高中数学双曲线基础练习题
- 格式:doc
- 大小:110.51 KB
- 文档页数:2
双曲线基础练习1双曲线题目:1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足条件|PF 1|-|PF 2|=6,则动点P 的轨迹方程是题目:2.双曲线36x 2-49y 2=1的渐近线方程是题目:3.双曲线5x 2-4y 2=1与5x 2-4y 2=k 始终有相同的()(A )焦点(B )准线(C )渐近线(D )离心率题目:4.双曲线x 2-ay 2=1的焦点坐标是()题目:5.设双曲线1by a x 2222=-(b>a>0)的半焦距为c ,直线l 过(a, 0)、(0, b)两点,已知原点到直线l 的距离是43c ,则双曲线的离心率是()题目:6.若双曲线x 2-y 2=1右支上一点P(a, b)到直线y=x 的距离是2,则a +b 的值为()。
题目:7.双曲线9x 2-7y 2=1的离心率是。
题目:8.已知方程k 3x 2++k2y 2-=1表示双曲线,则k 的取值范围是。
题目:9.若双曲线2222k4y k 9x -=1与圆x 2+y 2=1没有公共点,则实数k 的取值范围是。
题目:10. 曲线3sin 2x 2+θ+2sin y 2-θ=1所表示的图形是()。
(A )焦点在x 轴上的椭圆(B )焦点在y 轴上的双曲线(C )焦点在x 轴上的双曲线(D )焦点在y 轴上的椭圆题目:11. 双曲线4x 2-9y 2=1的渐近线方程是题目:12. 若双曲线与椭圆x 2+4y 2=64共焦点,它的一条渐近线方程是x +y=0,则此双曲线的标准方程是题目:13. 双曲线的两准线之间的距离是532,实轴长是8,则此双曲线的标准方程是题目:14. 若双曲线的两条准线间的距离等于它的半焦距,则双曲线的离心率为题目:15. 以F(2, 0)为一个焦点,渐近线是y=±x 的双曲线方程是()。
题目:16. 方程m 3x 2--2m y 2+=1表示双曲线,则m 的取值范围是()。
高中数学双曲线练习题及答案双曲线相关知识双曲线的焦半径公式:A。
$\frac{x^2}{12}-\frac{y^2}{24}=1$B。
$\frac{y^2}{12}-\frac{x^2}{24}=1$C。
$\frac{y^2}{24}-\frac{x^2}{12}=1$D。
$\frac{x^2}{24}-\frac{y^2}{12}=1$3.设 $e_1,e_2$ 分别是双曲线 $-\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 和 $-\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$ 的离心率,则$e_1^2+e_2^2$ 与 $e_1e_2$ 的大小关系是 $1:$定义:双曲线上任意一点 $P$ 与双曲线焦点的连线段,叫做双曲线的焦半径。
2.已知双曲线标准方程 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$点 $P(x,y)$ 在左支上PF_1│=-(e x+a)$;$│PF_2│=-(e x-a)$点 $P(x,y)$ 在右支上PF_1│=ex+a$;$│PF_2│=ex-a$运用双曲线的定义例1.若方程 $x^2\sin\alpha+y^2\cos\alpha=1$ 表示焦点在$y$ 轴上的双曲线,则角 $\alpha$ 所在象限是()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限练1.设双曲线 $\frac{x^2}{16}-\frac{y^2}{9}=1$ 上的点$P$ 到点 $(5,0)$ 的距离为 $15$,则 $P$ 点到 $(-5,0)$ 的距离是()A。
7 B。
23 C。
5 或 23 D。
7 或 232.已知双曲线的两个焦点是椭圆$\frac{x^2}{10}+\frac{5y^2}{32}=1$ 的两个顶点,双曲线的两条准线分别通过椭圆的两个焦点,则此双曲线的方程是()。
A。
$\frac{x^2}{6}-\frac{y^2}{4}=1$ B。
1.已知双曲线x 216-y 29=1上的点P 到(5,0)的距离为15,则点P 到点(-5,0)的距离为( )A .7B .23C .5或25D .7或232.已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )A .x 22-y 23=1B .x 23-y 22=1C .x 24-y 2=1D .x 2-y 24=1 3.双曲线x 2n -y 2=1(n >1)的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=2n +2,则△PF 1F 2的面积为( )A .12B .1C .2D .44.(2018·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( )A . 2B .2C .322D .225.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2s -y 2t =1(s ,t >0)有相同的焦点F 1和F 2,而P 是这两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -sB .12(m -s )C .m 2-s 2D .m -s6.(2019·全国卷Ⅰ)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40°C .1sin 50°D .1cos 50°7.(2018·全国卷Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A .32B .3C .2 3D .48.(2020·郑州一中月考)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点分别为A ,B ,点P在双曲线上,且异于A ,B 两点.O 为坐标原点,若直线PA ,PB 的斜率之积为79,则双曲线的离心率为________.9.若F 1,F 2是双曲线C :x 2-y 224=1(y ≠0)的左、右焦点,点P 是双曲线C 上一点,若|PF 1|=6,则|PF 2|=______,△PF 1F 2的面积S △PF 1F 2=_______.10.若椭圆x 216+y 27=1和双曲线x 2-y 28=1有相同的焦点F 1,F 2,点P 是两条曲线的一个交点,则|PF 1|2+|PF 2|2的值是________.11.若直线y =x -4与双曲线x 29-y 23=1相交于A ,B 两点,则|AB |=________.12.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,且双曲线C的实轴长为6,离心率为53.(1)求双曲线C 的标准方程;(2)设点P 是双曲线C 上任意一点,且|PF 1|=10,求|PF 2|.13. 已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA ―→·OB ―→>2,其中O 为原点,求k 的取值范围.。
双曲线练习题(含答案)双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( )A .双曲线B .一条直线C .一条线段D .两条射线2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( )A .双曲线的一支B .圆C .抛物线D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y24=1 D.y 23-x 24=15.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( )A.x 29-y 27=1B.x 29-y 27=1(y >0)C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .16B .18C .21D .26 9.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1D .-x 24+y 212=110.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1B.y 212-x 224=1C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43x D .y =±34x 13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2 B. 3 C. 2 D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2 二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________.16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x24+y2a2=1与双曲线x2a2-y2=1焦点相同,则a=________.20.双曲线以椭圆x29+y225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13.B 14. D二、填空题1. 10 2. 234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析]由题意得(1+k)(1-k)>0,∴(k-1)(k+1)<0,∴-1<k<1.3、[答案] A [解析]设动圆半径为r,圆心为O,x2+y2=1的圆心为O1,圆x2+y2-8x+12=0的圆心为O2,由题意得|OO1|=r+1,|OO2|=r+2,∴|OO2|-|OO1|=r+2-r-1=1<|O1O2|=4,由双曲线的定义知,动圆圆心O的轨迹是双曲线的一支.4、[答案] B [解析]由题意知双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,双曲线方程为y2-x23=1.5、[答案] C [解析]ab<0⇒曲线ax2+by2=1是双曲线,曲线ax2+by2=1是双曲线⇒ab<0.6、[答案] C [解析]∵c=5,|PF1|2+|PF2|2=|F1F2|2=4c2,∴(|PF1|-|PF2|)2+2|PF1|·|PF2|=4c2,∴4a2=4c2-4=16,∴a2=4,b2=1.7、[答案] D [解析]由双曲线的定义知,点P 的轨迹是以F1、F2为焦点,实轴长为6的双曲线的右支,其方程为:x29-y27=1(x>0)8、[答案] D [解析]|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2,∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c2a 2=a 2+b 2a2=259,∴b 2a 2=169,∴b a =43,∴a b =34. 又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x . 13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a2=1,∴c 2=2a 2,e =c a = 2.14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎪⎨⎪⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎪⎨⎪⎧a 2=73b 2=75.16、[答案] 833 [解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7,该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833. 17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b 2∈(1,2),∴-12<b <0.19、[答案] 62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62.焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
双曲线练习题一、选择题1. 下列关于双曲线的方程中,正确的是()A. x^2 y^2 = 1B. x^2 + y^2 = 1C. y^2 x^2 = 1D. x^2 y^2 = 02. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1(a>0,b>0),则其渐近线方程为()A. y = ±(a/b)xB. y = ±(b/a)xC. x = ±(a/b)yD. x = ±(b/a)y3. 双曲线的离心率e满足()A. 0 < e < 1B. e = 1C. e > 1D. e ≤ 14. 下列关于双曲线的焦点坐标,正确的是()A. (±c, 0)B. (0, ±c)C. (±a, 0)D. (0, ±a)二、填空题1. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1,则其焦点到中心的距离是 _______。
2. 已知双曲线的一个焦点为(4, 0),实轴长为6,则双曲线的方程为 _______。
3. 双曲线的离心率为2,实轴长为4,则双曲线的虚轴长为_______。
三、解答题1. 已知双曲线方程为 x^2/9 y^2/16 = 1,求:(1)焦点坐标;(2)实轴长;(3)渐近线方程。
2. 设双曲线的方程为 y^2 x^2/4 = 1,求:(1)离心率;(2)焦点坐标;(3)渐近线方程。
3. 已知双曲线的两个焦点分别为(±5, 0),且离心率为2,求双曲线的标准方程。
4. 已知双曲线的实轴长为8,虚轴长为6,求双曲线的离心率。
5. 设双曲线的方程为 x^2/25 y^2/9 = 1,求:(1)焦点坐标;(2)离心率;(3)渐近线方程。
四、计算题1. 已知双曲线的一个焦点为(2, 0),且经过点P(4, 3),求双曲线的标准方程。
2. 设双曲线的方程为 4x^2 9y^2 = 36,求该双曲线与直线 y = (2/3)x + 1 的交点。
(完整版)双曲线基础练习题
1. 引言
该练题旨在帮助读者巩固并提高对双曲线的理解。
通过一系列的基础练题,读者将能够熟悉双曲线的基本特征、图像以及相关的数学概念。
2. 练题
2.1 双曲线图像的分析
给定下列双曲线的方程,请绘制出相应的图像,然后回答相关问题。
1. 双曲线方程:$y = \frac{1}{x}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。
- 该双曲线是否对称于原点?解释原因。
2. 双曲线方程:$y = \frac{2}{x+1}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。
- 该双曲线是否对称于原点?解释原因。
2.2 数学概念的应用
回答下列问题,注意要用双曲线的相关概念来解释答案。
1. 为什么双曲线的渐近线可以帮助我们理解双曲线图像的特征?
2. 双曲线的离心率是什么?如何确定一个双曲线的离心率?
3. 通过改变双曲线方程中的参数,如何调整双曲线的形状?
3. 结论
通过完成上述练习题,读者应该能够更深入地理解双曲线的基
本概念和性质。
这些练习题不仅帮助读者熟悉双曲线的图像和方程,还能够加深对双曲线的数学概念的理解。
继续探索和练习双曲线,
将有助于读者在更高级的数学领域中应用这些概念。
双曲线经典练习题总结(带答案)1.选择题1.以椭圆x^2/169 + y^2/64 = 1的顶点为顶点,离心率为2的双曲线方程为C,当顶点为(±4,0)时,a=4,c=8,b=√(a^2+c^2)=4√5,双曲线方程为x^2/16 - y^2/20 = 1;当顶点为(0,±3)时,a=3,c=6,b=√(a^2+c^2)=3√5,双曲线方程为y^2/9 - x^2/5 = 1,所以答案为C。
2.双曲线2x^2 - y^2 = 8化为标准形式为x^2/4 - y^2/8 = 1,所以实轴长为2a = 4,答案为C。
3.若a>1,则双曲线2x^2/a^2 - y^2 = 1的离心率的取值范围是C。
由双曲线方程得离心率e = √(a^2+1)/a,所以c^2 =a^2+b^2 = a^2(a^2+1)/(a^2-1),代入离心率公式得√(a^2+1)/a = 2,解得a = 2,所以答案为C。
4.已知双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为D。
由双曲线方程得离心率e = √(a^2+b^2)/a = 2,所以b^2 = 3a^2,又因为点(4,0)到渐近线的距离为c/a,所以c^2 = a^2+b^2 = 4a^2,代入双曲线方程得4x^2/a^2 - 2y^2/3a^2 = 1,化简得y^2 = 6x^2/5,所以渐近线方程为y = ±√(6/5)x,代入点(4,0)得距离为2√5,所以答案为D。
5.双曲线C:x^2/4 - y^2/16 = 1的右焦点坐标为F(6,0),一条渐近线的方程为y = x,设点P在第一象限,由于|PO| = |PF|,则点P的横坐标为4,纵坐标为3,所以△PFO的底边长为6,高为3,面积为9,所以答案为A。
6.若双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的一条渐近线被圆(x-2)^2 + y^2 = 4所截得的弦长为2,则b^2 = a^2-4,圆心为(2,0),半径为2,设截弦的两个交点为P和Q,则PQ = 2,所以PQ的中点M在圆上,即M为(5/2,±√(3)/2),所以PM = √(a^2-25/4)±√(3)/2,由于PM = PQ/2 = 1,所以(a^2-25/4)+(3/4) = 1,解得a = √(29)/2,所以答案为B。
双曲线基础训练题1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( C ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的 曲线可能是 ( C )5.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( B )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有 ( D )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A )A .28B .22C .14D .128.双曲线方程为152||22=-+-ky k x ,那么k 的取值范围是 ( D )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >59.双曲线的渐近线方程是y=±2x ,那么双曲线方程是 ( D ) A .x 2-4y 2=1B .x 2-4y 2=1C .4x 2-y 2=-1 D .4x 2-y 2=110.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF (C )A .1或5B . 6C . 7D . 911.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B ) A .43B .53C .2D .7312.设c 、e 分别是双曲线的半焦距和离心率,则双曲线12222=-by a x (a>0, b>0)的一个顶点到它的一条渐近线的距离是 ( D )A .caB .c bC .ea D .eb13.双曲线)1(122>=-n y nx 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )A .21 B .1 C .2 D .414.二次曲线1422=+my x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是( C )A .]23,22[ B .]25,23[C .]26,25[D .]26,23[15.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =_____6416.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F17.双曲线122=-by ax 的离心率为5,则a :b= 4或4118.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .19.(本题12分)已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; [解析]∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x。
双曲线函数基础练习题(必做)
本练题旨在帮助学生加深对双曲线函数的理解和应用。
下面是一些基础练题,供学生进行练和巩固知识。
题目一
设双曲线函数 $f(x) = \frac{2}{x}$,求解下列问题:
1. 计算 $f(1)$ 的值。
2. 求解方程 $f(x) = 3$ 的解,并用图示法表示。
3. 求解方程 $f(x) = -2$ 的解。
题目二
考虑双曲线函数 $g(x) = \frac{3}{x} - 1$,回答以下问题:
1. 求解方程 $g(x) = 0$ 的解。
2. 计算 $g(-1)$ 的值。
3. 求解方程 $g(x) = 2$ 的解,并用图示法表示。
题目三
对于双曲线函数 $h(x) = \frac{x - 2}{x}$,完成以下练:
1. 计算 $h(2)$ 的值。
2. 求解方程 $h(x) = 0$ 的解。
3. 求解方程 $h(x) = -1$ 的解,并用图示法表示。
题目四
设双曲线函数 $k(x) = \frac{1}{x - 3}$,回答以下问题:
1. 计算 $k(4)$ 的值。
2. 求解方程 $k(x) = 2$ 的解,并用图示法表示。
3. 求解方程 $k(x) = -\frac{1}{2}$ 的解。
这些练习题旨在帮助学生熟悉双曲线函数的基本知识和计算方法。
通过反复练习,学生将能够更好地掌握双曲线函数的特性和应用。
《双曲线》练习题一、选择题:1.已知焦点在Y 轴上的双曲线的渐近线方程是y =±4x ,则该双曲线的离心率是( )A.17B.15C.174D.1542.中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为( )A .x 2﹣y 2=1 B .x 2﹣y 2=2 C .x 2﹣y 2=D .x 2﹣y 2=3.1(a >b >01有相同的焦点,则椭圆的离心率为( )ABCD 4.设双曲线=1(0<a <b )的半焦距为c ,直线l 过(a ,0)(0,b )两点,已知原点直线l 的距离为,则双曲线的离心率为( )A .2B .C .D .5.的圆相切,)A B C D 6.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( )A.3B.62C.63D.337.已知双曲线E 的中心为原点,P (3,0)是E 的焦点,过P 的直线l 与E 相交于A ,B 两点,且AB 的中点为.12120,||||2,MF MF MF MF ==则该双曲线的方程是( ) A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=19.设F 1,F 2是双曲线x 2-y224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .4 2B .83C .24D .4810.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( )A .28B .14-82C .14+8 2D .8 211.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( )条。
A .1B .2C .3D .412.F ,若过点F 的直线与双曲线的右支有且只有一个交点,则 )二、填空题: 13.以双曲线的顶点为焦点,焦点为顶点的椭圆方程是 .14.已知双曲线C 过点,一条渐近线方程为,双曲线C 的标准方程为 .15.已知双曲线﹣=1(a >0,b >0)的渐近线与圆x 2+y 2﹣4x+2=0有交点,则该双曲线的离心率的取值范围是 .16.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲 线右支上一点,则PA 1·PF 2的最小值为________.三、解答题:17.已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为).(Ⅰ)求双曲线C 的方程(Ⅱ)若直线:=l y kx A 和B 且2∙>OA OB (其中O 为原点),求k 的取值范围18.已知双曲线的两个焦点为的曲线C 上.(Ⅰ)求双曲线C 的方程;(Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为,求直线l 的方程.19.已知双曲线的中心在原点O,右焦点为F(c,0),P是双曲线右支上一点,且△OEP的面积为(Ⅰ)若点P的坐标为,求此双曲线的离心率;(Ⅱ)若,当取得最小值时,求此双曲线的方程.。
高中数学双曲线练习题一、选择题1. 双曲线的标准方程为 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} =1 \),其中 \( a \) 和 \( b \) 分别表示什么?A. 焦点间距离的一半B. 横轴和纵轴的半轴长C. 横轴和纵轴的全轴长D. 渐近线与横轴的夹角2. 双曲线的焦点到渐近线的距离等于:A. \( a \)B. \( b \)C. \( c \)D. \( \sqrt{a^2 + b^2} \)3. 双曲线 \( \frac{x^2}{16} - \frac{y^2}{9} = 1 \) 的焦距是:A. 10B. 8C. 6D. 54. 双曲线 \( \frac{x^2}{4} - y^2 = 1 \) 上的点 \( P(x, y) \) 到右焦点的距离与到左焦点的距离之差为:A. 2B. 4C. 6D. 85. 双曲线 \( \frac{x^2}{4} - y^2 = 1 \) 的一条渐近线方程是:A. \( x + 2y = 0 \)B. \( x - 2y = 0 \)C. \( y = \frac{x}{2} \)D. \( y = -\frac{x}{2} \)二、填空题6. 若双曲线的中心在原点,焦点坐标为 \( (±c, 0) \),且 \( c = 5 \),则 \( a \) 的值为______。
7. 双曲线 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 的一个顶点坐标为 \( (a, 0) \),若 \( a = 3 \),则 \( b \) 的值为______。
8. 已知双曲线 \( \frac{x^2}{9} - \frac{y^2}{16} = 1 \) 上的点\( M(3, -4) \) 到其一条渐近线的距离为______。
9. 若双曲线 \( \frac{x^2}{16} - \frac{y^2}{9} = 1 \) 上的点\( P \) 到右焦点的距离为 \( 10 \),则 \( P \) 到左焦点的距离为______。
双曲线习题练习及答案解析1、已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 因为双曲线的一条渐近线方程为2y x =,则b a =.① 又因为椭圆221123x y +=与双曲线有公共焦点,双曲线的焦距26c =,即c =3,则a 2+b 2=c 2=9.②.由①②解得a =2,b =,则双曲线C 的方程为22145x y -=.故选:B.2已知双曲线22221x y a b-=(a 、b 均为正数)的两条渐近线与直线1x =-围成的三)A.B. C. D. 2【答案】D解:双曲线的渐近线为by x a=±,令1x =-,可得b y a=,不妨令1,b A a ⎛⎫- ⎪⎝⎭,1,b B a ⎛⎫-- ⎪⎝⎭,所以2b AB a =,所以12AOBA S AB x =⋅=AB ∴=,即2b a =b a =2c e a ===;故选:D3已知双曲线C 的中心为坐标原点,一条渐近线方程为2y x =,点()22,2P -在C 上,则C 的方程为A. 22124x y -=B. 221714x y -=C. 22142x y -=D. 221147y x -=【答案】B由于C 选项的中双曲线的渐近线方程为22y x =±,不符合题意,排除C 选项.将点()22,2P -代入A,B,D 三个选项,只有B 选项符合,故本题选B.4已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( )A .B .C .D .【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F ,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y =所以12PF F △面积121201||||2PF F SF F y =⋅=故选:C 5已知双曲线C :()22102y x m m m -=>+,则C 的离心率的取值范围为( )A .(B .()1,2C .)+∞D .()2,+∞【答案】C双曲线()22102y x m m m -=>+的离心率为e ===,因为0m >,所以e =>C的离心率的取值范围为)+∞.故选:C.6若双曲线2288ky x -=的焦距为6,则该双曲线的离心率为( )A.4B.32C. 3D.103因为2288ky x -=为双曲线,所以0k ≠,化为标准方程为:22181y x k -=. 由焦距为6可得:3c ==,解得:k =1.所以双曲线为22181y x -=.所以双曲线的离心率为4c e a ===.故选:A7已知1F ,2F 分别是双曲线22124y x -=的左,右焦点,若P 是双曲线左支上的点,且1248PF PF ⋅=.则12F PF △的面积为( ) A. 8B. 16C. 24D. 【答案】C 因为P 是双曲线左支上的点,所以2122PF PF a -==,22124100F F c ==. 在12F PF △中,()22221212121212121212cos 22cos F F PF PF PF PF F PF PF PF PF PF PF PF F PF=+-∠=-+-∠,即110049696cos F PF=+-∠,所以1cos 0F PF ∠=,12in 1s P F F =∠,故12F PF △的面积为121242PF PF ⋅=.故选:C .8已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F ,2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF = A.1B.9C.1或9D.3或93.B 由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点Р在双曲线C 的左支上,所以214PF PF -=,所以29PF =.故选B9如图,F 1,F 2分别是双曲线22221x y a b-=(a >0,b >0)的两个焦点,以坐标原点O为圆心,|OF 1|为半径的圆与该双曲线左支交于A ,B 两点,若△F 2AB 是等边三角形,则双曲线的离心率为( )B. 211【答案】D 连接1AF ,依题意知:21AF =,12122c F F AF ==,所以21121)a AF AF AF =-=1c e a ===. 10已知双曲线22214x y b-=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( ) A.83+ B.)41C.83+ D.)22【答案】A双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF =所以8)m =+,解得:m =1ABF ∆的周长为: 11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A11已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( ) A.B.C. D.【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y = 所以12PF F △面积121201||||2PF F S F F y =⋅=故选:C12双曲线22221x y a b-=与22221x y a b -=-的离心率分别为12,e e ,则必有( )A. 12e e =B. 121e e ⋅=C.12111e e += D. 2212111e e += 【答案】D13多选以已知双曲线的虚轴为实轴、实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,则以下说法,正确的有( ) A. 双曲线与它的共轭双曲线有相同的准线 B. 双曲线与它的共轭双曲线的焦距相等 C. 双曲线与它的共轭双曲线的离心率相等 D. 双曲线与它的共轭双曲线有相同的渐近线 【答案】BD由双曲线对称性不妨令双曲线C 的方程为:22221(0,0)x y a b a b-=>>,则其共轭双曲线C '的方程为22221y x b a-=,对于A ,双曲线C 的准线垂直于x 轴,双曲线C '的准线垂直于y 轴,A 不正确;对于B ,双曲线C 和双曲线C '的半焦距均为:c =,所以焦距相同,B 正确;对于C ,由B 选项知,双曲线C 的离心率为1ce a=,而双曲线C '的离心率为2c e b =,而a ,b 不一定等,C 不正确;对于D ,双曲线C 和双曲线C '的渐近线均为by x a=±,D 正确. 故选:BD13多选已知双曲线C :()222104x y b b-=>的离心率为72,1F ,2F 分别为C 的左右焦点,点P 在C 上,且26PF =,则( )A .7b =B .110PF =C .OP =D .122π3F PF ∠=【答案】BCD72=,可得b =A 不正确,而7c ==,因为27||6c PF =>=,所以点P 在C 的右支上,由双曲线的定义有:121||||||624PF PF PF a -=-==,解得1||10PF =,故选项B 正确,在12PF F △中,有2222221271076cos cos 02727OP OP POF POF OP OP +-+-∠+∠=+=⨯⨯⨯⨯,解得||OP =,22212106141cos 21062F PF +-∠==-⨯⨯,所以1223F PF π∠=,故选项C ,D 正确. 故选:BCD.多选若方程22151x y t t +=--所表示的曲线为C ,则下面四个命题中正确的是A .若1<t <5,则C 为椭图B .若t <1.则C 为双曲线 C .若C 为双曲线,则焦距为4D .若C 为焦点在y 轴上的椭圆,则3<t <5 【答案】BD 14多选已知双曲线C 1:)0,0(12222>>=-b a b y a x 的实轴长是2,右焦点与抛物线C 2:y 2=8x 的焦点F 重合,双曲线C 1与抛物线C 2交于A 、B 两点,则下列结论正确的是 ( ▲ )A .双曲线C 1的离心率为2 3B .抛物线C 2的准线方程是x =-2 C .双曲线C 1的渐近线方程为y =±3x D. |AF |+|BF |=320 【答案】BC【解析】由题意可知对于C 1:()0012222>>=-b a by a x ,,实轴长为2a =2,即a =1,而C 2:y 2=8x 的焦点F 为(2,0),所以c =2,则双曲线C 1的方程为1322=-yx ,则对于选项A ,双曲线C 1的离心率为212==a c ,所以选项A 错误;对于选项B ,抛物线C 2的准线方程是x =-2,所以选项B 正确;对于选项C ,双曲线C 1的渐近线方程为y =±abx =±3x ,所以选项C 正确;对于选项D ,由y 2=8x 与1322=-y x 联立可得A (3,62),B (3,62-),所以由抛物线的定义可得 |AF |+|BF |=10433=++=++p x x B A ,所以选项D 错误,综上答案选BC.14多选12,F F 分别是双曲线2221(0)y x b b-=>的左右焦点,过2F 作x 轴的垂线与双曲线交于,A B 两点,若1ABF 为正三角形,则( )A.b = B.C. 双曲线的焦距为D.1ABF 的面积为【答案】ABD在正三角形1ABF 中,由双曲线的对称性知,12F F AB ⊥,12||2||AF AF =, 由双曲线定义有:12||||2AF AF -=,因此,1||4AF =,2||2AF =,12||F F ==即半焦距c =b =,A 正确;双曲线的离心率1ce ==B 正确;双曲线的焦距12F F =C 不正确;1ABF 的面积为21||4AF =D 正确.故选:ABD15多选已知双曲线C 的左、右焦点分别为1F 、2F ,过2F 的直线与双曲线的右支交于A 、B 两点,若122||||2||AF BF AF ==,则( )A. 11AF B F AB ∠=∠B. 双曲线的离心率e =C. 直线的AB 斜率为±D. 原点O 在以2F 为圆心,2AF 为半径的圆上 【答案】ABC 如图:设122||||2||2(0)AF BF AF m m ===>,则22||||||3AB AF BF m =+=,由双曲线的定义知,12||||22AF AF m m a -=-=,即2m a =;12||||2BF BF a -=, 即1||22BF m a -=,∴1||3||BF m AB ==,即有11AF B F AB ∠=∠,故选项A 正确;由余弦定理知,在1ABF 中,22222211111||||||4991cos 2||||2233AF BF AB m m m AF B AF BF m m +-+-∠===⋅⋅,在△12AF F 中,22222212121112||||||441cos cos 2||||223AF AF F F m m c F AB AF B AF AF m m +-+-∠===∠=⋅⋅, 化简整理得,222121144c m a ==,∴离心率ce a ==,故选项B 正确; 在△21AF F中,2222222211134443cos 224m m c m m c m AF F c m cm -+--∠===⋅⋅,21sin AF F ∠==,∴212121sin tan cos AF F AF F AF F ∠∠==∠ ∴根据双曲线的对称性可知,直线AB的斜率为±,故选项C 正确; 若原点O 在以2F 为圆心,2AF 为半径的圆上,则2c m a ==,与3c a =不符,故选项D 错误.故选:ABC .16多选已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F,一条渐近线过点(,则下列结论正确的是( )A. 双曲线CB. 双曲线C 与双曲线22124y x -=有相同的渐近线C. 若F 到渐近线的距离为2,则双曲线C 的方程为22184x y -=D. 若直线2:a l x c=与渐近线围成的三角形面积为则焦距为【答案】BCD 渐近线的方程为by x a=±,因为一条渐近线过点(,故b a ⨯=a ===,故A 错误.又渐近线的方程为2y x =±,而双曲线22124y x -=的渐近线的方程为2y x =±, 故B 正确.若F 到渐近线的距离为2,则2b =,故a =C 的方程为22184x y -=,故C 正确. 直线2:a l x c =与渐近线的两个交点的坐标分别为:2,a ab c c ⎛⎫ ⎪⎝⎭及2,a ab cc ⎛⎫- ⎪⎝⎭,故2122a ab c c =⨯⨯⨯即23a b =,而a =,故b =,a =,所以23=,所以c =,故焦距为D 正确.故选:B CD.16多选已知点P 在双曲线221169x y -=上,1F ,2F 分别是左、右焦点,若12PF F △的面积为20,则下列判断正确的有( ) A. 点P 到x 轴的距离为203B. 12503PF PF += C. 12PF F △为钝角三角形 D. 123F PF π∠=【答案】BC由双曲线方程得4a =,3b =,则5c =,由△12PF F 的面积为20,得112||10||2022P P c y y ⨯⨯=⨯=,得||4P y =,即点P 到x 轴的距离为4,故A 错误, 将||4P y =代入双曲线方程得20||3P x =,根据对称性不妨设20(3P ,4),则213||3PF =, 由双曲线的定义知12||||28PF PF a -==,则11337||833PF =+=, 则12133750||||333PF PF +=+=,故B 正确,在△12PF F 中,113713||210||33PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则△12PF F 为钝角三角形,故C 正确, 2222121212121212121337641002||||||(||||)2||||10033cos 13372||||2||||233PF PF F F PF PF PF PF F PF PF PF PF PF -+⨯⨯+--+-∠===⨯⨯3618911121337133729⨯=-=-≠⨯⨯⨯,则123F PF π∠=错误,故正确的是BC ,故选16双曲线:C 2214x y -=的渐近线方程为__________,设双曲线1:C 22221(0,0)x y a b a b -=>>经过点(4,1),且与双曲线C 具有相同渐近线,则双曲线1C 的标准方程为__________.【答案】12y x =± 221123y x -=【解析】(1)双曲线:C 2214x y -=的焦点在y 轴上,且1,2a b ==,渐近线方程为ay x b=±, 故渐近线方程为12y x =±;(2)由双曲线1C 与双曲线C 具有相同渐近线,可设221:4y C x λ-=,代入(4,1)有224134λλ-=⇒=-,故212:34x C y -=-,化简得221123y x -=.17已知O 为坐标原点,抛物线C :()220y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则PF =______. 【答案】3抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0)2pQ +,(6,)PQ p =-,因为PQ OP ⊥,所以2602pPQ OP p ⋅=⨯-=, 0,3p p >∴=,所以PF =3故答案为△3.若双曲线1C :()2230y x λλ-=≠的右焦点与抛物线2C :28y x =的焦点重合,则实数λ=( ) A. 3±B.C. 3D. -3【答案】D双曲线1C 的右焦点与抛物线的焦点(2,0)重合,所以双曲线1C 方程化:()22103y x λλλ-=≠,再转化为:()22103x y λλλ-=<--,所以23a λ=-, 2b λ=-,所以222433c a b λλλ=+=--=-,所以c =2=平方得 3.λ=-故选:D.17设双曲线:的右焦点为,点,已知点在双曲线的左支上,若的周长的最小值是,则双曲线的标准方程是__________,此时,点的坐标为__________.【答案】【解析】如下图,设为双曲线的左焦点,连接,,则,,故的周长, 因为,所以的周长, 因为的周长的最小值是,,,所以,的方程为, 当的周长取最小值时,点在直线上,因为,,所以直线的方程为,联立,解得,或(舍去), 故的坐标为.故答案为:,.C 2221(0)y x b b-=>F ()0,Q b P CPQF △8C P 2214y x -=⎛⎫ ⎪ ⎪⎝⎭D C PD QD QD QF =2PFPD =+PQF△2l PQ PF QF PQ PD QD =++=+++PQ PD QD +≥=PQF△2l ≥PQF △82228,9c b +=+=22221cbab2b =c =C 2214y x -=PQF △P QD ()0,2Q ()D QD 25y x =+222514y x y x ⎧=+⎪⎪⎨⎪-=⎪⎩1x y ⎧=⎪⎨⎪=⎩4x y ⎧=⎪⎨=⎪⎩P 2⎛⎫- ⎪ ⎪⎝⎭2214y x -=,12⎛⎫- ⎪ ⎪⎝⎭18已知双曲线()221112211:10,0x y C a b a b -=>>与()222222222:10,0y x C a b a b -=>>有相同的渐近线,若1C 的离心率为2,则2C 的离心率为__________.双曲线()221112211:10,0x y C a b a b -=>>的渐近线方程为11b y x a =± ,()222222222:10,0y x C a b a b -=>>的渐近线方程为22a y x b =±,由题意可得1212b a a b =,由1C 的离心率为2得:22211121()b e a ==+ ,则222()3a b = , 所以设2C 的离心率为2e ,则22222141()133b e a =+=+=,故2=e ,故答案为:19知双曲线()222210,0x y a b a b-=>>,焦点()()()12,0,00F c F c c ->,,左顶点(),0A a -,若过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切,与双曲线在第一象限交于点P ,且2PF x ⊥轴,则直线的斜率是 _____, 双曲线的离心率是 _________. 【答案】如图,设圆22224a a x y ⎛⎫-+= ⎪⎝⎭的圆心为B ,则圆心坐标(,0)2a B ,半径为2a ,则32a AB =,设过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切于点C ,连接BC ,则2a BC =,所以AC ==,得tan aBC BAC AC ∠===;2PF x ⊥轴,由双曲线的通径可得,22b PF a=,又2AF a c =+,所以222tan PF AF b a BAC a c ∠===+,化简得24(40e -=,求解得e =.已知双曲线C :﹣y 2=1.(Ⅰ)求以C 的焦点为顶点、以C 的顶点为焦点的椭圆的标准方程; (Ⅱ)求与C 有公共的焦点,且过点(2,﹣)的双曲线的标准方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解:(Ⅰ)双曲线C :﹣y 2=1的焦点为(±,0),顶点为(±2,0),设椭圆的标准方程为+=1(a >b >0),可得c =2,a =,b ==1,则椭圆的方程为+y 2=1;(Ⅱ)设所求双曲线的方程为﹣=1(m .n>0),由题意可得m 2+n 2=5,﹣=1,解得m =,n =,即所求双曲线的方程为﹣=1,则这条双曲线的实轴长为2、焦距为2、离心率为以及渐近线方程为y=±x .20已知双曲线C :﹣=1(a >0,b >0)与双曲线﹣=1有相同的渐近线,且经过点M (,﹣).(Ⅰ)求双曲线C 的方程;(Ⅱ)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.:(Ⅰ)∵双曲线C 与双曲线﹣=1有相同的渐近线,∴设双曲线的方程为(λ≠0),代入M (,﹣).得λ=,故双曲线的方程为:.(Ⅱ)由方程得a =1,b =,c =,故离心率e =. 其渐近线方程为y =±x ;实轴长为2, 焦点坐标F (,0),解得到渐近线的距离为:=.21已知双曲线C :22221(0,0)x y a b a b-=>>,点)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求AB .(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b =,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪=-⎪⎩得256270x x +-=,设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以5AB ==. 22已知双曲线()2222:10,0x y C a b a b -=>>与双曲线22162y x -=的渐近线相同,且经过点()2,3.(1)求双曲线C 的方程;(2)已知双曲线C 的左右焦点分别为12,F F ,直线l 经过2F ,倾斜角为3,4l π与双曲线C 交于,A B 两点,求1F AB 的面积.(1)设所求双曲线C 方程为2262y x λ-=,代入点()2,3得:223262λ-=,即12λ=-, 所以双曲线C 方程为221622y x -=-,即2213y x -=.(2)由(1)知:()()122,0,2,0F F -,即直线AB 的方程为()2y x =--.设()()1122,,,A x y B x y ,联立()22213y x y x ⎧=--⎪⎨-=⎪⎩得22470x x +-=,满足>0∆且122x x +=-,1272x x =-,由弦长公式得12||AB x x =-=6==,点()12,0F -到直线:20AB x y +-=的距离d ===所以111622F ABS AB d =⋅=⋅⋅=。
双曲线(易错必刷32题6种题型专项训练)➢双曲线定义➢双曲线的方程➢双曲线的性质➢双曲线的离心率➢直线与双曲线的位置关系一.双曲线的定义(共5小题)1.(24-25高三上·广西南宁·开学考试)已知()1,0A -,()10B ,,在x 轴上方的动点M 满足直线AM 的斜率与直线BM 的斜率之积为2,则动点M 的轨迹方程为( )A .()22102y x x -=>B .()22102y x y -=>C .()22102x y x -=>D .()22102x y y -=>2.(24-25高二上·全国·课后作业)已知双曲线22330x y -+=的两个焦点分别为12,F F ,点P 在双曲线上,且1215PF PF ×=,则12PF F V 的周长为 .3.(24-25高二上·全国·课后作业)已知双曲线的左、右焦点分别为12,F F 且在x 轴上,且双曲线上存在一点P使得212||PO PF PF =×,若2PF x ^轴,则该双曲线的离心率为 .4.(23-24高三上·广东广州·期中)已知点P 是双曲线()222210,0x y C a b a b -=>>:右支上一点,1F 、2F 分别为双曲线C 的左、右焦点,12PF F V 的内切圆与x 轴相切于点N ,若121344PN PF PF =+uuu r uuu r uuu u r,则双曲线C 的离心率为.5.(2025·安徽·一模)(多选)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12F F 、.过2F 的直线l 交双曲线C 的右支于A B 、两点,其中点A 在第一象限.12AF F △的内心为11,I AI 与x 轴的交点为P ,记12AF F △的内切圆1I 的半径为112,r BF F V 的内切圆2I 的半径为2r ,则下列说法正确的有()A .若双曲线渐近线的夹角为60°,则双曲线的离心率为2B .若12AF AF ^,且112BF AF a -=C .若1,a b ==12r r -的取值范围是(D .若直线l 112AI I P =,则双曲线的离心率为54二.双曲线的方程(共4小题)6.(23-24高二上·陕西宝鸡·期末)若方程22113x y k k +=--表示双曲线,则实数k 的取值范围是( )A .1k <B .13k <<C .3k >D .1k <或3k >7.(山西省运城市2024-2025学年高三上学期开学摸底调研数学试题)双曲线22221(0,0)x y a b a b -=>>的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F V 是面积为8的直角三角形,则双曲线的方程为.8.(2024·江西九江·二模)已知双曲线()2222:10,0x y C a b a b-=>>,点()3,4P 在C 上.(1)求双曲线C 的方程;(2)直线l 与双曲线C 交于不同的两点A ,B ,若直线PA ,PB 的斜率互为倒数,证明:直线l 过定点.9.(24-25高三上·贵州贵阳·阶段练习)已知双曲线()2222:10,0x y M a b a b -=>>与双曲线2222:12-=x y N m m 的离心率相同,且M 经过点()2,2,N 的焦距为(1)分别求M 和N 的方程;(2)已知直线l 与M 的左、右两支相交于点,A B ,与N 的左、右两支相交于点C ,D ,AB CD=l 与圆222:O x y a +=的位置关系.三.双曲线的性质(共9小题)10.(24-25高三上·上海·阶段练习)已知双曲线221112211Γ:1(0,0)x y a b a b -=>> 与 222222222Γ:1(0,0)x y a b a b -=>>有共同的渐近线,则它们一定有相等的( )A .实轴长B .虚轴长C .焦距D .离心率11.(2024·河南新乡·模拟预测)(多选)已知0,0a b >>,则双曲线22122:1x y C a b-=与22222:4x yC a b -=有相同的( )A .焦点B .焦距C .离心率D .渐近线12.(24-25高三上·山西吕梁·开学考试)(多选)已知双曲线22:5420C y x -=,则C 的( )A .焦点在y 轴上B .焦距为3C .离心率为32D .渐近线为y =13.(24-25高三上·福建漳州·阶段练习)已知双曲线22:4C x y -=,点M 为C 上一点,过M 分别作C 的两条渐近线的垂线,垂足分别为,A B ,则四边形OAMB (O 为原点)的面积为( )A .1B .2C .4D .614.(24-25高二上·全国·课后作业)已知双曲线22145x y -=的右焦点为F ,过F 作PF 垂直于一条渐近线,垂足为P ,若点,P Q 关于原点对称,则PQF S =△ .15.(2024·湖北·模拟预测)已知双曲线22221(,0)x y a b a b-=>的左焦点为F ,过坐标原点O 作直线与双曲线的左右两支分别交于,A B 两点,且2π4,3FB FA AFB =Ð=uuu r uuu r ,则双曲线的渐近线方程为 .16.(24-25高三上·湖北·开学考试)过双曲线2213x y -=的一个焦点作倾斜角为60o 的直线,则该直线与双曲线的两条渐近线围成的三角形的面积是.17.(2024·湖南邵阳·三模)已知双曲线C :22221x y a b -=(0a >,0b >)的右焦点为F ,左、右顶点分别为1A ,2A ,点M 在C 上且MF x ^轴,直线1MA ,2MA 与y 轴分别交于点P ,Q ,若34OQ OP =(O 为坐标原点),则C 的渐近线方程为( )A .y =±B .y =±C .y =±D .y =±18.(23-24高二下·四川德阳·期末)(多选)双曲线C :22154x y -=的左右顶点分别为A 、B ,P 、Q 两点在C上,且关于x 轴对称( )A .以C 的焦点和顶点分别为顶点和焦点的椭圆方程为22195x y +=B .双曲线C C .直线AP 与BQ 的斜率之积为45-D .双曲线C 2四.双曲线的离心率(共8小题)19.(江西省智学联盟体2024-2025学年高三上学期9月质量检测数学试卷)已知双曲线方程为22213x y a -=,1F ,2F 是双曲线的两个焦点,点A 是双曲线上任意一点,若A 点关于1F 的对称点为点B ,点B 关于2F 的对称点为点C ,线段AC 的长度是8,则双曲线的离心率是( )A B .2C .D .420.(24-25高三上·安徽亳州·开学考试)已知双曲线222:1(0)x C y a a -=>,点M 在C 上,过点M 作C 两条渐近线的垂线,垂足分别为,A B ,若34MA MB ×=,则双曲线C 的离心率为( )A B C D 21.(24-25高三上·湖南·开学考试)已知1F 为双曲线2222:1(0,0)x y C a b a b-=>>的左焦点,Q 为双曲线C 左支上一点,11π,23OF Q QF Ð==C 的离心率为( )A .3B .2C D 22.(24-25高三上·河北邢台·开学考试)已知双曲线M 的左、右焦点分别为12,F F ,过点1F 且与实轴垂直的直线交双曲线M 于,A B 两点.若2ABF △为等边三角形,则双曲线M 的离心率为( )A B C .2D 124.(23-24高二上·湖南常德·阶段练习)如图,已知12F F 、分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,现以2F 为圆心作一个通过双曲线中心的圆并且交双曲线C 于M N 、两点.若直线1MF 是圆2F 的切线,则该双曲线的离心率为( )A 1BC .D 225.(2024·辽宁·模拟预测)已知椭圆1C 与双曲线2C 有共同的焦点12,,F F P 是椭圆1C 与双曲线2C 的一个公共点,且12π3F PF Ð=,其离心率分别为12,e e ,则22123e e +的最小值为( )A .3B .4C .6D .1226.(24-25高三上·陕西安康·开学考试)在平面直角坐标系xOy 中,A 为双曲线2222:1(0,0)x yC a b a b-=>>的左顶点,M 为双曲线C 上位于第一象限内的一点,点M 关于y 轴对称的点为N ,记,MAN MOx a b Ð=Ð=,若tan tan 3a b =,则双曲线C 的离心率为( )A .2B C D 1五.直线与双曲线的位置关系(共5小题)27.(2023·河南周口·模拟预测)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过点1F作倾斜角为30°的直线l 与C 的左、右两支分别交于点P ,Q ,若()222222.0F P F Q F P F Q F P F Qæöç÷+-=ç÷èøuuu u r uuuu r uuu u r uuuu ruuu u r uuuu r ,则C 的离心率为( )ABC .2D28.(2022·安徽马鞍山·模拟预测)已知双曲线G :()222210,0x y a b a b -=>>的一条渐近线与圆O :222x y a +=交于,A C 两点,设圆O 在,A C 两点处的切线与x 轴分别交于,B D 两点、若双曲线GABCD 周长的最大值为 .29.(24-25高三上·江苏苏州·开学考试)在平面直角坐标系xOy 中,A ,B 为双曲线22:1C x y -=右支上两点,若6AB =,则AB 中点横坐标的最小值为( )A.BCD .16330.(23-24高三下·江苏连云港·阶段练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别是12,F F ,过点1F 的直线与C 交于,A B 两点,且12AB F F ^,现将平面12AF F 沿12F F 所在直线折起,点A 到达点P 处,使面12PF F ^面12BF F ,若25cos 9PF B =Ð,则双曲线C 的离心率为 .31.(24-25高三上·广东·阶段练习)已知双曲线2222:1x y C a b -=的右焦点()2,0F ay -=的距离为(1)求C 的标准方程;(2)若过F 的直线与C 的左、右支分别交于点,A B ,与圆222:O x y a +=交于与,A B 不重合的,M N 两点.①求直线AB 斜率的取值范围;②求AB MN ×的取值范围.32.(23-24高三上·河南·期中)已知双曲线2222:1(0,0)x y E a b a b -=>>的一条渐近线的倾斜角为30°,其中一个焦点到 E 上的点的最小距离为2.(1)求E 的方程;(2)已知直线2l y x =-:与双曲线E 交于A ,B 两点,过A ,B 作直线l 的垂线分别交E 于另一点D ,C ,求四边形ABCD的面积.。
3.2 双曲线一、单选题1.已知椭圆221(1)x y a a+=>和双曲线221(0)x y m m -=>有相同焦点,则( )A .2a m =+B .2m a =+C .222a m =+D .222m a =+【答案】A【解析】由题得椭圆221(1)x y a a +=>双曲线221(0)x y m m-=>11,2a m a m =-=+∴=+.2.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A【解析】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos 60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e3.设(),P xy 是双曲线22154x y -=的右支上的点,最小值为( )A B .C D 3【答案】B设()()0,1,3,0A F ,上式表示PA PF -,由于双曲线22154x y -=的左焦点为()()3,0,3,0F F '-,双曲线的实轴2a =2PF PF a PF ''=-=-()PA PF PA PF PF PA ''-=-+=--+PF PA AF ''-≤==当P 在F A '的延长线与双曲线右支的交点处时取到等号,所以()PA PF PF PA '-=--+4.已知椭圆22122:1(0)x y C a b a b +=>>,双曲线22212222:1,,2-=-x y C F F b a b 为2C 的焦点,P 为1C 和2C 的交点,若12PF F △的内切圆的圆心的横坐标为2,1C 和2C 的离心率之积为32,则a 的值为( ) A .2 B .3 C .4 D .5【答案】C【解析】不妨设点P 在第一象限内,12PF F △的内切圆与边1122,,PF F F PF 的切点分别为,,A B C ,双曲线的焦距为2c .则()()1212PF PF PA AF PC CF -=+-+()()12PA BF PA BF =+-+12BF BF =-()()224c c =+--=,因为点P 在双曲线上,所以1224PF PF b -==,则2b =,又因为1C 和2C 的离心率之积为32,而椭圆的离心率1e ,双曲线的离心率为2e =所以1232e e=,解得4a=.5.已知双曲线()2222:10,0x yC a ba b-=>>的左焦点为F,O为坐标原点,M,N两点分别在C 的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A1BC1D.【答案】C【解析】由题意(),F c o-,四边形MNOF为菱形,如图,则MN ON OF c===且//MN OF ,,M N分别为C的左,右支上的点,设M点在第二象限,N在第一象限.由双曲线的对称性,可得2Ncx=,过点N作NH x⊥轴交x轴于点H,则11,222cO c OH M NNN O====,所以60NOH∠=︒,则2NH c=,所以2cN⎛⎫⎪⎪⎝⎭,所以22223144c ca b-=,则22222234c b c a a b-=,即42e8e40-+=,解得2e4=+2e4=-e1>,所以取2e4=+e1=6.设双曲线222:1(0)4xC y aa-=>与直线:1l x y+=相交于两个不同的点A,B,则双曲线C 的离心率e的取值范围是()A.)+∞B.)⋃+∞⎝C.⎫+∞⎪⎝⎭D.⎝【答案】B【解析】2221,41xyax y⎧-=⎪⎨⎪+=⎩()222214880a x a x a⇒-+-=,所以()2422140,Δ6448140,a a a a ⎧-≠⎪⎨=+⨯->⎪⎩2214120a a a ⎧≠⎪⎪⎪<⎨⎪>⎪⎪⎩(2,)e ⇒=+∞⎝ 7.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182xy +=有公共焦点.则双曲线C 的渐近线方程为( ) A.y = B.y = C.y = D.y=【答案】C【解析】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c = 渐近线方程为by x a=±,其中一条为0bxay -=,1=,1b=,∴a =,∴渐近线方程为y x =. 812的化简结果为( ) A .236x -264y =1B .264x -236y =1C .236x -264y =1(x >0) D .264x -236y =1(x >0)【答案】C【解析】解:设A (−10,0),B (10,0),(,)P x y ,由于动点P (x ,y )12, 则|P A |−|PB |=12,故点P 到定点A (−10,0)与到定点B (10,0)的距离差为12, 则动点P (x ,y )的轨迹是以(±10,0)为焦点,以12为实轴长的双曲线的右支, 由于2a =12,c =10,则2221003664b c a =-=-=, 故P 的轨迹的标准方程为236x -264y =1(x >0).所以原方程可以化简为236x -264y =1(x >0).二、多选题9.已知双曲线C :2213x y -=,下列对双曲线C 判断正确的是( )A .实轴长是虚轴长的2倍B .焦距为4CD .渐近线方程为0x =【答案】BD【解析】∵双曲线C :2213x y -=∴23a =.21b =.∴2224c a b =+=∴2c =.∴双曲线的实轴长是2a =21b =,A 错误;焦距为24c =.B 正确;离心率为c a =,C 错误:渐近线方程为y x =,D 正确. 10.已知圆1C :2210100x y x y +--=和圆2C :2262400x y x y +-+-=则( )A .两圆相交B .公共弦长为C .两圆相离D .公切线长【答案】AB【解析】圆1C 的标准方程为:()()225550x y -+-=,圆心为(5,5)半径为 1r =圆2C 的标准方程为:()()223150x y -++=,圆心为(3,-1)半径为 2r =所以两圆心的距离:d ==120,d r r ∴<<+∴两圆相交,选项A 正确,选项C 错误;设两圆公共弦长为L ,则有:()2221222L d r r r r ⎛⎫⎛⎫+=== ⎪ ⎪⎝⎭⎝⎭L ∴=B 正确,选项D 错误.11.已知点()1,1A ,点P 是双曲线22:197x y C -=左支上的动点,Q 是圆221:(4)4D x y ++=上的动点,则( ) A .C 的实轴长为6B .C 的渐近线为y = C .PQ 的最小值为12D .PA PD -的最小值为6【答案】ACD【解析】A :由双曲线方程知:3a =,则C 的实轴长为6,正确;B :由双曲线方程知:C 的渐近线为y x =,错误; C :双曲线、圆如下:(4,0)D -为左焦点,当且仅当P 为x 轴交点,Q 为x 轴右交点时,PQ 最小为12,正确;D :由(4,0)F 为右焦点,||||26PF PD a -==,则6||PA PD PA PF -=+-,要使PA PD -最小只需,,P A F 共线,此时min ()6||6PA PD AF -=-=.12.已知曲线2212:1,,9x y C F F m +=分别为曲线C 的左右焦点,则下列说法正确的是( )A .若3m =-,则曲线C 的两条渐近线所成的锐角为3π B .若曲线C 的离心率2e =,则27m =-C .若3m =,则曲线C 上不存在点P ,使得122F PF π∠=D .若3,m P =为C 上一个动点,则12PF F △面积的最大值为【答案】ABD【解析】对于A 选项,当3m =-时,曲线22:193x y C -=表示焦点在x 轴上的双曲线,渐近线方程为y x =,故渐近线的倾斜角分别为5,66ππ,所以曲线C 的两条渐近线所成的锐角为3π,故A 选项正确; 对于B 选项,离心率2e =,则曲线C 为焦点在x 轴上的双曲线,3,2a e ==,故6c =,所以2236927m c a -=-=-=,所以27m =-,故B 选项正确;对于C 选项,若3m =,则曲线22:193x y C +=表示焦点在x 轴上的椭圆,此时2229,3,6a b c ===,设椭圆C 的短轴的一个顶点坐标为(M ,则222122461cos 02183a a c F MF a +--∠===-<,故12F MF ∠为钝角,所以线C 上存在点P ,使得122F PF π∠=,故C 选项错误;。
双 曲 线一、选择题1.已知点F 1(0,-13),F 2(0,13),动点P 到F 1与F 2的距离之差的绝对值为26,则动点P 的轨迹方程为( )A .y =0B .y =0(|x |≥13)C .x =0(|y |≥13)D .以上都不对2.双曲线x 216-y 29=1的焦点坐标为( ) A .(-7,0),(7,0) B .(0,-7),(0,7) C .(-5,0),(5,0) D .(0,-5),(0,5)3.已知定点A ,B ,且|AB |=4,动点P 满足|P A |-|PB |=3,则|P A |的最小值为( )A.12B.32C.72 D .54.已知双曲线方程为x 2a 2-y 2b 2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m 5.设P 为双曲线x 2-y 212=1上的一点,F 1,F 2是该双曲线的两个焦点.若|PF 1|:|PF 1|=3:2,则△PF 1F 2的面积为( )A .6 3B .12C .12 3D .246.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >0.b >0)有相同的焦点,P 是两曲线上的一个交点,则|PF 1|·|PF 2|的值为( )A .m -aB .m -bC .m 2-a 2 D.m -b7.方程x 24-t +y 2t -2=1所表示的曲线为C ,有下列命题:①若曲线C 为椭圆,则2<t <4;②若曲线C 为双曲线,则t >4或t <2;③曲线C 不可能是圆;④若曲线C 表示焦点在y 轴上的椭圆,则3<t <4. 以上命题正确的是( )A .②③B .①④C .②④D .①②④8.设θ∈(34π,π)则关于x ,y 的方程x 2csc θ-y 2sec θ=1 所表示的曲线是( ) A .焦点在y 轴上的双曲线 B .焦点在x 轴上的双曲线C .长轴在y 轴上的椭圆D .焦点在x 轴上的椭圆9.已知平面内有一定线段AB ,其长度为4,动点P 满足|P A |-|PB |=3,O 为AB 的中点,则|PO |的最小值为( )A .1 B.32 C .2 D .410.设F 1,F 2是双曲线x 24-y 2=1的两个焦点,点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1|·|PF 2|的值等于( )A .2B .2 2C .4D .811.双曲线x 24-y 212=1的焦点到渐近线的距离为( ) A .2 3 B .2 C. 3 D .112.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1C.y 24-x 28=1D.x 28-y 24=1 13.已知双曲线x 2a 2-y 2b 2=1与直线y =2x 有交点,则双曲线的离心率的取值范围是( ) A .(1,5) B .(1,5)∪(5,+∞) C .(5,+∞) D .[5,+∞)14.如果x 2|k |-2+y 21-k=-1表示焦点在y 轴上的双曲线,那么它的半焦距c 的取值范围是 A .(1,+∞) B .(0,2) C .(2,+∞) D .(1,2)15.已知双曲线x 22-y 2b 2=1(b >0)的左右焦点分别为F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则PF 1→·PF 2→=( )A .-12B .-2C .0D .416.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n 2=1有公共的焦点,那么双曲线的渐近线方程 A .x =±152y B .y =±152x C .x =±34y D .y =±34x 17.如果双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,则双曲线的离心率为( ) A.2B .2 C.3 D .2 218.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( ) A.45 B.53 C .2 D.73 19.设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近方程为A .3x ±4y =0B .3x ±5y =0C .4x ±3y =0D .5x ±4y =020.已知双曲线中心在原点,且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,则此双曲线方程是( ) A.x 23-y 24=1 B.x 24-y 23=1 C.x 25-y 22=1 D.x 22-y 25=1 二、填空题21.双曲线8kx 2-ky 2=8的一个焦点为(0,3) ,那么k 的值为________.22.若双曲线x 2-y 2=1右支上一点P (a ,b )到直线y =x 的距离是2,则a +b =________.23.设圆过双曲线x 29-y 216=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.24.双曲线x 216-y 29=1的两个焦点为F 1,F 2,点P 在双曲线上,若PF 1⊥F 1F 2,则点P 到x 轴的距离为______.25.与椭圆x 29+y 24=1有公共焦点,且两条渐近线互相垂直的双曲线方程为__________. 26已知双曲线x 2n -y 212-n=1的离心率为3,则n =________. 27.已知点F 、A 分别为双曲线C x 2a 2-y 2b2=1(a >0,b >0)的左焦点、右顶点,点B (0,b )满足FB →·AB →=0,则双曲线的离心率为________.28,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线方程为y =±33x ,若顶点到渐近线的距离为1,则双曲线方程为________.三解答题29.已知方程kx 2+y 2=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的曲线类型.30.在△ABC 中,BC 固定,A 点为动点,设|BC |=8,且|sin C -sin B |=12sin A ,求A 点的轨迹方程.31.设双曲线x 24-y 29=1,F 1,F 2是其两个焦点,点M 在双曲线上. (1)若∠F 1MF 2=90°,求△F 1MF 2的面积;(2)若∠F1MF2=60°时,△F1MF2的面积是多少?若∠F1MF2=120°时,△F1MF2的面积又是多少?32.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10).(1)求此双曲线的方程;(2)若点M(3,m)在双曲线上,求证:MF1⊥MF2;(3)求△F1MF2的面积.。
双曲线的定义及其标准方程同步练习一.选择题1.已知动点P(x,y)满足﹣=2,则动点P的轨迹是()A.椭圆B.双曲线C.双曲线的左支D.双曲线的右支2.已知F1,F2为平面内两个定点,P为动点,若|PF1|﹣|PF2|=a(a为大于零的常数),则动点P的轨迹为()A.双曲线B.射线C.线段D.双曲线的一支或射线3.若方程所表示的曲线为C,则下面四个命题中正确的是()A.若1<t<5,则C为椭圆B.若t<1.则C为双曲线C.若C为双曲线,则焦距为4D.若C为焦点在y轴上的椭圆,则3<t<54.已知双曲线C的焦点为F1(﹣1,0),F2(1,0),过F1的直线与双曲线C的左支交于A,B两点,若|AF1|=2|F1B|,|AB|=|BF2|,则C的方程为()A.B.C.D.5.已知定点F1(﹣4,0),F2(4,0),N是圆O:x2+y2=4上的任意一点,点F1关于点N的对称点为M,线段F1M的垂直平分线与直线F2M相交于点P,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆6.已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则||•||=()A.2B.4C.6D.87.设双曲线的两个焦点为F1,F2,P是双曲线上的一点,且|PF1|:|PF2|=3:4,则△PF1F2的面积等于()A.18B.24C.36D.48二.填空题8.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是.9.已知双曲线的方程是﹣=1,点P在双曲线上,且到其中一个焦点F1的距离为10,另一个焦点为F2,点N是PF1的中点,则ON的大小(O为坐标原点)为.10.设点P在双曲线上.若F1、F2为双曲线的两个焦点,且PF1:PF2=1:3,则△F1PF2的周长为.11.已知F1,F2是双曲线C:的左、右焦点,点P在C上,|PF1|=3|PF2|,则cos∠F1PF2=.12.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.13.已知A是双曲线﹣=1(a>0,b>0)的左顶点,F1,F2分别为左、右焦点,P为双曲线上一点,G是△F1PF2的重心,若=λ,||=,||+||=8,则双曲线的标准方程为.14.已知双曲线方程为﹣x2=1,点A的坐标为是圆(x﹣2)2+y2=1上的点,点M在双曲线的上支上,则|MA|+|MB|的最小值是.三.解答题15.已知﹣=﹣1,当k为何值时:(1)方程表示双曲线;(2)表示焦点在x轴上的双曲线;(3)表示焦点在y轴上的双曲线.16.根据下列条件,求双曲线的标准方程:(1)a=4且经过点A;(2)与双曲线=1有公共焦点,且过点(3,2);(3)双曲线过两点P,Q,且焦点在坐标轴上.17.已知动圆P与圆C1:(x+5)2+y2=49和圆C2:(x﹣5)2+y2=1,分别求满足下列条件的动圆圆心P的轨迹方程.(1)圆P与圆C1,圆C2都外切;(2)圆P与圆C1,圆C2都内切;(3)圆P与圆C1外切,圆C2内切.18.已知F是双曲线C:的右焦点,P是C左支上一点,A(0,),当△APF周长最小时,则点P的纵坐标为多少?。
双曲线基础练习题
1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )
A .116922=+y x B. 116922=-y x C. 116922=+-y x 19
16.2
2=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )
A .191622=-y x B. 191622=+-y x C.116922=+y x D.116
92
2=-y x 3.双曲线19
162
2=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 18
4.双曲线19
162
2=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0)
5.方程6)5()5(2222=++-+-y x y x 化简得:
A .116922=-y x B. 191622=+-y x C.116922=+y x D. 19
162
2=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )
A . 116922=-y x 和116922=+-y x B. 116922=-y x 和19
162
2=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和125
162
2=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )
A .1222=-y x
B .122=+-y x
C .122=-y x D. 122
2=+-y x 8.P 为双曲线19
162
2=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 36
9.双曲线19
162
2=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)
10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )
A .1222=-y x
B .122=-y x
C .122=+-y x D. 122
2=+-y x 11.双曲线19
162
2=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x
12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )
A .116922=-y x B. 191622=+-y x C.116922=+y x D. 19
162
2=-y x 二、填空题
13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________.
14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.
15.已知16
52
2=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________. 16.椭圆C 以双曲线12
2=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________
三、解答题 17.已知双曲线C :19
162
2=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,渐近线方程。
18.k 为何值时,直线y=kx+2 与双曲线12
2=-y x (1)有一个交点;(2)有两个交点;(3)没有交点.
19.双曲线的离心率为25,且与椭圆14
92
2=+y x 有共同焦点,求此双曲线的标准方程及渐近线方程。