 2+1 32=2QR 32,因为点Q 异于原点,所以m ≠0,所以m 2+1 >0,因为QR ≤3,所以1<QR ≤3,所以2<2QR 32≤63,即△MNQ 面积的取值范围为2,63 .7(2024·浙江丽水·二模)已知抛物线E :y 2=4x ,点A ,B ,C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),A ,C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为-1,且MB ⋅MC =89,求△AQB 的内切圆的方程.【答案】(1)1(2)x -19 2+y 2=49【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为x =my +t m >0 ,A x 1,y 1 ,B x 2,y 2 ,则C x 1,-y 1 ,M t ,0 ,由x =my +ty 2=4x,消去x ,得y 2-4my -4t =0,Δ=16m 2+t >0⇒m 2+t >0,所以y 1+y 2=4m ,y 1y 2=-4t ,直线BC 的方程为y +y 1=y 2+y 1x 2-x 1x -x 1 ,化简得y =4xy 2-y 1-y 1y 2y 2-y 1,令y =0,得x Q =y 1y 24=-t ,所以Q -t ,0因此OM OQ =t-t =1.(2)因为点Q 的横坐标为-1,由(1)可知,Q -1,0 ,M 1,0 ,设QA 交抛物线于D ,A x 1,y 1 ,B x 2,y 2 ,C x 1,-y 1 ,D x 4,y 4 ,如图所示又由(1)知,y 1y 2=-4,同理可得y 1y 4=4,得y 4=-y 2,又x 1+x 2=my 1+1+my 2+1=m y 1+y 2 +2=4m 2+2,x 1x 2=y 214⋅y 224=y 1y 2 216=1,又MB =x 2-1,y 2 ,MC=x 1-1,-y 1 ,则MB ⋅MC=x 2-1 x 1-1 -y 1y 2=x 1x 2-x 1+x 2 +1+4=4-4m 2,故4-4m 2=89,结合m >0,得m =73.所以直线AB 的方程为3x -7y -3=0,又y 1-y 2=y 1+y 2 2-4y 1y 2=16m 2+16=163,则k AD =y 1-y 4x 1-x 4=y 1-y 4x 1-x 4=y 1-y 4y 214-y 224=4y 1+y 4=4y 1-y 2=34,所以直线AD 的方程为3x -4y +3=0,设圆心T (s ,0)(-1<s <1),因为QM 为∠AQB 的平分线,故点T 到直线AB 和直线AD 的距离相等,所以3s +3 5=3s -3 4,因为-1<s <1,解得s =19,故圆T 的半径r =3s +35=23,因此圆T 的方程为x -19 2+y 2=49.8(2024·江苏苏州·模拟预测)已知点A (1,0),B (0,1),C (1,1)和动点P (x ,y )满足y 2是PA ⋅PB ,PA⋅PC的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线C 1按向量a =-34,116平移后得到曲线C 2,曲线C 2上不同的两点M ,N 的连线交y 轴于点Q (0,b ),如果∠MON (O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果b =2时,曲线C 2在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)y =x 2-32x +12;(2)b <0或b >1;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线C 2的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点M ,N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得PA =(1-x ,-y ),PB =(-x ,1-y ),PC=(1-x ,1-y ),则PA ⋅PB=(1-x )⋅(-x )+(-y )⋅(1-y )=x 2+y 2-x -y ,PA ⋅PC=(1-x )⋅(1-x )+(-y )⋅(1-y )=x 2+y 2-2x -y +1,又∵y 2是PA ⋅PB ,PA ⋅PC 的等差中项,∴x 2+y 2-x -y +x 2+y 2-2x -y +1 =2y 2,整理得点P (x ,y )的轨迹方程为y =x 2-32x +12.(2)由(1)知C 1:y =x 2-32x +12,又∵a =-34,116 ,∴平移公式为x =x -34y =y +116 即x =x +34y =y -116,代入曲线C 1的方程得到曲线C 2的方程为:y -116=x +342-32x +34 +12,即y =x 2.曲线C 2的方程为y =x 2.如图由题意可设M ,N 所在的直线方程为y =kx +b ,由y =x 2y =kx +b消去y 得x 2-kx -b =0,令M x 1,y 1 ,N x 2,y 2 x 1≠x 2 ,则x 1+x 2=kx 1x 2=-b ,∴OM =x 1,y 1 =x 1,x 21 ,ON =x 2,y 2 =x 2,x 22 ,又∵∠MON 为锐角,∴cos ∠MON =OM ⋅ON |OM |⋅|ON |>0,即x 1x 2+x 21x 22|OM |⋅|ON |>0,∴x 1x 2+x 21x 22>0,又x 1x 2=-b ,∴-b +(-b )2>0,得b <0或b >1.(3)当b =2时,由(2)可得x 1+x 2=kx 1x 2=-b =-2,对y =x 2求导可得y =2x ,∴抛物线C 2在点,∴M =x 1,x 21 ,N x 2,x 22 处的切线的斜率分别为k M =2x 1,k N =2x 2,∴在点M ,N 处的切线方程分别为l M :y -x 21=2x 1x -x 1 ,l N :y -x 22=2x 2x -x 2 ,由y -x 21=2x 1x -x 1y -x 22=2x 2x -x 2x 1≠x 2,解得交点R 的坐标(x ,y ).满足x =x 1+x 22y =x 1⋅x2即x =k2y =-2,∴R 点在定直线y =-2上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9(2024·江苏南通·二模)已知双曲线E 的渐近线为y =±33x ,左顶点为A -3,0 .(1)求双曲线E 的方程;(2)直线l :x =t 交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)x 23-y 2=1(2)①34,0 ;②S >27π16且S ≠7π4【分析】(1)根据渐近线方程及顶点求出a ,b 得双曲线方程;(2)①设D t ,0 ,由四点共圆可得k AG ⋅k OH =1,根据斜率公式转化为B ,C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),从而渐近线方程为:y =±b a x ,由题条件知:b a =33.因为双曲线的左顶点为A -3,0 ,所以a =3,b =1,所以双曲线的方程为:x 23-y 2=1.(2)如图,①D t ,0 ,设直线BC 的方程为:my =x -t ,将x =my +t 代入方程:x 2-3y 2-3=0,得m 2-3 y 2+2mty +t 2-3=0,当m 2-3≠0且Δ=12t 2+m 2-3 >0时,设B x 1,y 1 ,C x 2,y 2 ,则y 1+y 2=-2mt m 2-3,y 1y 2=t 2-3m 2-3.设直线AG 的倾斜角为α,不妨设0<α<π2,则∠AGH =π2-α,由于O ,A ,G ,H 四点共圆知:∠HOD =∠AGH ,所以直线OH 的倾斜角为π2-α,k AG ⋅k OH =tan α⋅tan π2-α =sin αcos α×sin π2-α cos π2-α=1.直线AC 的方程为:y =y 2x 2+3x +3 ,令x =t ,则y =y 2t +3 x 2+3,从而H t ,y 2t +3x 2+3,所以k OH =y 2t +3 t x 2+3 ,又k AG =k AB =y 1x 1+3,得:y 1x 1+3×y 2t +3 t x 2+3=1⇒t +3 y 1y 2=t x 1+3 x 2+3 ,又x 1=my 1+t ,x 2=my 2+t 代入上式得:t +3 y 1y 2=t my 1+t +3 my 2+t +3 ,⇒t +3 y 1y 2=t m 2y 1y 2+m t +3 y 1+y 2 +t +3 2 ,⇒t +3 ⋅t 2-3m 2-3=t m 2⋅t 2-3m 2-3+m t +3 ⋅-2mt m 2-3+t +3 2,化简得:4t 2+33t -3=0,解得:t =-3(舍)或t =34.故点D 的坐标为34,0.②直线AG 的方程为y =tan α⋅x +3 ,由①知:t =34,所以G 34,534tan α .直线OH 方程;y =1tan αx ,所以H 34,34tan α,若G ,H 在x 轴上方时,G 在H 的上方,即tan α>0时,534tan α>34tan α;若G ,H 在x 轴下方时,即tan α<0时,534tan α<34tan α,所以tan α>55或tan α<-55.又直线AG 与渐近线不平行,所以tan α≠±33.所以0<α<π,tan α>55或tan α<55且tan α≠±33.因为OG =34 2+53tan α4 2=1431+25tan 2α ,设圆P 的半径为R ,面积为S ,则2R =OG sin α=1431+25tan 2α sin α,所以R 2=364×1+25⋅tan 2α sin 2α=164×1+25tan 2α sin 2α+cos 2α sin 2α=364×1+25tan 2α 1+tan 2α tan 2α=36425tan 2α+1tan 2α+26≥364225tan 2α⋅1tan 2α+26=2716,当且仅当25tan 2α=1tan 2α即tan α=±55时,上述不等式取等号,tan α>55或tan α<-55且tan α≠±33.所以R 2>2716且R 2≠74,从而S >27π16且S ≠7π4.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出k AG ⋅k OH =tan α⋅tan π2-α =sin αcos α×sin π2-α cos π2-α=1这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10(2024·江苏南京·二模)已知抛物线C :y 2=2px (p >0)与双曲线E :x 2a 2-y 2b2=1(a >0,b >0)有公共的焦点F ,且p =4b .过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足λ1|OP |+1|OQ |=1|AF |-1|BF |,求λ的取值范围.【答案】(1)y =±33x (2)0,12【分析】(1)由两曲线有公共的焦点F ,且p =4b ,得c =2b ,a =3b ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出1|OP |+1|OQ |和1|AF |-1|BF |,由λ1OP +1OQ=1AF -1BF求λ的取值范围.【详解】(1)抛物线C :y 2=2px (p >0)与双曲线E :x 2a 2-y 2b2=1(a >0,b >0)有公共的焦点F ,设双曲线E 的焦距为2c ,则有p2=c ,又p =4b ,则c =2b .由a 2+b 2=c 2,得a =3b ,所以E 的渐近线的方程为y =±33x (2)设l :x =my +c ,P x 1,y 1 ,Q x 2,y 2 ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有m 2<3,由x =my +c y =±33x,解得y 1=c 3-m ,y 2=c -3-m,1OP +1OQ =12y 1 +12y 2=3-m +-3-m 2c =3-m --3-m 2c =3c .设A x 3,y 3 ,B x 4,y 4 ,由x =my +cy 2=2px,消去x 得y 2-2pmx -p 2=0,则有y 3+y 4=2pm ,y 3y 4=-p 2,1AF-1BF=11+m 2y 3 -11+m 2y 4=11+m 2⋅y 3 -y 4 y 3 y 4=11+m 2⋅y 3+y 4 y 3y 4 =11+m 2⋅2pm p 2=2p ⋅m 2m 2+1,由λ1OP +1OQ=1AF -1BF,p 2=c ,有λ⋅3c =2p⋅m 2m 2+1,即3λ=m 2m 2+1,由m 2<3,有3λ∈0,32 ,所以λ∈0,12 .【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11(2024·重庆·三模)已知F2,0,曲线C上任意一点到点F的距离是到直线x=12的距离的两倍.(1)求曲线C的方程;(2)已知曲线C的左顶点为A,直线l过点F且与曲线C在第一、四象限分别交于M,N两点,直线AM、AN分别与直线x=12交于P,H两点,Q为PH的中点.(i)证明:QF⊥MN;(ii)记△PMQ,△HNQ,△MNQ的面积分别为S1,S2,S3,则S1+S2S3是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)x2-y23=1(2)(i)证明见解析;(ii)是,12【分析】(1)设曲线C上任意一点坐标为x,y,利用坐标可得曲线C的方程;(2)(i)设直线MN:x=my+2,M x1,y1,N x2,y2,联立方程组可得y1+y2=-12m3m2-1,y1y2=93m2-1,求得直线AM:y=y1x1+1x+1,求得P,H,进而可得Q的坐标,求得FQ的坐标,直线MN的方向向量的坐标,利用向量法可证结论.(ii)法一:利用(i)可求得MN=61+m21-3m2;QF=31+m22,进而可得S3=12MN⋅QF=91+m2 3 221-3m2 ,进而求得S1+S2=14PH⋅x1+x2-1,代入运算可求得S1+S2=91+m23241-3m2,可求结论.法二:(利用双曲线的第二定义)由(1)知,MF=2x1-1 2,同理NF =2x2-12,计算可得S1+S2=1 8PH⋅MN,又S3=12MN⋅QF,S1+S2S3=14PHQF,进而计算可得结论成立.【详解】(1)设曲线C上任意一点坐标为x,y,则由题意可知:x-22+y2=4x-1 22⇒x2-4x+4+y2=4x2-4x+1⇒x2-y23=1,故曲线C的方程为x2-y23=1.(2)(i )设直线MN :x =my +2,M x 1,y 1 ,N x 2,y 2 ,其中-33<m <33且x 1>1,x 2>1x =my +23x 2-y 2-3=0⇒3m 2-1 y 2+12my +9=0 ,故y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1;直线AM :y =y 1x 1+1x +1 ,当x =12时,y =3y 12x 1+1 ,故P 12,3y 12x 1+1,同理H 12,3y 22x 2+1,Q 为PH 中点,故y Q =12⋅32y 1x 1+1+y 2x 2+1=34⋅y 1x 2+1 +y 2x 1+1x 1+1 x 2+1;x 1+1 x 2+1 =my 1+3 my 2+3 =m2y 1y 2+3m y 1+y 2 +9=9m 2-36m 2+93m 2-13m 2-1=-93m 2-1;(*)y 1x 2+1 +y 2x 1+1 =y 1my 2+3 +y 2my 1+3 =2my 1y 2+3y 1+y 2 =18m -36m 3m 2-1=-18m3m 2-1;故y Q =34⋅18m 9=3m 2,即Q 12,3m 2,则FQ =-32,3m2 ,直线MN 的方向向量a =m ,1 ,a ⋅FQ =-3m 2+3m2=0,故QF ⊥MN .(ii )法一:y 1-y 2 =y 1+y 2 2-4y 1y 2=144m 2-363m 2-1 3m 2-12=61+m 21-3m 2;(**)故MN =1+m 2y 1-y 2 =61+m 2 1-3m 2;QF =2-122+0-3m 2 2=31+m 22,又QF ⊥MN ,故S 3=12MN ⋅QF =91+m 2 3221-3m 2.S 1+S 2=12PQ ⋅x 1-12 +12HQ ⋅x 2-12 =14PH ⋅x 1+x 2-1 ;x 1+x 2-1=m y 1+y 2 +3=-12m 2+9m 2-33m 2-1=31+m 2 1-3m 2;PH =3y 12x 1+1 -3y 22x 2+1 =32y 1x 2+1 -y 2x 1+1x 1+1 x 2+1,=32y 1my 2+3 -y 2my 1+3 x 1+1 x 2+1=92y 1-y 2x 1+1 x 2+1,由(*)知x 1+1 x 2+1 =91-3m 2,由(**)知y 1-y 2 =61+m 21-3m 2,故PH =92⋅61+m 21-3m 2⋅1-3m 29=31+m 2,故S 1+S 2=14⋅31+m 2⋅31+m 21-3m 2=91+m 2 3241-3m 2,则S 1+S 2S 3=12.法二:(利用双曲线的第二定义)由(1)知,MF =2x 1-12 ,同理NF =2x 2-12,故S 1+S 2=14PH x 1+x 2-1 =18PH ⋅MF +NF =18PH ⋅MN ,又S 3=12MN ⋅QF ,故S 1+S 2S 3=14PHQF ,又y P y H =94y 1y 2x 1+1 x 2+1,且由(*)知y P y H =9493m 2-1-93m 2-1=94,记直线PH 与x 轴相交于点K ,由y P y H =94可得PK ⋅HK =FK 2,即PK FK =FK HK,即△PKF ∽△PFH ,故PF ⊥HF ;又Q 为PH 的中点,故QF =12PH ,即S 1+S 2S 3=14PH QF =12.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.第二步:联立方程:把所设直线方程与抛物线方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式Δ:计算一元二次方程根的判别式Δ>0(有些题可不考虑).第四步:写出根之间的关系,由根与系数的关系可写出.第五步:根据题设条件求解问题中的结论.有些运算量大,转化是关徤,运算求解能力也是考查点之一.12(2024·河北·二模)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率e =22.(1)若椭圆E 过点2,2 ,求椭圆E 的标准方程.(2)若直线l 1,l 2均过点P p n ,0 0<p n <a ,n ∈N * 且互相垂直,直线l 1交椭圆E 于A ,B 两点,直线l 2交椭圆E 于C ,D 两点,M ,N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点Q t n ,0 ,设p n =13n .(ⅰ)求t n ;(ⅱ)记a n =PQ ,求数列1a n的前n 项和S n .【答案】(1)x 28+y 24=1(2)(ⅰ)t n =23n +1;(ⅱ)S n =92(3n -1).【分析】(1)根据椭圆的离心率得到a ,b 之间的关系,再结合椭圆过点2,2 ,求出b 2的值,从而得到椭圆的方程.(2)(ⅰ)利用根与系数的关系及中点坐标公式求得点M ,N 的坐标,再根据M ,N ,Q 三点共线得t n ,p n 之间的关系;(ⅱ)求得a n ,并利用等比数列的前n 项和公式求得S n .【详解】(1)因为e =c a =22,a 2=b 2+c 2,所以a 2=2b 2,所以椭圆E 的方程为x 22b 2+y 2b2=1,因为椭圆E 过点2,2 ,所以42b 2+2b 2=1,解得b 2=4,所以椭圆E 的方程为x28+y 24=1.(2)(ⅰ)当直线l 1,l 2中一条直线的斜率不存在,另一条直线的斜率为0时,直线MN 与x 轴重合,不符合题意.故直线l 1,l 2的斜率均存在且不为0.设直线l 1的方程为y =k (x -p n )(k ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ),N (x N ,y N ),联立方程x 22b 2+y 2b 2=1y =k (x -p n) ,消去y 并整理得(1+2k 2)x 2-4k 2p nx +2k 2p 2n-2b 2=0,因为直线与椭圆相交于两个不同的交点,所以Δ>0,根据韦达定理得,x 1+x 2=4p n k 21+2k 2,x 1x 2=2k 2p 2n -2b21+2k 2,则x M =2p n k 21+2k 2yM=-p n k 1+2k 2,同理可得x N =2p n k 2+2y N=p n k k 2+2,因为M ,N ,Q 三点共线,所以y N (x N -x M )=(y N -y M )(x N -t n ),易知y N -y M ≠0,则t n =x M y N -x N y My N -y M =2p n k 21+2k 2⋅p n k k 2+2-2p n k 2+2⋅-p n k1+2k 2p n k k 2+2--p n k1+2k 2=2p n3,因为p n =13n ,所以t n =23n +1.(ⅱ)结合(ⅰ)可知a n =|PQ |=|p n -t n |=13n -23n +1=13n +1,所以1a n=3n +1,所以数列1a n 是首项为9,公比为3的等比数列,所以数列1a n 的前n 项和S n =9(1-3n )1-3=92(3n-1).【点睛】关键点点睛:本题考查椭圆的几何性质、直线与椭圆相交以及等比数列求和的问题.其中关键点是联立直线与椭圆的方程,根据韦达定理和M ,N ,Q 三点共线,求出点Q 的坐标,从而得到t n .13(2024·辽宁沈阳·二模)以坐标原点为圆心的两个同心圆半径分别为6和3,P 为大圆上一动点,大圆半径OP 与小圆相交于点B ,PP ⊥x 轴于P ,BB ⊥PP 于B ,B 点的轨迹为Ω.(1)求B 点轨迹Ω的方程;(2)点A 2,1 ,若点M 、N 在Ω上,且直线AM 、AN 的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求∠AOG 的余弦值.【答案】(1)x 26+y 23=1(2)-31010【分析】(1)设B (x ,y ),∠POP =θ,根据条件得到x =OP cos θ=6cos θy =OB sin θ=3sin θ,消元即可求出结果;(2)法一:设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为y =kx +m ,联立直线MN 与椭圆方程得到1+2k 2 x 2+4kmx +2m 2-6=0,由韦达定理得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,根据题设得到直线MN 的方程为y =-12x +m ,再利用点M x 1,y 1 ,N x 2,y 2 在椭圆上,得到k OG =1,从而有OG 与y 轴负平轴所形成的夹角为α=π4,再求出OA 与x 正半轴所形成的夹角,即可解决问题;法二:设M x 1,y 1 ,N x 2,y 2 ,直线AM 的方程为y =k (x -2)+1,直接求出M ,N ,再根据条件求出k MN =-12,后面同法一;法三:建立新的坐标系,在新的坐标系中,得椭圆的方程为(x -2)26+(y -1)23=1,及直线MN 的方程为mx +ny =1,联立直线与椭圆,再结合条件得到n =2m ,从而有k MN =-12,后面同法一;法四:设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为y =kx +m ,联立椭圆方程得1+2k 2 x 2+4kmx +2m 2-2=0,进而得到1+2k 2 x 2+4kmx +2m 2-2=1+2k 2 x -x 1 x -x 2 ,通过令x =2,得到41+2k 2 +8km +2m 2-2=1+2k 22-x 1 2-x 2 ,令x =1-m k ,得到(m -1)2k21+2k 2+4km 1-m k +2m 2-2=1+2k 2 1-m k -x 1 1-m k -x 2 ,从而有4k 2+2km +m -1=0,下面同方法一.【详解】(1)设B (x ,y ),∠POP =θ,则x =OP cos θ=6cos θy =OB sin θ=3sin θ,消去θ得x 26+y 23=1,所以B点轨迹Ω的方程为x 26+y 23=1.(2)方法一:设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为y =kx +m ,y =kx +mx 26+y 23=1 ,消去y 得1+2k 2 x 2+4kmx +2m 2-6=0,Δ=(4km )2-41+2k 2 2m 2-6 =48k 2-8m 2+24>0,即m 2<6k 2+3由韦达定理知x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,k AM ⋅k AN =y 1-1x 1-2⋅y 2-1x 2-2=kx 1+m -1x 1-2⋅kx 2+m -1x 2-2=k 2x 1x 2+k (m -1)x 1+x 2 +(m -1)2x 1x 2-2x 1+x 2 +4=12,所以(2m 2-6)k 21+2k 2+-4k 2m (m -1)1+2k2+(m -1)22m 2-61+2k 2+8km1+2k 2+4=12,整理得4k 2+2km +m -1=0,即4k 2-1 +m (2k +1)=(2k +1)(2k -1+m )=0,当2k +1=0时,直线MN 的方程为y =-12x +m当2k -1+m =0时,直线MN 的方程为y =k (x -2)+1,恒过A (2,1)点,不合题意设G x G ,y G ,将M x 1,y 1 ,N x 2,y 2 ,将M 、N 两点代入到椭圆得x 216+y 213=1x 226+y 223=1,两式相减得x 21-x 226+y 21-y 223=0,即y 1-y 2 y 1+y 2 x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 22-0 x 1-x 2 x 1+x 22-0=-36,所以k MN ⋅k OG =-12,故k OG =1,设OG 与y 轴负平轴所形成的夹角为α,因为k OG =1,所以α=π4,设OA 与x 正半轴所形成的夹角为β,因为A (2,1),所以sin β=55,cos β=255,cos ∠AOG =cos π2+α+β =-sin (α+β)=-(sin αcos β+cos αsin β)=-31010.方法二:设M x 1,y 1 ,N x 2,y 2 ,直线AM 的方程为y =k (x -2)+1y =k (x -2)+1x 26+y 23=1消去y 可得:1+2k 2 x 2-8k 2-4k x +8k 2-8k -4=0从而x A ⋅x 1=8k 2-8k -41+2k 2,故x 1=4k 2-4k -21+2k2,将x 1代入直线AM 的方程可得y 1=-4k 2-4k 1+2k 2+1,所以M 4k 2-4k -21+2k 2,-4k 2-4k1+2k 2+1,又k AM ⋅k AN =12,将式点M 中的k 换成12k 得到N 2-4k -4k 21+2k 2,-2-4k1+2k 2+1,k MN =y 2-y 1x 2-x 1=-12,下面同方法一方法三:以A (2,1)为坐标原点建立新的直角坐标系,新坐标系下椭圆方程(x -2)26+(y -1)23=1,在新坐标系下设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为mx +ny =1将椭圆方程变形可得:x 2+4x +2y 2+4y =0将直线MN 的方程与椭圆方程结合,构成其次分式可得x 2+4x (mx +ny )+2y 2+4y (mx +ny )=0,整理得(4n +2)y 2+(4n +4m )xy +(1+4m )x 2=0即:(4n +2)y x 2+(4n +4m )yx +(1+4m )=0,所以k AM ⋅k AN =y 1x 1⋅y 2x 2=1+4m 4n +2=12,故n =2m ,直线MN 的方程为mx +2my =1,k MN =-12,下面同方法一方法四:设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为y =kx +my =kx +mx 26+y 23=1 消去y 可得:1+2k 2 x 2+4kmx +2m 2-2=0因为x 1,x 2是上述一元二次方程的两个根,所以1+2k 2 x 2+4kmx +2m 2-2=1+2k 2x -x 1 x -x 2 ①又k AM ⋅k AN =y 1-1x 1-2⋅y 2-1x 2-2=12整理得:x 1-2 x 2-2 -2y 1-1 y 2-1=x 1-2 x 2-2 -2k 2x 1+m -1k x 2m -1k=0在①式中令x =2得:41+2k 2 +8km +2m 2-2=1+2k 2 2-x 1 2-x 2 ②令x =1-m k 得:(m -1)2k 21+2k 2 +4km 1-m k +2m 2-2=1+2k 2 1-m k -x 1 1-m k -x 2 ③②+③×-2k 2 可得:整理得4k 2+2km +m -1=0,下面同方法一【点睛】关键点点晴,本题的关键在于第(2)问,通过设出直线MN 的方程为y =kx +m ,M x 1,y 1 ,N x 2,y 2 ,联立直线MN 与椭圆方程得到1+2k 2 x 2+4kmx +2m 2-6=0,由韦达定理得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k2,根据题设得到直线MN 的方程为y =-12x +m ,再利用点M x 1,y 1 ,N x 2,y 2 在椭圆上,得到k OG =1,从而将问题转化成cos ∠AOG =cos π2+α+β 解决,其中α为OG 与y 轴负平轴所形成的夹角,β为OA 与x 正半轴所形成的夹角.14(2024·广东佛山·二模)两条动直线y =k 1x 和y =k 2x 分别与抛物线C :y 2=2px p >0 相交于不同于原点的A ,B 两点,当△OAB 的垂心恰是C 的焦点时,AB =45.(1)求p ;(2)若k 1k 2=-4,弦AB 中点为P ,点M -2,0 关于直线AB 的对称点N 在抛物线C 上,求△PMN 的面积.【答案】(1)p =2;(2)62.【分析】(1)利用垂直关系,结合斜率坐标公式,列式计算即得.(2)求出P 的轨迹方程,分k 1=-k 2和k 1≠-k 2两种情况讨论,求出直线AB 过定点F (1,0),再求出N 点坐标,即可求出三角形面积.【详解】(1)由△OAB 的垂心恰是C 的焦点,由抛物线对称性得|OA |=|OB |,AF ⊥OB ,而AB=45,不妨设A 10p ,25 ,B 10p ,-25,而焦点F p 2,0 ,则2510p -p 2⋅-2510p=-1,解得p =2,所以p =2.(2)由(1)知,y 2=4x ,由y =k 1x y 2=4x,解得A 4k 21,4k 1 ,同理B 4k 22,4k 2 ,则P 2k 21+2k 22,2k 1+2k 2,而2k 1+2k 22=4k 21+4k 22+8k 1k 2=22k 21+2k 22-2,因此所以P 的轨迹方程为y 2=2x -2,当k 1=-k 2时,不妨设k 1=2,k 2=-2,此时A (1,2),B (1,-2),直线AB 过点(1,0),当k 1≠-k 2时,直线AB 的斜率为4k 1-4k24k 21-4k 22=k 1k 2k 1+k 2=-4k 1+k 2,AB 的方程为y -4k 1=-4k 1+k 2x -4k 21,整理得y =-4k 1+k 2(x -1),直线AB 过点(1,0),因此直线AB 过定点F (1,0),由|FN |=|FM |可得x N +1=3,解得x N =2,于是N (2,-22)或N (2,22),当N (2,-22)时,MN 的中点为(0,-2),直线MN 的斜率为-22,此时直线AB 的方程为y =2x -2,由y =2x -2y 2=2x -2 解得P (2,2)或P (1,0),当P 1,0 时,直线AB 为x =1,不符合题意,舍去,则P 2,2 ,MN =26,△PMN 边MN 上的高h =23,因此△PMN 的面积S △PMN =62,当N (2,22)时,由对称性,同理可得S △PMN =62,所以△PMN 的面积为6 2.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点x 0,y 0 ,常利用直线的点斜式方程y -y 0=k x -x 0 或截距式y =kx +b 来证明.15(2024·广东深圳·二模)设抛物线C :x 2=2py (p >0),直线l :y =kx +2交C 于A ,B 两点.过原点O 作l 的垂线,交直线y =-2于点M .对任意k ∈R ,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线l ⎳l ,且l 与C 相切于点N ,证明:△AMN 的面积不小于22.【答案】(1)x 2=4y ;(2)证明见解析.【分析】(1)根据题意,分k =0与k ≠0代入计算,联立直线与抛物线方程,结合韦达定理代入计算,再由等差中项的定义列出方程,即可得到结果;(2)方法一:联立直线l 与抛物线的方程,表示出AB 中点E 的坐标,再由点M ,N ,E 三点共线可得△AMN面积为△ABM 面积的14,结合三角形的面积公式代入计算,即可证明;方法二:联立直线l 与抛物线的方程,再由Δ=0,得n =-k 2,点N 2k ,k 2 ,即可得到直线MN 与x 轴垂直,再由三角形的面积公式代入计算,即可证明.【详解】(1)设点A x 1,y 1 ,B x 2,y 2 ,由题可知,当k =0时,显然有k AM +k BM =0;当k ≠0时,直线OM 的方程为y =-1kx ,点M 2k ,-2 .联立直线AB 与C 的方程得x 2-2pkx -4p =0,Δ=4p 2k 2+16p >0,所以x 1+x 2=2pk ,x 1x 2=-4p ,因为直线AM ,AB ,BM 的斜率成等差数列,所以y 1+2x 1-2k +y 2+2x 2-2k=2k .即kx1+4x1-2k+kx2+4x2-2k=2k,kx1+4x2-2k+kx2+4x1-2kx1-2kx2-2k=2k,化简得2k2+2x1+x2-4k=0.将x1+x2=2pk代入上式得2k2+22pk-4k=0,则p=2,所以曲线C的方程为x2=4y.(2)(法一)设直线l :y=kx+n,联立C的方程,得x2-4kx-4n=0.由Δ=0,得n=-k2,点N2k,k2,设AB的中点为E,因为x1+x22=2k,y1+y22=k x1+x2+42=2k2+2,则点E2k,2k2+2.因为2k2+2-22=k2,所以点M,N,E三点共线,且点N为ME的中点,所以△AMN面积为△ABM面积的1 4.记△AMN的面积为S,点M2k,-2到直线AB:kx-y+2=0的距离d=2k2+4k2+1,所以S=18AB×d=181+k2×x1+x22-4x1x2×2k2+4k2+1=k2+232≥22,当k=0时,等号成立.所以命题得证.(法二)设直线l :y=kx+n,联立C的方程,得x2-4kx-4n=0.由Δ=0,得n=-k2,点N2k,k2.所以直线MN与x轴垂直.记△AMN的面积为S,所以S=12×MN×x1-x22=14×MN ×x1+x22-4x1x2=12×k2+2×4k2-4×-8=k2+2 32≥22.当k=0时,等号成立.所以命题得证.【点睛】关键点点睛:本题第二问的关键采用设线法,联立抛物线方程,根据相切求出N2k,k2,再得出E2k,2k2+2,最后计算出面积表达式求出其最值即可.16(2024·湖南·一模)已知双曲线C:x2a2-y2b2=1(b>a>1)的渐近线方程为y=±2x,C的半焦距。
冲刺2023年高考二轮 圆锥曲线的综合问题强化训练(原卷+答案)考点一 证明问题——等价转化,直击目标圆锥曲线中证明问题的两种常见类型圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上,某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).例 1已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.对点训练已知直线y =3与曲线C :x 2+2py =0的两个公共点之间的距离为4√6. (1)求C 的方程;(2)设P 为C 的准线上一点,过P 作C 的两条切线,切点为A ,B ,直线P A ,PB 的斜率分别为k 1,k 2,且直线P A ,PB 与y 轴分别交于M ,N 两点,直线AB 的斜率为k 0.证明:k 1·k 2为定值,且k 1,k 0,k 2成等差数列.考点二 定点问题——目标等式寻定点解析几何中的定点问题一般是指与解析几何有关的直线或圆(其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).二求:求出定点坐标所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.三定点:对上述方程进行必要的化简,即可得到定点坐标. 例 2 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点P (2,0),记直线PC 的斜率为k 1,直线PD 的斜率为k 2,当1k 1+1k 2=1时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.对点训练已知抛物线C :y 2=2px (p >0)的焦点为F ,S (t ,4)为C 上一点,直线l 交C 于M ,N 两点(与点S 不重合).(1)若l 过点F 且倾斜角为60°,|FM |=4(M 在第一象限),求C 的方程;(2)若p =2,直线SM ,SN 分别与y 轴交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =8,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.考点三 定值问题——巧妙消元寻定值定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题,其求解步骤一般为:一选:选择变量,一般为点的坐标、直线的斜率等.二化:把要求解的定值表示成含上述变量的式子,并利用其他辅助条件来减少变量的个数,使其只含有一个变量(或者有多个变量,若是能整体约分也可以).三定值:化简式子得到定值.由题目的结论可知要证明为定值的量必与变量的值无关,故求出的式子必能化为一个常数,所以只需对上述式子进行必要的化简即可得到定值.例 3 已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=3上,且AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =-1.(1)求双曲线C 的方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点.求证:△OMN 的面积为定值.对点训练已知F 1(-√3,0),F 2(√3,0)分别是双曲线C :x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,A 为双曲线在第一象限的点,△AF 1F 2的内切圆与x 轴交于点P (1,0).(1)求双曲线C 的方程;(2)设圆O :x 2+y 2=2上任意一点Q 处的切线l ,若l 与双曲线C 左、右两支分别交于点M 、N ,问:QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,说明理由.考点四 圆锥曲线中的最值、范围问题——巧设变量,引参搭桥圆锥曲线中的最值 (1)椭圆中的最值 F 1,F 2为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈________;②|PF 1|∈________;③|PF 1|·|PF 2|∈________;④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O为坐标原点,则有:①|OP |≥________;②|PF 1|≥________. (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥________;②A (m ,n )为一定点,则|P A |+|PF |有最小值;③点N (a ,0)是抛物线的对称轴上一点,则|PN |min ={|a |(a ≤p ),√2pa −p 2(a >p).例 4如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q (0,12)在线段AB 上,直线P A ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD |的最小值.对点训练已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.[典例] 已知圆(x +√3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (√3,0),点G 在线段MP 上,且满足(GN⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ). (1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.(1)因为(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ), 所以(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )·(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ )=0,即GN ⃗⃗⃗⃗⃗⃗ 2-GP ⃗⃗⃗⃗⃗ 2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>2√3=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =4,2c =2√3,即a =2,c =√3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1. (2)依题意可设直线l :x =my +4. 由{x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0.设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ①且y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.②因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0),所以k BD =y 2+y 1x 2−x 1=y 2+y 1m (y 2−y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y2−y 1)(x -my 2-4). 令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m−32m−8m=1, 所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |=12|QT ||y 2-y 1|=32√(y 1+y 2)2−4y 1y 2=6√m 2−12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6√t−16t= 6√−16t 2+1t =6√−16(1t −132)2+164.当且仅当t =32,即m =±2√7时,(S △ABQ )max =34. 所以△ABQ 面积的最大值为34.参考答案考点一[例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E的方程为x 23+y 24=1. (2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2−y ′x 2−x ′=y 2−y 1x 2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4,所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63,则直线HN 过定点(0,-2). b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y 1+6−x 1−x2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).对点训练解析:(1)将y =3代入x 2+2py =0,得x 2=-6p . 当p ≥0时,不合题意;当p <0时,x =±√−6p ,则2√−6p =4√6, 解得p =-4,故C 的方程为x 2=8y .(2)证明:由(1)可知C 的准线方程为y =-2, 不妨设P (m ,-2),A (x 1,y 1),B (x 2,y 2),设过点P 且与C 相切的直线l 的斜率为k ,则l :y =k (x -m )-2,且k ≠0,联立{y =k (x −m )−2,x 2=8y ,得x 2-8kx +8(km +2)=0,则Δ=64k 2-32(km +2)=0,即k 2-12mk -1=0,由题意知,直线P A ,PB 的斜率k 1,k 2为方程k 2-12mk -1=0的两根, 则k 1+k 2=m2,k 1k 2=-1,故k 1·k 2为定值. 又x 2-8kx +8(km +2)=(x -4k )2=0, 则x 1=4k 1,同理可得x 2=4k 2,则k 0=y 1−y 2x 1−x 2=18x −1218x 22x 1−x 2=x 1+x 28,因此k 0=4(k 1+k 2)8=k 1+k 22,故k 1,k 0,k 2成等差数列.考点二[例2]解析:(1)因为x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆右焦点的弦长的最小值为2b 2a=2,所以a =2,c =√2,b =√2,所以椭圆M 的方程为x 24+y 22=1. (2)设直线l 的方程为m (x -2)+ny =1,C (x 1,y 1),D (x 2,y 2),由椭圆的方程x 2+2y 2=4,得(x -2)2+2y 2=-4(x -2).联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4(x -2)[m (x -2)+ny ], 即(1+4m )(x -2)2+4n (x -2)y +2y 2=0,(1+4m )(x−2y )2+4n x−2y+2=0, 所以1k 1+1k 2=x 1−2y 1+x 2−2y 2=-4n 1+4m=1,化简得m +n =-14,代入直线l 的方程得m (x -2)+(−14−m)y =1,即m (x -y -2)-14y =1,解得x =-2,y =-4,即直线l恒过定点(-2,-4).对点训练解析:(1)抛物线C :y 2=2px (p >0)的焦点为F (p2,0),因为l 过点F 且倾斜角为60°,所以l :y =√3(x -p2), 联立y 2=2px (p >0),可得12x 2-20px +3p 2=0,解得x =32p 或x =p6,又M 在第一象限,所以x M =32p ,因为|FM |=4,所以32p +p2=4,解得p =2,所以抛物线C 的方程为y 2=4x ;(2)由已知可得抛物线C 的方程为y 2=4x ,点S (4,4), 设直线l 的方程为x =my +n ,点M (y 12 4,y1),N (y 22 4,y2),将直线l 的方程与抛物线C :y 2=4x 联立得y 2-4my -4n =0, 所以Δ=16m 2+16n >0,y 1+y 2=4m ,y 1y 2=-4n (*),直线SM 的方程为y -4=y 1−4y 12 4-4(x -4),令x =0求得点A 的纵坐标为4y 1y 1+4,同理求得点B 的纵坐标为4y 2y2+4, 由OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =16y 1y 2y 1y 2+4(y 1+y 2)+16=8,化简得y 1y 2=4(y 1+y 2)+16,将上面(*)式代入得-4n =16m +16,即n =-4m -4, 所以直线l 的方程为x =my -4m -4,即x +4=m (y -4), 所以直线l 过定点(-4,4).考点三[例3] 解析:(1)不妨设F 1(-c ,0),F 2(c ,0), 因为A (a ,0), 从而AF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −a ,0),AF 2⃗⃗⃗⃗⃗⃗⃗ =(c -a ,0) ,故有 AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =a 2-c 2=-1, 又因为a 2+b 2=c 2, 所以 b =1,又因为A (a ,0) 在圆 O :x 2+y 2=3 上, 所以 a =√3,所以双曲线C的标准方程为x 23-y 2=1.(2)证明:设直线l 与x 轴交于D 点,双曲线的渐近线方程为y =±√33x ,由于动直线l 与双曲线C 恰有1个公共点, 且与双曲线C 的两条渐近线分别交于点M 、N ,当动直线l 的斜率不存在时, l :x =±√3,|OD |=√3,|MN |=2,S △OMN =12×√3×2=√3,当动直线l 的斜率存在时, 且斜率k ≠±√33, 不妨设直线 l :y =kx +m,故由{y =kx +m x 23−y 2=1⇒(1-3k 2)x 2-6mkx -3m 2-3=0, 依题意,1-3k 2≠0且m ≠0,Δ=(-6mk )2-4(1-3k 2)(-3m 2-3)=0, 化简得 3k 2=m 2+1,故由{y =kx +my =√33x ⇒x M =√33−k , 同理可求,x N =-√33+k, 所以|MN |=√1+k 2|xM−x N |=2√3|m|√k 2+1|1−3k 2|,又因为原点O 到直线l :kx -y +m =0的距离d =√k 2+1,所以S △OMN =12|MN |d =√3m 2|1−3k 2|,又由3k 2=m 2+1,所以S △OMN =√3|m|√k 2+1|1−3k 2|=√3,故△OMN 的面积为定值,定值为√3.对点训练解析:(1)如图,设AF 1,AF 2与△AF 1F 2的内切圆分别交于G ,H 两点, 则2a =|AF 1|−|AF 2|=|F 1P |−|PF 2| =(1+√3)-(√3-1)=2,所以a =1,则b 2=c 2-a 2=2, 则双曲线C 的方程为x 2-y 22=1.(2)由题意得,切线l 的斜率存在.设切线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2). 因为l 与圆O :x 2+y 2=2相切,所以√1+k 2=√2,即m 2=2k 2+2.联立{y =kx +m ,x 2−y 22=1,消去y 并整理得(2-k 2)x 2-2kmx -m 2-2=0, 所以x 1+x 2=2km2−k 2,x 1x 2=−m 2−22−k 2.又QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(QO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ) =|QO ⃗⃗⃗⃗⃗ |2-OQ ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|ON ⃗⃗⃗⃗⃗ |cos ∠QON -|OQ ⃗⃗⃗⃗⃗ |·|OM ⃗⃗⃗⃗⃗⃗ |cos ∠QOM +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |−|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ −|OQ ⃗⃗⃗⃗⃗ |2. 又OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2 =(k 2+1)(−m 2−2)2−k 2+2k 2m 22−k2+m 2=m 2−2k 2−22−k 2,将m 2=2k 2+2代入上式得OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =0.所以QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =0-|OQ ⃗⃗⃗⃗⃗ |2=-2. 综上所述,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 为定值,且QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =-2.考点四(1)[b ,a ] [a -c ,a +c ] [b 2,a 2] (2)a c -a (3)p2[例4] 解析:(1)设M (2√3cos θ,sin θ)是椭圆上一点,P (0,1),则|PM |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=14411-11(sin θ+111)2≤14411.故|PM |的最大值为12√1111.(2)由题意,知直线AB 的斜率存在,故设直线AB 的方程为y =kx +12.将直线方程与椭圆方程联立,得{y =kx +12,x 212+y 2=1.消去y 并整理,得(k 2+112)x 2+kx -34=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-kk 2+112,x 1x 2=-34(k 2+112).直线P A :y =y 1−1x 1x +1与直线y =-12x +3交于点C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1. 同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1,则|CD |= √1+14|x C -x D | =√52|4x1(2k+1)x1−1−4x2(2k+1)x2−1|=2√5|x 1−x 2[(2k+1)x1−1][(2k+1)x 2−1]|=2√5|x 1−x 2(2k+1)2x 1x 2−(2k+1)(x 1+x 2)+1|=3√52·√16k 2+1|3k+1|=6√55·√16k 2+1· √916+1|3k+1| ≥6√55,当且仅当k =316时等号成立.故|CD |的最小值为6√55.对点训练解析:(1)由题意知M (0,-4),F (0,p2),圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y , 由题意可知直线AB 的斜率存在,设A (x 1,x 12 4),B (x2,x 22 4),直线AB 的方程为y =kx +b ,联立得{y =kx +bx 2=4y,消去y 得x 2-4kx -4b =0, 则Δ=16k 2+16b >0(※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=4√1+k 2·√k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x12,在点A 处的切线方程为y −x 12 4=x 12(x -x 1),即y =x 12x −x 12 4,同理得抛物线在点B 处的切线方程为y =x 22x −x 22 4,联立得{y =x 12x −x 124y =x22x -x 22 4,则{x =x 1+x 22=2ky =x 1x 24=−b , 即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※). 设点P 到直线AB 的距离为d ,则d =2√1+k 2,所以S △P AB =12|AB |·d =4√(k 2+b )3.由①得,k 2=1−(4−b )24=−b 2+8b−154, 令t =k 2+b ,则t =−b 2+12b−154,且3≤b ≤5. 因为t =−b 2+12b−154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△P AB 面积的最大值为20√5.。
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.若AB 是过椭圆中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与坐标轴不平行,,分别表示直线AM ,BM 的斜率,则=( )A. B. C.D.2.1 .(汇编年高考广东卷(文))已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是 ( )A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 3.(汇编福建理数)7.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( ) A .[3-23,)+∞ B .[323,)++∞ C .7[-,)4+∞ D .7[,)4+∞4.(汇编山东理)(12) 椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|P F 1|是|P F 2|的 ( )(A) 7倍 (B) 5倍 (C) 4倍 (D) 35.(汇编福建理)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )A .324+B .13-C .213+ D .13+6.(汇编全国2理)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是 ( )(A )23 (B )6 (C )43 (D )12解析(数形结合)由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得ABC ∆的周长为4a=43,所以选C7.(汇编年高考辽宁卷)已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是( ) A .26 B .23 C .3D .28.(汇编全国)设双曲线2222by a x -=1(0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点.已知原点到直线l 的距离为43c ,则双曲线的离心率为( )A .2B .3C .2D .332 9.(汇编全国卷2)已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为( )A .365B .566C .65D .5610.在抛物线25(0)y x ax a==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)- (汇编年高考四川卷理科10)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 已知1F 、2F 分别是双曲线112422=-y x 的左、右焦点,点P 是双曲线上的点,且31=PF ,则2PF 的值为 ▲ .12.已知椭圆C 的中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆C 上一点到两个焦点的距离之和为12,则椭圆C 的方程为________________13.已知抛物线y 2=4x 过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是14.中心在原点,准线方程为4±=x ,离心率等于21的椭圆方程是 . 15.椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是34, (江苏省宿豫中学汇编年3月高考第二次模拟考试)16.过椭圆12222=+by a x )0(>>b a 的左顶点A 作斜率为1的直线,与椭圆的另一个交点为M ,与y 轴的交点为B 。
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编年高考重庆卷(文))设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是zhangwlx ( )A .23(,2]3B .23[,2)3C .23(,)3+∞ D .23[,)3+∞ 2.(汇编年高考大纲卷(文))已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 3.(汇编全国2理)已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )324.(汇编上海理)过抛物线24y x =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )(A)又且仅有一条 (B)有且仅有两条 (C)有无穷多条 (D)不存在5.(汇编北京安徽春季3)双曲线2222ay b x -=1的两条渐近线互相垂直,那么该双曲线的离心率是( ) A .2 B .3C .2D .236.(汇编湖北10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞 向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 变点第二次变轨进入仍以月球球心F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是 ( )A . ①③B . ②③C . ①④D . ②④7.(汇编浙江理)过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A .2B .3C .5D .108.(汇编年高考上海)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在9.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 810.椭圆短轴长是2,长轴是短轴的2倍,则椭圆中心到其准线距离是( ) A .43 B .554 C .358 D .334(汇编京皖春,9)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.平面内两定点A 、B 及动点P ,命题甲是:“||||PA PB +是定值”,命题乙是:“点P 的轨迹是以A 、B 为焦点的椭圆”,则甲是乙成立的___________________条件.12.已知正方形ABCD 的坐标分别是A (1,0)-,B (0,1),C (1,0),D (0,1)-,动点M 满足:MB MD k k ⋅ 则MA MC += .13.点M 是椭圆22221(0)x y a b a b+=>>上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P ,Q ,若△PQM 是钝角三角形,则椭圆离心率的取值范围是________.14.已知椭圆2211612x y +=,12,F F 为左右焦点,P 为椭圆上一点,(3,1)A ,则2PA PF +的最大值为________826+15.若双曲线的实轴长、虚轴长、焦距成等差数列,求双曲线的离心率。
16.若曲线24y x =-与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是 评卷人得分三、解答题17.已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式; (3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.18. 如图,某隧道设计为双向四车道,车道总宽为78m ,要求通行车辆限高4.5m ,隧道全长为2.5km ,隧道的拱线可近似的看成半个椭圆形状. (1)若最大拱高h 为6m ,则隧道设计的拱宽l 是多少?(2)若最大拱高h 不小于6m ,则应如何设计拱高h 和拱宽l ,才能使隧道的土方工程量最小?(注:1.半个椭圆的面积公式为lh S 4π=;2.隧道的土方工程量=截面面积⨯隧道长).y xMOQ PFOlxyA B F · M第17题19.平面直角坐标系中,焦点在y 轴上的椭圆的短轴长为2m ,半焦距为()0m m > (1)若椭圆的短轴长为2,半焦距为1,求椭圆的标准方程;(2)若存在一个中心在原点,分别以椭圆的短轴为实轴、长轴为虚轴的双曲线E,已知双曲线E 与x 轴交于A 、B 两点,在E 上任取一点()00,T x y ()00y ≠,直线TA ,TB 分别交y 轴于P 、Q 两点,求证:以PQ 为直径的圆恒过两定点。
20.已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切. 过原点O 作倾斜角为3π的直线n ,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==. (Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值; (Ⅲ)过l 上的动点Q 向⊙M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A 2.C 3.A解析:A 双曲线焦点在x 轴,由渐近线方程可得224345,333b c e a a +====可得,故选A 4.B 5.C 6.B 7.BC解析:C 对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a abB C a b a b a b a b ⎛⎫- ⎪++--⎝⎭则有 22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因222,4,5AB BC a b e =∴=∴=.8.B9.C 【汇编高考真题新课标理8】【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-y x ,所以2,42==a a ,所以实轴长42=a ,选C.10.ABC 解析:D解析:由题意知a =2,b =1,c =3,准线方程为x =±ca 2,∴椭圆中心到准线距离为334. 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 12. 13. 14. 15.; 16.]43,1(-评卷人得分三、解答题17.(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………………………………………3分(2)由1()2n n n a a S -=,即2n n naS =, ①得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n a na +-=. ③ 于是,21(1)n n na n a ++=+. ④③+④,得212n n n na na na +++=,即212n n n a a a +++=. ……………………………………………7分又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列. 所以,a n =n-1. ………………………………………………………………………………………9分 (3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列, 于是,21333pq p q=+. …………………………………………………………………………………11分 所以,213()33q p p q =-(☆). 易知(p,q )=(2,3)为方程(☆)的一组解. ……………………………………………………………13分 当p ≥3,且p ∈N*时,112(1)224333p p p p p p +++--=<0,故数列{23pp}(p ≥3)为递减数列, 于是2133p p -≤323133⨯-<0,所以此时方程(☆)无正整数解.综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列.…………………………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分. 18. 解:(1)以车道中点为原点,建立直角坐标系 则P(74,4.5),设椭圆的方程为12222=+by a x ,则⎪⎩⎪⎨⎧=+=15.4)74(62222b a b 解之得:⎩⎨⎧==616b a 此时322==a l .(2)由15.4)74(2222=+b a 可知ab ba 5.47425.4)74(12222⨯⨯≥+=故736≥ab ,所以πππ71824≥==ab lh S ,当且仅当6229,148>==h l 时取等.答:当拱高为,229拱宽为148时,土方工程量最小.19.20.(Ⅰ)因为1cos 602122p OA =⋅=⨯=,即2p =, 所以抛物线C 的方程为24y x =……… 2分 设⊙M 的半径为r ,则122cos 60OB r =⋅=, 所以M 的方程为22(2)4x y -+=……………… 5分(Ⅱ)设(,)(0)P x y x ≥,则(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++……8分所以当0x =时, PM PF ⋅有最小值为2 ………………………… …………………10分(Ⅲ)以点Q 这圆心,QS 为半径作⊙Q,则线段ST 即为⊙Q 与⊙M 的公共弦 … 11分设点(1,)Q t -,则22245QS QM t =-=+,所以⊙Q 的方程为222(1)()5x y t t ++-=+…13分从而直线QS 的方程为320x ty --=(*)………………… ………14分因为23xy⎧=⎪⎨⎪=⎩一定是方程(*)的解,所以直线QS恒过一个定点,且该定点坐标为2(,0)3………16分。