高中数学双曲线抛物线知识点总结教学教材
- 格式:doc
- 大小:1.50 MB
- 文档页数:14
圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。
圆由圆心和半径唯一确定。
2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。
椭圆由两个焦点和两个半轴唯一确定。
3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。
双曲线由两个焦点和两个实轴唯一确定。
4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。
抛物线由焦点和直线唯一确定。
二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。
2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。
3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。
4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。
三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。
2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。
3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。
4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。
四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。
2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。
3. 双曲线:在光学和电磁学中用于描述折射和反射现象。
4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
椭圆,双曲线,抛物线知识点- 椭圆、双曲线和抛物线是三种重要的圆锥曲线,它们在数学和实际生活中都有广泛的应用。
以下是关于这三种曲线的一些主要知识点:1.椭圆:定义:椭圆是平面上到两个固定点(焦点)的距离之和等于常数(大于两个焦点间的距离)的点的轨迹。
这个常数称为椭圆的焦距。
性质:•椭圆上的任意一点到两个焦点的距离之和是常数(2a)。
•在椭圆长轴的顶点处,短轴的半径最小。
•在短轴顶点处,长轴的半径最大。
•椭圆的离心率是数学中一个重要的概念,定义为e=c/a,其中a是半长轴,c是半短轴。
椭圆的离心率越接近1,椭圆的形状就越扁。
2.双曲线:定义:双曲线是平面上到两个固定点(焦点)的距离之差的绝对值等于常数(小于两个焦点间的距离)的点的轨迹。
这个常数称为双曲线的实轴长度。
性质:•双曲线上的任意一点到两个焦点的距离之差是常数(2a)。
•双曲线的两个分支是无限延伸的,它们不会相交。
•双曲线的离心率是数学中一个重要的概念,定义为e=c/a,其中a是半实轴长度,c是半虚轴长度。
双曲线的离心率越大,双曲线的形状就越扁。
3.抛物线:定义:抛物线是平面上到定点(焦点)和直线(准线)的距离相等的点的轨迹。
定点(焦点)和直线(准线)的距离d称为抛物线的焦距。
性质:•抛物线上的点到定点(焦点)的距离等于到直线(准线)的距离。
•抛物线的开口大小由焦距决定,焦距越大,开口越小。
•抛物线可以被认为是圆锥曲线的一种特殊形式,因为它可以看作是由一个平面切割圆锥体得到的。
在数学中,这三种曲线都有广泛的应用,包括解决各种几何问题、优化问题、微分方程等。
它们也是很多科学和工程学科的基础,如物理学、天文学、经济学等。
此外,在计算机图形学、动画制作、摄影等领域,这三种曲线也经常被用到。
在求解具体问题时,需要根据具体的问题选择合适的曲线。
例如,在解决航天工程中的轨道问题时,可能需要使用椭圆;在解决一些需要快速下降或者远离某一点的运动问题时,可能需要使用双曲线;在解决一些需要速度最大或者最小的问题时,可能需要使用抛物线。
高三双曲线知识点总结双曲线是高三数学中一个重要的概念,它在解析几何、微积分和物理等领域都有广泛的应用。
本文将对高三双曲线的知识点进行总结,以帮助同学们更好地掌握这一内容。
一、双曲线的定义和性质1. 定义:双曲线是平面上到两个给定点的距离之差等于常数的点的集合。
2. 式子:双曲线的标准方程可以表示为x²/a² - y²/b² = 1(a>0,b>0)。
3. 中心与焦点:双曲线的中心为原点O(0,0),焦点位于x轴上的点F1(a,0)和F2(-a,0)。
4. 焦距和离心率:焦距为F1F2 = 2a,离心率为e = c/a,其中c 为焦点到中心的距离。
二、双曲线的图像与性质1. 分类:根据离心率的不同取值,双曲线可分为椭圆、抛物线和双曲线三种情况。
a) 当离心率e<1时,双曲线为两支开口朝左右的曲线,称为实双曲线。
b) 当离心率e=1时,双曲线为无限远点的开口朝左右的曲线,称为渐近双曲线。
c) 当离心率e>1时,双曲线为一对开口朝左右的曲线,称为虚双曲线。
2. 图像:实双曲线的图像为对称于x轴和y轴的两支曲线,并且与渐近线相交于无穷远处。
3. 渐近线:实双曲线的渐近线可用直线y = ±b/a * x表示。
4. 对称性:实双曲线关于x轴、y轴和原点对称。
5. 参数方程:双曲线的参数方程可表示为x = a * secθ,y = b * tanθ。
三、双曲线的基本变形1. 平移:双曲线可以通过平移变形到不同的位置,平移后的双曲线的中心坐标发生相应改变,但离心率、焦点等性质保持不变。
2. 伸缩:双曲线可以通过伸缩变形到不同的大小,伸缩后的双曲线的离心率、焦点等性质发生相应改变,但中心坐标保持不变。
四、双曲线的应用1. 物理学:双曲线在物理学中广泛应用于描述光学、天体力学等问题,如光的反射和折射、行星的轨道等。
2. 工程学:双曲线在工程学中常用于设计桥梁、天线等结构,以满足特定的要求和条件。
椭圆、双曲线、抛物线相关知识点总结一、椭圆的标准方程及其几何性质椭圆的定义:我们把平面内与两个定点F, F2的距离的和等于常数大于F1F21的点的轨迹叫做椭圆。
符号语言:|MF,| |MF2| 2a 2a 2c将定义中的常数记为2a,贝①.当2a卩人时,点的轨迹是椭圆_____________双曲线的标准方程及其几何性质双曲线的定义:我们把平面内与两个定点F, F2的距离的差的绝对值等于常数小于F”的点的轨迹叫做双曲线。
符号语言:MF t - MF22a 2a 2c将定义中的常数记为2a,贝①.当2a FE时,点的轨迹是双曲线_____________________ ②•当2a |吋2时,点的轨迹是两条射线③.当2a卩占时,点的轨迹不存在焦点位置不确定的双曲线方程可设为:mn 02 2与双曲线仔笃1共焦点的双曲线系方程可设为:a b2y1 ba kb kx22 2 2 2与双曲线笃 耸1共渐近线的双曲线系方程可设为: $ 爲a ba b三、抛物线的标准方程及其几何性质抛物线的定义:我们把平面内与一个定点 F 和一条定直线I (I 不经过点F )距离相等 的点的轨迹叫做AB x , x 2 p -2^(为弦AB 的倾斜角)sin直线与椭圆(或与双曲线、抛物线)相交于 A (x i ,y i ),B x 2,y 2,则椭圆(或双曲线、抛 物线)的弦长公式:AB x , x 2| —k 2J x , x 2 2 4%卷—k22 2 2 2与椭圆負b 2 1共焦点的椭圆系方程可设为:和冷1 k b 2标准方程2y 2px (p o )图形焦点坐标(p ,0) 2 (匕0) 2 (0月2(0,上) 2准线方程x& 2x E 2 y 舟 yi范围x 0, y R x 0, y Ry 0,x Ry 0,x R对称性 关于x 轴关于y 轴顶点坐标 (0,0)焦半径M X o ,y o|MF | X 。
高考双曲线基本知识点总结在高中数学课程中,双曲线是一个重要的内容,也常常在高考中出现。
双曲线作为一个二次方程的图像,具有许多有趣的性质和应用。
在这篇文章中,我们将总结一些高考双曲线的基本知识点,并探讨一些相关的应用。
一、双曲线的定义和标准方程双曲线可以由一个二次方程的图像表示,其标准方程如下:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$其中,a和b分别代表双曲线在x轴和y轴方向的半轴长度。
双曲线的图像具有两支分离的曲线,通过对称轴将平面分成两个部分,分别称为双曲线的两个分支。
对称轴是与x轴和y轴垂直的直线,传统上被称为实轴和虚轴。
二、双曲线的基本性质1. 焦点和准线双曲线上的每个点到焦点F和F'的距离之差等于常数2a,这个常数称为焦距。
焦距是双曲线的一个重要属性,它决定了双曲线的形状。
双曲线的对称轴上存在两个点,它们与焦点的距离之差等于焦距2a,这两个点称为准线。
2. 渐近线双曲线还具有两条渐近线,分别与双曲线的两个分支无限接近但永远不会相交。
这两条渐近线分别是对称轴和过焦点的直线。
3. 离心率双曲线的离心率是一个重要的参数,它决定了双曲线的形状。
离心率定义为焦距与准线之比。
当离心率大于1时,双曲线的形状更加扁平;当离心率接近于1时,双曲线的形状更加接近于抛物线。
三、双曲线的应用1. 焦距和接近问题双曲线的焦距特性可以用于解决一些实际问题。
例如,在声学中,可以利用双曲线的焦点和准线来确定声源的位置。
同样地,在雷达技术中,焦距的应用可以用于确定目标的位置和距离。
2. 双曲线的参数方程通过引入参数t,我们可以用参数方程来表示双曲线的图像。
双曲线的参数方程如下:$x = a \sec(t)$$y = b \tan(t)$其中,sec(t)表示余切函数的倒数,tan(t)表示正切函数。
使用参数方程,可以更加灵活地描述双曲线的形状和位置,对于解决一些复杂的几何问题非常有用。
双曲线平面内到两个定点,的距离之差的绝对值是常数2a(2a<)的点的轨迹。
题型一 求双曲线的标准方程1、给出渐近线方程ny x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线22221x y a b -=共渐近线的方程可设为2222(0)x y a bλλ-=≠。
2、注意:定义法、待定系数法、方程与数形结合。
【例1】求适合下列条件的双曲线标准方程。
(1) 虚轴长为12,离心率为54; (2) 焦距为26,且经过点M (0,12);(3) 与双曲线221916x y -=有公共渐进线,且经过点(3,A -。
解:(1)设双曲线的标准方程为22221x y a b -=或22221y x a b-=(0,0)a b >>。
由题意知,2b=12,c e a ==54。
∴b=6,c=10,a=8。
∴标准方程为236164x -=或2216436y x -=。
(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。
又2c=26,∴c=13。
∴222144b c a =-=。
∴标准方程为22114425y x -=。
(3)设双曲线的方程为2222x y a bλ-=(3,A -在双曲线上∴(2231916-= 得14λ=所以双曲线方程为224194x y -= 题型二 双曲线的几何性质方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a=和222c a b =+的关系式。
【例2】双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c 。
求双曲线的离心率e 的取值范围。
解:直线l 的方程为1x ya b-=,级bx+ay-ab=0。
第2课时 双曲线、抛物线的参数方程[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值X 围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程 (1)抛物线y2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,那么焦点在x 轴上; 如果y 对应的参数形式是a sec φ,那么焦点在y 轴上.3.假设抛物线的参数方程表示为⎩⎪⎨⎪⎧x =2p tan 2α,y =2ptan α.那么参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 此题考查双曲线的参数方程的应用,解答此题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).——————————————————参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),那么B ′(-a sec α,a tan α).∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 此题考查抛物线的参数方程的求法及其应用.解答此题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2, 变形为y 0=14x 20,即x 2=4y .表示的为抛物线.——————————————————在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 此题考查椭圆及双曲线的参数方程,解答此题需要先将双曲线化为普通方程并求得渐近线方程,然后根据条件求出椭圆的参数方程求解即可.∵x 216-y 29=1,∴右焦点(5,0),右顶点(4,0).设椭圆x 2a 2+y 2b2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin 〔θ-φ〕|5(tan φ=54).∴d max =3415.——————————————————对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(某某高考)两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得x =54y 2.联立方程可得⎩⎪⎨⎪⎧x 25+y 2=1,x =54y2那么5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),那么x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.某某高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](某某高考)抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.[命题立意] 此题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用. [解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EFA 中,|EF |=2|FA |,即3+p2=2p ,得p =2.答案:2一、选择题1.以下参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数X 围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.以下双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3〔sin 2θ+cos 2θ〕cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t 2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t-2-t,y =2t +2-t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,即y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支.二、填空题5.(某某高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,那么焦点坐标为(1,0). 答案:(1,0)6.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t(t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O 不重合),P (x ,y )是线段OM 的中点,那么点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),那么x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(某某高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.解析:由⎩⎨⎧x =t ,y = t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2. 由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1, 即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1) 三、解答题9.双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),那么中点为M (a2(sec α+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β)=-a 〔sec α-sec β〕b 〔tan α-tan β〕[x -a2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a(sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2.∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2), 那么k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2. 又设MN 的中点为P (x ,y ),那么⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴kAP=4〔t 1+t 2〕4〔t 21+t 22〕-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4〔t 21+t 22〕,y =4〔t 1+t 2〕, 那么y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1).∴所求轨迹方程为y 2=4(x -1).11.圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。
高中数学椭圆、双曲线、抛物线知识点《圆锥曲线》知识点小结一、椭圆:(1)椭圆的定义:平面内与两个定点F l,F2的距离的和等于常数(大于芾芾 2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意:2a>|F1F2l表示椭圆;2a4FF2|表示线段;2a V RF? |没有轨迹;(2)椭圆的标准方程、图象及几何性质:2 23•常用结论:(1)椭圆x2y2=l(a b 0)的两个焦点为F「F2,过F i的直线交 a b椭圆于A, B两点,则MBF 2的周长= __________2 2(2)设椭圆务•与=i(a b 0)左、右两个焦点为FiF,过F i且垂直于a b对称轴的直线交椭圆于P,Q两点,则P,Q的坐标分别是|PQ|= _______________二、双曲线:(1)双曲线的定义:平面内与两个定点F,, F2的距离的差的绝对值等于常数(小于| F1F2 |)的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:| PF i | _| PF? | = 2a 与| PF? | - | PF! |= 2a(2a :::| |)表示双曲线的一支。
2a =厅十 2 |表示两条射线;2a」Ff:|没有轨迹;(2)双曲线的标准方程、图象及几何性质:(3)双曲线的渐近线:①求双曲线x2 y2〔的渐近线,可令其右边的a^-b^=l(4)等轴双曲线为x2 -y^t2,其离心率为丄2 2(4)常用结论:(1)双曲线笃—与=1@>0,心0)的两个焦点为F I,F2,过F i的直a2 b2线交双曲线的同一支于A,B两点,则. :ABF2的周长= _____________2 2(2)设双曲线笃—与日心丸心。
)左、右两个焦点为F1,F2,过F1且垂直a b于对称轴的直线交双曲线于P,Q两点,则P,Q的坐标分别是|PQ|= ________________三、抛物线:(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。
双曲线和抛物线的知识点双曲线和抛物线是高中数学中常见的两种曲线,它们有着丰富的几何和物理意义,被广泛应用在各个学科中。
本文将从基本概念、公式和性质,以及应用角度出发,全面探讨这两种曲线的知识点。
一、基本概念1. 双曲线双曲线是由平面上离心率大于1的两个点F1和F2,到该平面上任意一点P的距离之差等于常数2a(a>0)所确定的点集。
通常我们用双曲线的标准方程来表示,即:x^2/a^2-y^2/b^2=1 或 y^2/b^2-x^2/a^2=1其中,a表示离心率,b表示双曲线的半轴长。
2. 抛物线抛物线是由平面上一个定点F(称为焦点)和到该点的距离等于其到某一条定直线L(称为准线或对称轴)的距离d所确定的点集。
通常我们用抛物线的标准方程来表示,即:y=ax^2+bx+c其中,a、b、c分别表示抛物线的系数。
二、公式和性质1. 双曲线双曲线的标准方程可以化为下面的形式:y=b/a*sqrt(x^2-a^2) 或 y=b/a*sqrt(a^2-x^2)由此可以得到双曲线的几何性质:(1)双曲线的渐近线方程为y=±b/a*x,它们分别与x轴成正负45度的角。
(2)双曲线有两个分支,两个分支关于y轴对称。
(3)双曲线关于它的两个渐近线对称,任意一点到其中一条渐近线的距离与到另一条渐近线的距离之差等于常数2a(a>0)。
2. 抛物线抛物线的顶点坐标为(-b/2a,c-b^2/4a),正负号取决于a的符号。
抛物线的渐近线是y=±∞(当a=0时)或y=ax+b(当a≠0时),从而可以得到抛物线的几何性质:(1)抛物线关于它的准线对称。
(2)焦距等于抛物线的半轴长。
(3)抛物线的平面曲率半径在顶点处为无穷大,其他点处为y 轴的绝对值与一阶导数的比值。
(4)当抛物线的焦点在x轴上时,它是一个完美的反射面,任何入射到抛物线上的线段都会被反射到焦点(这就是开普勒使用抛物面反射望远镜原理的基础)。
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上);1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-b y a x 共焦点的双曲线系方程是12222=--+kb y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a -<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y << (00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
高中数学椭圆双曲线抛物线的标准方程与几何性质知识点高中数学椭圆双曲线抛物线的标准方程与几何性质知识点知识点是知识、理论、道理、思想等的相对独立的最小单元,以下是店铺为大家整理的高中数学椭圆双曲线抛物线的标准方程与几何性质知识点,希望对你有所帮助。
椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义:1、到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2、到两定点F1,F2的距离之差的绝对值为定值2a(0|F1F2|)的点的轨迹3、与定点和直线的距离之比为定值e的点的'轨迹.(02.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.图形方程标准方程(0,b0)y2=2px参数方程(t为参数)范围─a£x£a,─b£y£b|x| 3 a,y Rx30中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(─c,0)F1(c,0), F2(─c,0)焦距2c (c=)2c (c=)离心率e=1准线x=x=渐近线y=x焦半径通径2p焦参数P数学椭圆知识点双曲线⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角圆的标准方程(x—a)2+(y—b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0抛物线标准方程y2=2pxy2=—2p_2=2pyx2=—2py直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2 圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r 锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s_h圆柱体V=p_r2h乘法与因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a根与系数的关系X1+X2=—b/aX1_X2=c/a注:韦达定理判别式b2—4ac=0注:方程有两个相等的实根b2—4ac>0注:方程有两个不等的实根b2—4ac<0注:方程没有实根,有共轭复数根两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosAcos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)倍角公式tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctgacos2a=cos2a—sin2a=2cos2a—1=1—2sin2a半角公式sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))和差化积2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos (A+B)—cos(A—B)sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB【高中数学椭圆双曲线抛物线的标准方程与几何性质知识点】。
03-抛物线【知识点】一、抛物线的标准方程、类型及其几何性质():11.焦点弦:过抛物线焦点的弦,若,则(1)x0+,(2),-p2(3) 弦长,,即当x1=x2时,通径最短为2p(4) 若AB的倾斜角为θ,则=(5)+=2. 通径:过抛物线的焦点且垂直于对称轴的弦。
过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.3. 的参数方程为(为参数),的参数方程为(为参数).4、弦长公式:三、抛物线问题的基本方法1.直线与抛物线的位置关系直线,抛物线,,消y得:(1)当k=0时,直线与抛物线的对称轴平行,有一个交点;(2)当k≠0时,Δ>0,直线与抛物线相交,两个不同交点;Δ=0,直线与抛物线相切,一个切点;Δ<0,直线与抛物线相离,无公共点。
(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)2.关于直线与抛物线的位置关系问题常用处理方法直线:抛物线,①联立方程法:设交点坐标为,,则有,以及,还可进一步求出,在涉及弦长,中点,对称,面积等问题时,常用此法,比如a.相交弦AB的弦长或b. 中点,,②点差法:设交点坐标为,,代入抛物线方程,得将两式相减,可得a.在涉及斜率问题时,b.在涉及中点轨迹问题时,设线段的中点为,,即,同理,对于抛物线,若直线与抛物线相交于两点,点是弦的中点,则有(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)【典型例题】考点1 抛物线的定义题型利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换[例1 ]已知点P在抛物线y2 = 4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和的最小值为[解析]过点P作准线的垂线交准线于点R,由抛物线的定义知,,当P点为抛物线与垂线的交点时,取得最小值,最小值为点Q到准线的距离 ,因准线方程为x=-1,故最小值为31.已知抛物线的焦点为,点,在抛物线上,且、、成等差数列,则有()A.B.C. D.[解析]C 由抛物线定义,即:.2. 已知点F是抛物线的焦点,M是抛物线上的动点,当最小时,M点坐标是( )A. B.C.D.[解析] 设M到准线的距离为,则,当最小时,M点坐标是,选C考点2 抛物线的标准方程题型:求抛物线的标准方程[例2 ]求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2) (2)焦点在直线上[解析] (1)设所求的抛物线的方程为或,∵过点(-3,2) ∴∴∴抛物线方程为或,前者的准线方程是后者的准线方程为(2)令得,令得,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,∴,此时抛物线方程;焦点为(0,-2)时∴,此时抛物线方程.∴所求抛物线方程为或,对应的准线方程分别是.3.若抛物线的焦点与双曲线的右焦点重合,则的值。
双曲线的点的轨迹。
考点题型一 求双曲线的标准方程1、给出渐近线方程ny x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线22221x y a b -=共渐近线的方程可设为2222(0)x y a bλλ-=≠。
2、注意:定义法、待定系数法、方程与数形结合。
【例1】求适合下列条件的双曲线标准方程。
(1) 虚轴长为12,离心率为54; (2) 焦距为26,且经过点M (0,12);(3) 与双曲线221916x y -=有公共渐进线,且经过点(3,A -。
解:(1)设双曲线的标准方程为22221x y a b -=或22221y x a b-=(0,0)a b >>。
由题意知,2b=12,c e a ==54。
∴b=6,c=10,a=8。
∴标准方程为236164x -=或2216436y x -=。
(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。
又2c=26,∴c=13。
∴222144b c a =-=。
∴标准方程为22114425y x -=。
(3)设双曲线的方程为2222x y a bλ-=(3,A -在双曲线上∴(2231916-= 得14λ=所以双曲线方程为224194x y -= 题型二 双曲线的几何性质方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a=和222c a b =+的关系式。
【例2】双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c 。
求双曲线的离心率e 的取值范围。
解:直线l 的方程为1x ya b-=,级bx+ay-ab=0。
由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离1d =,同理得到点(-1,0)到直线l 的距离2d =,122abs d d c=+==。
双曲线平面内到两个定点,的距离之差的绝对值是常数2a(2a<)的点的轨迹。
方程 22221(0,0)x y a b a b-=>> 22221(0,0)y x a b a b-=>> 简图范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或顶点 (,0)a ± (0,)a ± 焦点 (,0)c ±(0,)c ±渐近线 b y x a=±a y x b=±离心率 (1)ce e a => (1)ce e a=> 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称准线方程 2a x c =±2a y c=±a 、b 、c 的关系 222c a b =+考点题型一 求双曲线的标准方程1、给出渐近线方程ny x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线22221x y a b-=共渐近线的方程可设为2222(0)x y a b λλ-=≠。
2、注意:定义法、待定系数法、方程与数形结合。
【例1】求适合下列条件的双曲线标准方程。
(1) 虚轴长为12,离心率为54; (2) 焦距为26,且经过点M (0,12);(3) 与双曲线221916x y -=有公共渐进线,且经过点(3,23A -。
_x_ O_y_x_ O_y解:(1)设双曲线的标准方程为22221x y a b -=或22221y x a b-=(0,0)a b >>。
由题意知,2b=12,c e a ==54。
∴b=6,c=10,a=8。
∴标准方程为236164x -=或2216436y x -=。
(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。
又2c=26,∴c=13。
∴222144b c a =-=。
∴标准方程为22114425y x -=。
(3)设双曲线的方程为2222x y a bλ-=(3,23A -Q 在双曲线上 ∴(222331916-= 得14λ=所以双曲线方程为224194x y -= 题型二 双曲线的几何性质方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a=和222c a b =+的关系式。
【例2】双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c 。
求双曲线的离心率e 的取值范围。
解:直线l 的方程为1x ya b-=,级bx+ay-ab=0。
由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离122d a b=+,同理得到点(-1,0)到直线l 的距离222d a b=+,122abs d d c=+==。
由s ≥45c ,得2ab c≥45c,即252c ≥。
于是得22e ≥,即42425250e e -+≤。
解不等式,得2554e ≤≤。
由于e >1>0,所以e的取值范围是2e ≤≤ 【例3】设F 1、F 2分别是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=o ,且︱AF 1︱=3︱AF 2︱,求双曲线的离心率。
解:∵1290F AF ∠=o∴222124AF AF c +=又︱AF 1︱=3︱AF 2︱,∴12222AF AF AF a -==即2AF a =, ∴222222212222910104AF AF AF AF AF a c +=+===,∴c a ==即2e =。
题型三 直线与双曲线的位置关系方法思路:1、研究双曲线与直线的位置关系,一般通过把直线方程与双曲线方程组成方程组,即2222220Ax By C b x a y a b ++=⎧⎨-=⎩,对解的个数进行讨论,但必须注意直线与双曲线有一个公共点和相切不是等价的。
2、直线与双曲线相交所截得的弦长:2121l x x y y =-=- 【例4】如图,已知两定点12(F F ,满足条件212PF PF-=u u u u r u u u r的点P 的轨迹是曲线E ,直线y=kx-1与曲线E 交于A 、B 两点,如果AB =且曲线E 上存在点C ,使OA OB mOC +=u u u r u u u r u u u r,求(1)曲线E 的方程; (2)直线AB 的方程;(3)m 的值和△ABC 的面积S 。
解:由双曲线的定义可知,曲线E是以12(F F 为焦点的双曲线的左支,且c =a=1,易知1b ==。
故直线E 的方程为221(0)x y x -=<, (2)设11A(x ,y ), 22B(x ,y ),由题意建立方程组22y=kx-1x -y =1⎧⎨⎩消去y ,得22(1)220k x kx -+-=。
又已知直线与双曲线左支交于两点A 、B ,有22212212210,(2)8(1)0,20,120.1k k k k x x k x x k ⎧-≠⎪=+->⎪⎪-⎨+=<-⎪⎪-=>⎪-⎩V解得1k <<-。
又∵12AB x x =-===依题意得=,整理后得422855250k k -+=, ∴257k =或254k =。
但1k <<-,∴2k =-。
故直线AB的方程为102x y ++=。
(3)设(,)c c C x y ,由已知OA OB mOC +=u u u r u u u r u u u r,得1122(,)(,)(,)c c x y x y mx my +=,∴1212(,)(,)(0)c c x x y y x y m m m++=≠。
又12221kx x k +==--212122222()22811k y y k x x k k +=+-=-==--,∴点8()C m m-。
将点C 的坐标代入曲线E 的方程,的2280641m m -=, 得4m =±,但当4m =-时,所得的点在双曲线的右支上,不合题意。
∴4m =,C点的坐标为(2),C 到AB13=, ∴△ABC的面积1123S =⨯=一、抛物线 高考动向:抛物线是高考每年必考之点,选择题、填空题、解答题皆有,要求对抛物线定义、性质、直线与其关系做到了如指掌,在高考中才能做到应用自如。
(一) 知识归纳(二)典例讲解题型一 抛物线的定义及其标准方程方法思路:求抛物线标准方程要先确定形式,因开口方向不同必要时要进行分类讨论,标准方程有时可设为2y mx =或2(0)x my m =≠。
【例5】根据下列条件求抛物线的标准方程。
(1)抛物线的焦点是双曲线22169144x y -=的左顶点;(2)经过点A (2,-3);(3)焦点在直线x-2y-4=0上;(4)抛物线焦点在x 轴上,直线y=-3与抛物线交于点A ,︱AF ︱=5.解:(1)双曲线方程可化为221916x y -=,左顶点是(-3,0) 由题意设抛物线方程为22(0)y px p =->且32p-=-, ∴p=6.∴方程为212y x =-(2)解法一:经过点A (2,-3)的抛物线可能有两种标准形式: y 2=2px 或x 2=-2py .点A (2,-3)坐标代入,即9=4p ,得2p =29 点A (2,-3)坐标代入x 2=-2py ,即4=6p ,得2p =34 ∴所求抛物线的标准方程是y 2=29x 或x 2=-34y 解法二:由于A (2,-3)在第四象限且对称轴为坐标轴,可设方程为2y mx =或2x ny =,代入A 点坐标求得m=29,n=-34, ∴所求抛物线的标准方程是y 2=29x 或x 2=-34y(3)令x=0得y=-2,令y=0得x=4,∴直线x-2y-4=0与坐标轴的交点为(0,-2),(4,0)。
∴焦点为(0,-2),(4,0)。
∴抛物线方程为28x y =-或216y x =。
(4)设所求焦点在x 轴上的抛物线方程为22(0)y px p =≠,A (m ,-3),由抛物 线定义得p52AF m ==+, 又2(3)2pm -=, ∴1p =±或9p =±,故所求抛物线方程为22y x =±或218y x =±。
题型二 抛物线的几何性质方法思路:1、凡设计抛物线上的点到焦点距离时,一般运用定义转化为到准线l 的距离处理,例如若P (x 0,y 0)为抛物线22(0)y px p =>上一点,则02p PF x =+。
2、若过焦点的弦AB ,11(,)A x y ,22(,)B x y ,则弦长12AB x x p =++,12x x +可由韦达定理整体求出,如遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似得到。
【例6】设P 是抛物线24y x =上的一个动点。
(1) 求点P 到点A (-1,1)的距离与点P 到直线1x =-的距离之和的最小值; (2) 若B (3,2),求PB PF +的最小值。
解:(1)抛物线焦点为F (1,0),准线方程为1x =-。
∵P 点到准线1x =-的距离等于P 点到F (1,0)的距离,∴问题转化为:在曲线上求一点P ,使点P 到A (-1,1)的距离与P 到F (1,0)的距离之和最小。
显然P 是AF 的连线与抛物线的交点, 最小值为5AF =(2)同理PF 与P 点到准线的距离相等,如图: 过B 做B Q ⊥准线于Q 点,交抛物线与P 1点。
∵11PQ PF =, ∴114PB PF PB PQ BQ +≥+==。
∴PB PF +的最小值是4。
题型三 利用函数思想求抛物线中的最值问题方法思路:函数思想、数形结合思想是解决解析几何问题的两种重要的思想方法。
【例7】已知抛物线y =x 2,动弦AB 的长为2,求AB 的中点纵坐标的最小值。
分析一:要求AB 中点纵坐标最小值,可求出y 1+y 2的最小值,从形式上看变量较多,结合图形可以观察到y 1、y 2是梯形ABCD 的两底,这样使得中点纵坐标y 成为中位线,可以利用几何图形的性质和抛物线定义求解。
解法一:设A(x 1,y 1),B(x 2,y 2),AB 的中点为M(x,y)由抛物线方程y =x 2知焦点1F(0,)4,准线方程14y =-,设点A 、B 、M 到准线的距离分别为|AD 1|、|BC 1|、|MN|,则|AD 1|+|BC 1|=2|MN|,且1MN =2(y+)4,根据抛物线的定义,有|AD 1|=|AF|、|BC 1|=|BF|,∴12(y+)4=|AF|+|BF|≥|AB|=2,yxAOPF∴12(y+)24≥ ∴3y 4≥,即点M 纵坐标的最小值为34。