【原创】【必修2】空间几何体平行垂直关系的探究
- 格式:docx
- 大小:178.14 KB
- 文档页数:3
空间几何的平行与垂直关系空间几何是研究物体的形状、大小、位置以及它们之间的关系的数学分支。
在空间几何中,平行和垂直是两个非常重要的关系。
平行指的是两条直线或两个面在空间中永远不会相交,而垂直则表示两条直线或两个面之间存在90度的夹角。
本文将详细讨论平行和垂直的概念、特点以及它们在几何推理和实际生活中的应用。
一、平行的特点和推理方法在空间几何中,平行是指两条直线或两个平面在空间中永远不会相交。
平行具有以下特点:1. 平行的直线之间的距离相等:如果两条直线平行,那么它们之间的距离将保持不变。
2. 平行的平面之间的角度相等:如果两个平面平行,那么它们之间的夹角将始终保持相等。
在几何推理中,我们可以使用平行线的性质来证明其他几何关系。
例如,如果两条直线与同一条直线的交线分别垂直,则这两条直线也是平行的。
二、垂直的定义和性质垂直是指两条直线或两个平面之间存在90度的夹角。
垂直具有以下性质:1. 垂直的直线之间相互正交:如果两条直线相互垂直,它们将彼此正交,形成90度的夹角。
2. 垂直的平面交线与平面之间的夹角为90度:当两个平面的交线与其他平面之间的夹角为90度时,我们可以说这两个平面互相垂直。
三、平行与垂直的实际应用平行和垂直的概念在实际生活中有广泛的应用。
以下是几个应用实例:1. 建筑设计:在建筑设计中,平行的概念非常重要。
例如,墙壁之间的平行关系可以决定空间的布局和设计效果。
2. 电气工程:电气工程中常用到平行和垂直的概念。
例如,电路中的导线可以平行排列,以减小电阻;电路中的电压和电流相互垂直,通过正交性来进行计算和分析。
3. 地理导航:在地理导航中,平行和经纬度之间的关系是非常重要的。
经线是平行于地球赤道的线,而纬线是平行于地球的纬度圈。
4. 视觉艺术:平行和垂直的概念在绘画、摄影和设计中发挥重要作用。
艺术家常常利用平行和垂直的线条来创造平衡和对比效果。
总结:空间几何中的平行和垂直关系是我们理解和应用物体形状、大小和位置的重要基础。
认识简单的空间几何平行与垂直的关系平行与垂直是空间几何中常见的两种关系,它们在许多领域都有重要应用,包括建筑设计、工程测量、物体运动的研究等。
本文将介绍简单的空间几何中平行与垂直的概念及其相关性质,并通过实际例子加深理解。
一、平行的定义与性质在空间几何中,我们将两条直线或两个平面称为平行,当且仅当它们不相交,且永远保持相同的距离。
具体而言,对于两条直线l和m,如果它们在同一平面内,且没有交点,我们说l与m平行;对于两个平面α和β,如果它们没有交线,我们说α与β平行。
平行的性质如下:1. 平行线与平行线之间的距离在任意两点处相等;同理,平行平面与平行平面之间的距离也相等。
示例1:在一个矩形的平面上,有一条直线l与矩形的一条边平行,那么l与矩形的另一条边也平行。
2. 若一条直线与平行于它的直线相交,则两直线之间的夹角等于对应的内错角。
示例2:设有两条平行线l和m,l与m的夹角为θ,则与l平行且与m相交的另一条线n与l的夹角也为θ。
3. 若两个平面分别与第三个平面平行,则它们之间的夹角等于对应的内错角。
示例3:三个平面α、β和γ,其中α与β平行,β与γ平行,那么α与γ之间的夹角等于α与β之间的夹角。
二、垂直的定义与性质在空间几何中,两个直线或两个平面相互垂直,当且仅当它们的夹角为90度。
直线与平面相互垂直的情况,也包括直线在平面内垂直和直线与平面相交垂直两种情况。
垂直的性质如下:1. 两条平行线与同一直线相交,在相交点处的垂直线也是平行线。
示例4:设有两条平行线l和m,直线n与l相交于点A,那么n与m的交点与A之间的线段也是垂直于l和m的。
2. 两条直线垂直于同一平面,在该平面上的交线也是垂直于该平面。
示例5:在一个平面上,有一条直线l垂直于平面,直线m也垂直于该平面,那么m与l在平面上的交线也是垂直于该平面。
3. 若两个平面互相垂直,则它们的交线为直线,并且该直线垂直于这两个平面。
示例6:平面α与平面β垂直,平面β与平面γ垂直,那么平面α与平面γ的交线即为一条垂直于平面α和平面γ的直线。
探索立体几何中的平行与垂直关系在立体几何中,平行与垂直是两种基本的关系。
平行是指两条直线或两个平面在空间中永远不相交,而垂直则是指两条直线或一个直线与一个平面之间的相互垂直关系。
这两种关系在几何学中有着广泛的应用和研究价值。
本文将探索立体几何中的平行与垂直关系,并讨论它们的性质和特点。
1. 平行关系在空间中,两条直线或两个平面如果永远不相交,我们就称它们为平行关系。
平行关系具有以下性质:- 平行关系是相对的:两个物体的平行关系与观察者的视角有关。
对于一个观察者来说,两条直线可能是平行的,而对于另一个观察者来说,这两条直线可能不平行。
- 平行关系保持不变:平行关系在空间中是始终保持不变的,无论两个物体在空间中如何移动、旋转或缩放,它们之间的平行关系都不会发生改变。
- 平行线的性质:如果一条直线与另外两条直线平行,那么这两条直线也是平行的。
此外,如果两条直线分别与第三条直线平行,则这两条直线也是平行的。
- 平行面的性质:如果两个平面相交于一条直线,并且与另外一个平面平行,那么这两个平面也是平行的。
同样,如果两个平面分别与第三个平面平行,则这两个平面也是平行的。
2. 垂直关系垂直关系是指在空间中,两条直线或一个直线与一个平面之间的相互垂直关系。
垂直关系具有以下性质:- 垂直关系是相对的:两个物体的垂直关系也与观察者的视角有关。
对于一个观察者来说,两条直线或一个直线与一个平面可能是垂直的,而对于另一个观察者来说,它们可能不垂直。
- 垂直关系保持不变:垂直关系在空间中是始终保持不变的,无论两个物体如何移动、旋转或缩放,它们之间的垂直关系都不会发生改变。
- 垂直线的性质:如果一条直线与另外两条直线垂直,那么这两条直线也是垂直的。
此外,如果两条直线分别与第三条直线垂直,则这两条直线也是垂直的。
- 垂直面的性质:如果一个平面与另外两个平面相交于一条直线,并且与另外一个平面垂直,那么这两个平面也是垂直的。
同样,如果两个平面分别与第三个平面垂直,则这两个平面也是垂直的。
空间几何中的平行与垂直关系平行与垂直关系是空间几何中非常重要的概念,它们在解决平面或立体几何问题时经常被用到。
在本文中,我将介绍平行和垂直的定义和性质,并探讨它们在几何学中的应用。
一、平行关系在空间几何中,当两条线或两个平面没有交点且始终保持相同的距离时,我们称它们是平行的。
换句话说,平行线永远不会相交,平行面之间也永远不会相交。
我们可以使用以下方法来判断线或面是否平行:1. 如果两条线被一条平面所截,且截得的两对同位角相等,则这两条线平行。
2. 如果两个平面被一条直线所截,且截得的两对同位角相等,则这两个平面平行。
平行关系常常在解决与直线、多边形和多面体相关的问题时被应用。
比如,在建筑设计中,设计师常常需要确定两面墙是否平行,以便确保建筑结构的稳定。
在制图学中,要绘制平行线的效果,可以应用平行规或平行尺等工具辅助。
二、垂直关系与平行关系相反,垂直关系指的是两条线、两个平面或两个立体之间相互间的直角关系。
当两条线或两个平面的夹角大小为90度时,它们被认为是垂直的。
同样地,如果两个立体之间的相邻平面的交线是垂直的,则我们称这两个立体是垂直的。
判断垂直关系的方法有:1. 如果两条直线相交,并且相交的四个角中有两个角是直角,则这两条直线是垂直的。
2. 如果两个平面相交,并且相交的交线与两个平面各自的法线垂直,则这两个平面是垂直的。
垂直关系在几何学中有广泛的应用。
在建筑学中,垂直关系被用来确保墙壁与地面之间的角度为直角,以提供良好的结构支持。
在三维计算机图形学中,垂直关系可以用来进行透视变换,使得图像更加逼真。
三、平行和垂直的性质在空间几何中,平行和垂直具有一些重要性质,这些性质可以帮助我们解决几何问题。
1. 如果一条直线与两条平行线相交,则与这两条平行线的交线上的对应角是相等的。
2. 如果两条线分别与第三条线平行,则它们之间的对应角是相等的。
3. 判断两个平面是否垂直的方法之一,是计算它们的法向量之间的夹角。
立体几何平行和垂直知识讲解知识点1 点、线、面一、平面的基本性质二、空间直线的位置关系1.位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.2.平行公理平行于同一条直线的两条直线互相平行.3.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(或夹角)(1)定义:设ba,是两条异面直线,经过空间中任一点O作直线bbaa//',//',把'a与'b所成的锐角(或直角)叫做异面直线a与b所成的角.I,,Pl P l且且三、直线与平面的位置关系llAα//l知识点2 线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指AO PO PA ,,都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。
知识点3 线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面α的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
直线l 与平面α垂直记作:α⊥l 。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
知识点4 面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。
空间几何中的平行与垂直关系空间几何是研究空间中点、线、面及其相关性质和关系的数学学科。
在空间几何中,平行和垂直是两个基本的关系。
本文将介绍平行和垂直的概念、性质以及它们在空间几何中的应用。
一、平行关系平行是指两条直线或两个面永远不会相交的关系。
在空间几何中,我们可以通过以下方式判断两条直线是否平行:1. 直线的斜率相等:如果两条直线的斜率相等,那么它们是平行的。
这是因为两条直线的斜率相等,意味着它们的倾斜角度相同,在空间中永远不会相交。
2. 直线的方向向量平行:如果两条直线的方向向量平行,那么它们是平行的。
我们可以通过计算两条直线的方向向量,并判断它们是否平行。
3. 直线的截距比相等:如果两条直线的截距比相等,那么它们是平行的。
我们可以通过计算两条直线的截距比,并判断它们是否相等。
平行的性质:1. 平行具有传递性:如果直线l1与直线l2平行,直线l2与直线l3平行,那么直线l1与直线l3平行。
2. 平行具有对称性:如果直线l1与直线l2平行,那么直线l2与直线l1平行。
平行的应用:1. 平行线在平面图形中的应用:平行线在平面图形中有着重要的应用,如矩形、平行四边形等。
在这些图形中,平行线的存在使得我们可以推导出图形的性质和定理。
2. 平行线在建筑设计中的应用:建筑设计中常常需要使用平行线来确定建筑物的边界、墙壁等。
二、垂直关系垂直是指两条直线或两个面之间存在直角的关系。
在空间几何中,我们可以通过以下方式判断两条直线是否垂直:1. 直线斜率之积为-1:如果两条直线的斜率之积为-1,那么它们是垂直的。
这是因为两条直线的斜率之积为-1,意味着它们相互垂直。
2. 直线的方向向量垂直:如果两条直线的方向向量垂直,那么它们是垂直的。
我们可以通过计算两条直线的方向向量,并判断它们是否垂直。
3. 直线的斜率之和为0:如果两条直线的斜率之和为0,那么它们是垂直的。
这是因为两条直线的斜率之和为0,意味着它们相互垂直。
空间中的平行关系1.如图,在直三棱柱ABC-A 1B 1C 1中,AC=BC ,点D 是AB 的中点。
(1)求证:BC 1∥平面CA 1D ; (2)求证:平面CA 1D ⊥平面AA 1B 1B .2.如图,在四棱锥P -ABCD 中,PD ⊥面 ABCD ,AB ∥DC ,AB ⊥AD ,AB =2DC ,M 是PA 的中点.求证DM ∥面PBC3. 如图,在四面体A ﹣BCD 中,AD ⊥平面 BCD ,BC ⊥CD ,AD=2,BD=2.M 是AD 的中点,P 是BM 的中点,点Q 在线段 AC 上,且AQ=3QC . (1)证明:PQ ∥平面BCD(2)若二面角C ﹣BM ﹣D 的大小为60°求∠BDC 的大小.4. 如图1,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD=AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图2所示的三棱锥A-BCF ,其中BC=/2.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD=时,求三棱锥F-DEG 的体积V F-DEG .5. 如图,在三棱锥S-ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS=AB ,过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点. 求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .6. 如图,四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,AB=AA 1,证明平面A 1BD ∥平面C 1D 1B 17.如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:平面PAC ⊥平面PBC.(2)设Q 为PA 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC.8. 如图,四棱柱ABCD-A 1B 1C 1D 1的底面ABCD是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=,AA 1=2.(1)证明:AA 1⊥BD (2)证明:平面A 1BD ∥平面CD 1B 1; (3)求三棱柱ABD-A 1B 1D 1的体积.空间中的垂直关系1.如图, AB 是圆 O 的直径, PA 垂直圆 O 所在的平面, C 是圆 O 上的点.求证: BC ⊥平面 PAC ;2.如图,直四棱柱ABCD–A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离.3.如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求PG/GC的值.4. 如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=3/2,连接CE并延长交AD于F.求证:AD⊥平面CFG;5.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.6.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的体积.7.如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,P A=.证明:PC⊥BD;8.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(I)证明:PB⊥CD;(II)求点A到平面PCD的距离.9.如图,四棱锥P-ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=π/3(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P-BDF的体积.立体几何计算与证明综合应用1.(2012•湖南)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(Ⅰ)证明:BD⊥PC;(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积。
推导立体几何中的平行与垂直关系在立体几何中,平行和垂直关系是两个重要的几何概念。
本文将通过推导的方式来探讨平行和垂直之间的关系,从而更深入地理解它们在空间中的性质和应用。
1. 平行线的推导在立体几何中,平行线是指在同一个平面内永不相交的两条直线。
我们可以通过以下的推导过程来证明平行线之间的关系。
(省略推导过程,只列出结论)结论1:如果两条直线分别与一条第三条直线相交,并且这两个交点的两组内角互补或对顶角相等,那么这两条直线是平行的。
结论2:如果两条直线被一组平行线截断,并且这两组截断线的对应角互等,那么这两条直线是平行的。
结论3:如果两条直线被同一平面平行于第三条直线截断,并且截断线上的对应角互等,那么这两条直线是平行的。
2. 垂直关系的推导垂直关系是指两条线段、两个平面或两个立体体素之间的相互垂直性。
下面是垂直关系的推导过程。
结论4:如果两条线段的斜率相乘为-1,则它们是垂直的。
结论5:如果两个平面的法向量垂直,则这两个平面是垂直的。
结论6:如果两个立体体素的对应面之间的相交线段互相垂直,则这两个立体体素是垂直的。
通过上述的推导过程,我们可以明确平行线和垂直关系在立体几何中的性质和判定条件。
这些性质和条件在实际问题中有着广泛的应用,例如在建筑设计、空间规划和工程测量等领域。
总结起来,平行和垂直关系是立体几何中的重要概念。
通过推导我们可以得出平行线的判定条件和垂直关系的性质,从而更好地理解它们在空间中的应用。
对于解决实际问题和深入学习几何学来说,这些知识将会帮助我们更好地理解和应用平行和垂直的性质。
在实践中,我们可以通过几何题目的解答来进一步巩固对平行和垂直关系的理解。
通过本文的学习,相信读者对于立体几何中的平行和垂直关系有了更深入的认识。
在以后的学习和工作中,我们可以灵活运用这些概念和推导方法,更好地解决与立体几何相关的问题。
立体几何作为数学的一个重要分支,在应用中有着广泛的价值和意义。
因此,深入理解并掌握平行和垂直关系是我们学习立体几何的关键。
空间几何中的平行与垂直关系在空间几何中,平行和垂直关系是两个基本的概念,它们在我们的日常生活和数学应用中扮演着重要角色。
本文将探讨空间几何中的平行和垂直关系,并介绍其定义、特性以及相关的应用。
一、平行关系在空间几何中,平行关系是指两条直线或两个平面永远不相交。
如果我们将其数学表达,可以用以下方式表示:定义1:设直线l和m都在同一个平面内,如果l和m上的任意两点A和B的连线AB与l上的另一点C所在的直线相交,那么l与m平行,记作l ∥ m。
定义2:设平面α和β,如果平面α上任意一条直线与平面β上的任意一条直线所确定的两个轴线互相平行,那么平面α和平面β平行,记作α∥β。
平行关系具有以下特性:性质1:如果两条直线平行,则它们的任意一对相交线段的比值都相等。
性质2:如果一个平面与两个平行平面相交,则它们的任意一对相交线段的比值都相等。
性质3:如果两条直线分别与一组平行直线相交,那么它们的对应角相等。
段平行、平面平行以及平面与线段平行的基本依据。
在工程学和建筑学中,平行关系用于设计和绘图中的垂直标尺、平行线、平行导板等。
此外,在计算机图形学、地理学和导航系统等领域,平行关系也扮演着重要的角色。
二、垂直关系垂直关系是指两条直线或两个平面之间的关系,其中一条直线或一个平面与另一条直线或另一个平面的法线垂直。
我们可以用以下方式表示垂直关系:定义3:设直线l和m在同一个平面内,如果l和m上的任意一对相交直线的法线互相垂直,那么l与m垂直,记作l ⊥ m。
定义4:设平面α和β,如果平面α上的任意一条直线与平面β上的任意一条直线的法线互相垂直,那么平面α和平面β垂直,记作α⊥β。
垂直关系具有以下特性:性质4:如果两条直线垂直,则它们的任意一对相交角互为直角。
性质5:如果一个直线与一个平面垂直,则该直线上的任意一条边与该平面上任意一条边所确定的两个角互为直角。
性质6:如果两个平面垂直,则它们的任意一对相交线互为直角。
空间几何中的平行与垂直关系在空间几何中,平行与垂直关系是两种重要的几何关系。
它们在解决几何问题、计算坐标和推导定理等方面起着至关重要的作用。
通过研究平行和垂直关系,我们可以更好地理解空间中的几何性质,并应用于实际问题的求解。
1. 平行关系平行关系是指两条或多条直线在空间中永远不会相交。
在平行线之间不存在任何交点,它们的方向相同或者互为反向。
为了表示平行关系,我们可以使用"//"符号,如AB // CD。
在三维空间中,平行关系的判断可以通过以下方法确定:- 斜率法:对于两条直线L1和L2,如果它们的斜率相等,则L1与L2平行。
具体计算时,我们可以求两条直线上某一点的斜率,如果斜率相等,则可以判断它们是平行的。
- 向量法:如果两条直线的方向向量是平行的,则它们是平行的。
我们可以通过求取两条直线的方向向量,然后比较它们是否平行来判断平行关系。
平行关系的性质:- 平行线具有相同的斜率。
- 平行线之间的距离是恒定的,任意两点到另一条直线的距离相等。
- 平行线与平面的交线是平行的。
2. 垂直关系垂直关系是指两条直线或直线与平面的交线之间的关系。
在垂直关系中,直线或直线段与垂直交线之间的夹角为90度。
在三维空间中,判断垂直关系的方法有:- 向量法:如果两条直线的方向向量相互垂直,则它们是垂直的。
通过计算两条直线的方向向量,然后判断它们是否相互垂直。
- 斜率法:如果两条直线的斜率的乘积为-1,则它们是垂直的。
具体计算时,我们可以求两条直线上某一点的斜率,然后计算斜率的乘积,如果结果为-1,则可以判断它们是垂直的。
垂直关系的性质:- 垂直关系是相互垂直的直线或者直线与平面之间的关系。
在直角坐标系中,垂直关系可以表示为两直线斜率的乘积为-1。
- 垂直交线之间的夹角为90度。
- 垂直关系通常用于解决与直角、垂直性质相关的问题,例如计算两直线之间的距离、垂直偏移等。
总结:在空间几何中,平行与垂直关系是两种重要的几何关系。
立体几何中平行与垂直的证明(5篇模版)第一篇:立体几何中平行与垂直的证明立体几何中平行与垂直的证明姓名2.掌握正确的判定和证明平行与垂直的方法.D1【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;例1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点.求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.【反思与小结】1.证明线面平行的方法:2.证明线面垂直的方法:ADC1BC【变式一】如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB>1,点E在棱AB上移动。
求证:D1E⊥A1D;【反思与小结】1.证明线线垂直的方法:1.谈谈对“点E在棱AB上移动”转化的动态思考 2.比较正方体、正四棱柱、长方体【变式二A】如图平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF=D1AEBCCAD=2,G是EF的中点,2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。
反思与小结1.证明面面垂直的方法:2.如果把【变式二A】的图复原有什么新的认识?【变式二B】.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABC-A1B1C1中,AB=8,AC=6,BC(Ⅰ)求证:=10,D是BC边的中点.AB⊥A1C;(Ⅱ)求证:AC1∥ 面AB1D;【反思与小结】和前面证明线线垂直、线面平行比较有什么新的认识?【变式三】如图组合体中,三棱柱ABC-A1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC⊥平面A1AC;(Ⅱ)当点C是弧AB的中点时,求四棱锥A1-BCC1B1与圆柱的体积比.【反思与小结】1.观察两个图之间的变化联系,写出感受。
2.和【变式一】进行比较,谈谈你把握动态问题的新体会【变式四】如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【反思与小结】1.和前面两个动态问题比较,解答本题的思路和方法有什么不同?_P【变式五】如图5所示,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M为AB的中点,四点P、A、M、C都在球O的球面上。
空间几何中的平行与垂直关系在空间几何中,平行与垂直是两种重要的关系。
它们的性质和应用广泛存在于数学、物理学、工程学等领域。
本文将介绍平行和垂直的定义、性质以及相关的定理,以帮助读者更好地理解和应用这些概念。
一、平行关系1. 定义在空间几何中,平行是指两个或多个直线或平面在同一平面内没有任何交点的特殊关系。
我们可以用符号 "∥" 表示平行关系。
例如,在平面α上有两条直线l和m,如果l ∥ m,则说明直线l和m在平面α上没有交点。
2. 性质平行的直线具有以下性质:- 平行线与同一平面内的第三条直线的相交角相等。
- 平行线与平行线之间的距离在任意两点处相等。
平行的平面具有以下性质:- 平行平面之间没有任何交点。
- 平行平面内的直线与另一平面的交线与平行平面平行。
3. 平行的判定方法判定两条直线是否平行可以采用以下方法:- 垂直判定法:如果两条线分别与同一直线的两条垂线垂直,则这两条线是平行的。
- 夹角判定法:如果两直线与另一直线的夹角相等或互补,则这两条直线是平行的。
二、垂直关系1. 定义在空间几何中,垂直是指两个直线或者平面之间的交角等于90度的特殊关系。
我们可以用符号"⊥" 表示垂直关系。
例如,在平面β上,如果一条直线l与平面β内另一条直线m垂直,则可以表示为 l ⊥ m。
2. 性质垂直关系具有以下性质:- 垂直于同一直线的两条直线平行。
- 如果两个平面相互垂直,则由这两个平面确定的直线与任一平面相交的直线垂直。
3. 垂直的判定方法判定两条直线是否垂直可以采用以下方法:- 两直线斜率之积为 -1,则这两条直线是垂直的。
- 如果两直线的斜率都不存在(即两直线都是垂直于x轴或y轴的),则这两条直线是垂直的。
三、平行与垂直之间的关系平行和垂直的关系是互补的。
具体而言,两条直线或平面如果既不平行也不垂直,则称它们为斜交。
在空间几何中,有一些重要的定理与平行和垂直关系有关。
空间几何体的平行与垂直判断在三维空间中,平行和垂直是几何学中常用的关系。
正确地判断空间几何体间的平行和垂直关系对于解决各种几何问题非常重要。
本文将介绍如何准确判断空间几何体的平行和垂直关系,并提供相关示例。
一、空间几何体的平行关系判断要判断两个空间几何体是否平行,我们需要考虑它们的方向。
具体而言,如果两个几何体的方向向量平行且不共线,则它们是平行的。
以直线为例,如果两条直线的方向向量平行且不共线,那么它们是平行的。
假设直线l1的方向向量为v1=(a1,b1,c1),直线l2的方向向量为v2=(a2,b2,c2),则当v1与v2平行且不共线时,l1与l2平行。
同样地,平面和平面也可以通过方向向量来判断平行关系。
设平面P1的法向量为n1=(a1,b1,c1),平面P2的法向量为n2=(a2,b2,c2),则当n1与n2平行且不共线时,P1与P2平行。
二、空间几何体的垂直关系判断空间几何体的垂直关系判断与平行关系类似,也需要考虑其方向。
如果两个几何体的方向向量垂直,则它们是垂直关系。
对于直线和平面的垂直关系判断,有以下规律:1. 直线和平面垂直:一个直线与一个平面垂直,当且仅当该直线的方向向量与该平面的法向量垂直。
2. 平面和平面垂直:若两个平面的法向量互相垂直,则这两个平面垂直。
即当一个平面的法向量与另一个平面的法向量垂直时,它们是垂直关系。
需要注意的是,垂直关系的判断并不仅仅依赖于法向量的垂直性。
在实际问题中,我们还需要考虑几何体之间的交点、距离等因素。
下面通过一些例子来对空间几何体的平行和垂直关系进行具体说明:例一:判断两条直线的平行关系已知直线l1和l2的方程分别为:l1:l2:通过比较直线l1和l2的方向向量,我们可以判断它们的平行关系。
例二:判断两个平面的垂直关系已知平面P1和P2的方程分别为:P1:P2:通过比较平面P1和P2的法向量,我们可以判断它们的垂直关系。
总结起来,判断空间几何体的平行和垂直关系主要依赖于方向向量和法向量的比较。
空间几何中的平行与垂直关系在空间几何中,平行与垂直是非常重要的概念和关系。
它们在数学中具有着丰富的内容和应用。
本文将介绍空间几何中平行与垂直的定义、性质以及相关定理,旨在帮助读者更好地理解和应用这些概念。
一、平行的定义与性质在空间几何中,平行线是指在同一个平面内永远不会相交的直线。
根据平行线与平面的关系,我们可以得到如下定义和性质:1. 定义一:两条直线L₁和L₂平行,记作L₁∥ L₂,当且仅当它们在同一个平面上且不相交。
2. 定义二:如果两条直线分别与第三条直线相交,在相交点两侧所成的内角互补,则这两条直线是平行的。
平行线的性质也有一些值得注意的地方:1. 性质一:通过同一点外一直线上的两个角互补,则这两条直线是平行的。
2. 性质二:如果一条直线与两条平行线相交,那么它将与这两条平行线之间的内角、外角互补。
3. 性质三:如果两条直线分别与第三条直线平行,那么这两条直线也是平行的。
二、垂直的定义与性质垂直是空间几何中另一个重要的关系,它指的是两条直线或者一个直线与一个平面之间的相互垂直关系。
下面是垂直关系的定义和性质:1. 定义一:两条直线L₁和L₂垂直,记作L₁⊥ L₂,当且仅当它们的内角互补为直角(90度)。
2. 定义二:一条直线和一个平面垂直,当且仅当它与该平面内的任意一条直线相交时,所成的内角为直角(90度)。
垂直关系也有一些性质需要了解:1. 性质一:两条互相垂直的直线在相交点两侧所成的内角是直角。
2. 性质二:如果一条直线垂直于两条相互平行的直线,那么它同时与这两条直线垂直。
3. 性质三:如果两条直线相互垂直于同一条直线,那么这两条直线平行。
三、平行与垂直的相关定理除了上述基本定义和性质之外,还存在一些关于平行与垂直的重要定理,值得进一步探讨。
1. 平行线的判定定理:如果两条直线分别与同一条直线平行,那么这两条直线也是平行的。
2. 平行线的性质定理:如果两条直线平行,并且分别与第三条直线相交,那么这两条直线分别与第三条直线的内角、外角互补。
空间几何中的平行与垂直在空间几何中,平行和垂直是两个重要的概念。
平行关系指的是两条直线或两个平面永远不会相交,在同一个平面内保持固定的距离;而垂直关系是指两条直线或两个平面相交时,彼此之间的夹角为90度。
平行和垂直关系在几何学中有广泛的应用,不仅帮助我们理解空间的结构和形态,也在实际生活中发挥着重要的作用。
1. 平行关系在空间几何中,平行关系是指两条直线或两个平面永远不会相交的关系。
当两条直线或两个平面的方向向量相等或相互垂直时,它们可以被认为是平行的。
1.1 直线的平行当两条直线的方向向量相等时,它们被称为平行直线。
我们可以使用向量的方法来判断两条直线是否平行。
假设有两条直线 l₁和 l₂,它们的方向向量分别为 a₁和 a₂。
若 a₁和 a₂相等,则 l₁和 l₂平行。
1.2 平面的平行两个平面是平行的,当且仅当它们的法向量相等或者互相垂直。
设两个平面的法向量分别为 n₁和 n₂,若 n₁和 n₂相等,则这两个平面平行。
平行关系在几何学中有许多应用。
例如,在平行四边形中,对角线之间的线段互相平分,每条对角线将平行四边形分成两个全等的三角形。
另外,在建筑设计中,平行关系也被广泛应用,如平行的墙壁或平行的连廊等。
2. 垂直关系垂直关系是指两条直线或两个平面相交时,彼此之间的夹角为90度。
垂直关系在空间几何中非常重要,常常用于求解角度,确定垂直平面等问题。
2.1 直线的垂直两条直线 l₁和 l₂垂直的充分必要条件是它们的方向向量的内积为0。
如果 l₁的方向向量 a₁和 l₂的方向向量 a₂满足 a₁·a₂=0,则 l₁和 l₂垂直。
2.2 平面的垂直两个平面P₁和P₂垂直的充分必要条件是它们的法向量相互垂直。
设平面 P₁的法向量为 n₁,平面 P₂的法向量为 n₂,若 n₁·n₂=0,则 P₁和 P₂垂直。
垂直关系在几何学中有许多应用。
例如,在直角三角形中,两条直角边互相垂直。
此外,垂直关系还可以应用于地理测量、建筑设计等领域。
空间几何中的平行与垂直关系在空间几何中,平行和垂直是我们常见的几何关系。
平行指两条直线或者两个平面永远不会相交,而垂直指两条直线或者两个平面相互成直角。
这两种关系在数学和实际生活中都有广泛的应用。
本文将探讨平行和垂直的定义、性质以及在几何中的重要应用。
一、平行关系平行线是指两条直线不相交,且永远保持相同的距离。
根据平行线的定义,我们可以得出以下性质:1. 平行线具有传递性,即若线段AB与线段BC平行,则线段AB与线段AC也平行。
2. 平行线之间不存在交点,也不能相互交叉。
3. 平行线与一条直线的交点与另一条直线平行。
4. 平行线具有对称性,即若线段AB与线段CD平行,则线段CD与线段AB也平行。
平行关系在空间几何中有很多应用,比如在平行四边形和三角形的性质证明中经常用到。
平行线也是解决几何难题的重要手段,如求解截面积和体积等问题。
二、垂直关系垂直是指两条直线或者两个平面相互成直角。
根据垂直关系的定义,我们可以得出以下性质:1. 垂直于同一条直线的两条直线彼此平行。
2. 两个平面相互垂直的条件是它们的法向量垂直。
3. 直线与平面垂直,则直线上的任意一条线段与平面上的任意一条线段相互垂直。
垂直关系在几何中也有广泛的应用。
在建筑设计中,垂直关系是测量和布局的基础。
在空间坐标系中,垂直关系可以用来识别空间中的平面,具有重要的实际应用价值。
总结:平行和垂直是空间几何中常见的几何关系。
两条平行线永远不会相交,而两条垂直线相互成直角。
它们在各自的定义中包含了一系列的性质和特点,这些性质和特点为我们解决几何问题提供了重要的线索。
在几何证明中,平行和垂直关系是解决问题的关键步骤之一。
我们可以利用这些关系性质,推导出更多有关几何形状和结构的定理。
在实际生活中,平行和垂直关系也有广泛的应用。
比如在建筑设计、物体测量等方面都需要考虑平行和垂直的关系,以保证结构的稳定性和功能的实现。
通过理解和应用平行和垂直关系,我们可以更好地理解和解决与空间几何相关的问题,提高数学思维能力和几何分析能力。
立体几何中的垂直关系知识集结知识元线面垂直的定义及判定定理的理解知识讲解直线与平面垂直的判定1.直线与平面垂直的定义文字语言图形语言符号语言如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,直线l叫做平面αl⊥α的垂线,平面α叫做直线l的垂面,它们唯一的公共点P叫做垂足.2文字语言图形语言符号语言一条直线与一个平面内的两条相⇒l⊥α交直线都垂直,则该直线与此平面垂直3.证线面垂直的方法1.线线垂直证明线面垂直(1)定义法(不常用);(2)判定定理最常用(有时作辅助线).2.平行转化法(利用推论)(1)a∥b,a⊥α⇒b⊥α;(2)α∥β,a⊥α⇒a⊥β.例题精讲线面垂直的定义及判定定理的理解例1.下列条件中,能使直线m⊥平面α的是()A.m⊥b,m⊥c,b⊥α,c⊥αB.m⊥b,b∥αC.m∩b=A,b⊥αD.m∥b,b⊥α例2.直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行B.相交C.异面D.垂直例3.已知ABCDA1B1C1D1为正方体,下列结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.AC1⊥BD1例4.如图所示,PA⊥平面ABC,在△ABC中,BC⊥AC,则图中直角三角形的个数有________.例5.四棱锥SABCD的底面ABCD为正方形,SD⊥底面ABCD,则下列结论中正确的有________个.①AC⊥SB;②AB∥平面SCD;③SA与平面ABCD所成的角是∠SAD;④AB与SC所成的角等于DC与SC所成的角.线面垂直判定定理的应用知识讲解直线与平面垂直的判定1.直线与平面垂直的判定定理文字语言图形语言符号语言一条直线与一个平面内的两条相⇒l⊥α交直线都垂直,则该直线与此平面垂直2.证线面垂直的方法1.线线垂直证明线面垂直(1)定义法(不常用);(2)判定定理最常用(有时作辅助线).2.平行转化法(利用推论)(1)a∥b,a⊥α⇒b⊥α;(2)α∥β,a⊥α⇒a⊥β.例题精讲线面垂直判定定理的应用例1.如图,平面α∩β=CD,EA⊥α,垂足为A,EB⊥β,垂足为B,则CD与AB的位置关系是________.例2.已知PA垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形一定是________.例3.'如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.'直线与平面所成的角知识讲解一..直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角.(2)范围:设直线与平面所成的角为θ,则0°≤θ≤90°.(3)画法:如图所示,斜线AP与平面α所成的角是∠PAO.二.求直线和平面所成角的步骤1.寻找过斜线上一点与平面垂直的直线.2.连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角即为所求的角.3.把该角归结在某个三角形中,通过解三角形,求出该角.例题精讲直线与平面所成的角例1.如图,三棱锥PABC中,PA⊥AB,PA⊥BC,则直线PB和平面ABC所成的角是()A.∠BPA B.∠PBA C.∠PBC D.以上都不对例2.直线l与平面α所成的角为70°,直线l∥m,则m与α所成的角等于()A.20°B.70°C..90°D.110°例3.在正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的余弦值为() A.B.C.D.例4.如图所示,ABCD-A1B1C1D1是正方体,则直线BA1与平面DD1B1B所成的角是()A.90°B.60°C.45°D.30°二面角知识讲解1.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角.直线AB叫做二面角的棱,半平面α和β叫做二面角的面.(2)记法:αABβ,在α,β内,分别取点P,Q时,可记作PABQ;当棱记为l时,可记作α-lβ或PlQ.2.二面角的平面角(1)定义:在二面角αlβ的棱l上任取一点O,如图2316所示,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.(2)直二面角:平面角是直角的二面角.例题精讲二面角例1.下列说法:①两个相交平面所组成的图形叫做二面角;②二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;③二面角的大小与其平面角的顶点在棱上的位置有关系.其中正确的个数是( )A.0B.1C.2D.3例2.在四面体ABCD中,AB=BC=CD=AD,∠BAD=∠BCD=90°,ABDC为直二面角,E是CD 的中点,则∠AED的度数为()A.45°B.30°C.60°D.90°例3.如图,AB是圆的直径,PA垂直于圆所在的平面,C是圆上一点(不同于A、B)且PA=AC,则二面角PBCA的大小为()A.60°B.30°C.45°D.15°平面与平面垂直的判定知识讲解1.平面与平面垂直的定义(1)定义:如果两个平面相交,且它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)画法:记作:α⊥β.2.平面与平面垂直的判定定理文字语言图形语言符号语言一个平面过另一个平面的⇒α⊥β垂线,则这两个平面垂直例题精讲平面与平面垂直的判定例1.如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是()A.平面ABCD B.平面PBCC.平面PAD D.平面PBC例2.在四棱锥P-ABCD中,已知PA⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是()A.平面PAB⊥平面PAD B.平面PAB⊥平面PBCC.平面PBC⊥平面PCD D.平面PCD⊥平面PAD例3.'如图,在底面为直角梯形的四棱锥PABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,AC∩BD=E,AD=2,AB=2,BC=6.求证:平面PBD⊥平面PAC.'例4.'如图所示,四边形ABCD是平行四边形,直线SC⊥平面ABCD,E是SA的中点,求证:平面EDB⊥平面ABCD.'线面、面面垂直的综合应用知识讲解1.直线与平面垂直直线与平面垂直:如果一条直线l和一个平面α内的任意一条直线都垂直,那么就说直线l和平面α互相垂直,记作l⊥α,其中l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直的判定:(1)定义法:对于直线l和平面α,l⊥α⇔l垂直于α内的任一条直线.(2)判定定理1:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(3)判定定理2:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.直线与平面垂直的性质:①定理:如果两条直线同垂直于一个平面,那么这两条直线平行.符号表示为:a⊥α,b⊥α⇒a∥b②由定义可知:a⊥α,b⊂α⇒a⊥b.2.平面与平面垂直平面与平面垂直的判定:判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.平面与平面垂直的性质:性质定理1:如果两个平面垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面.性质定理2:如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内.性质定理3:如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面.性质定理4:三个两两垂直的平面的交线两两垂直.例题精讲线面、面面垂直的综合应用例1.如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是()A.D1O∥平面A1BC1B.MO⊥平面A1BC1C.异面直线BC1与AC所成的角等于60°D.二面角M-AC-B等于90°例2.'如图2330,在三棱锥PABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.(1)求证:DE∥平面PAC;(2)求证:AB⊥PB;(3)若PC=BC,求二面角PABC的大小.'如图多面体中,正方形ADEF所在的平面与直角梯形ABCD所在的平面垂直,且AD=AB=CD=2,AB∥CD,M为CE的中点.(1)证明:BM∥平面ADEF;(2)证明:平面BCE⊥平面BDE.'线面垂直性质定理的应用知识讲解1.直线与平面垂直的性质定理文字语言垂直于同一个平面的两条直线平行符号语言⇒a∥b图形语言例题精讲线面垂直性质定理的应用△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则直线l,m的位置关系是()A.相交B.异面C.平行D.不确定例2.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β例3.已知平面α、β和直线m、l,则下列命题中正确的是()A.若α⊥β,α∩β=m,l⊥m,则l⊥βB.若α∩β=m,l⊂α,l⊥m,则l⊥βC.若α⊥β,l⊂α,则l⊥βD.若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β例4.如图,PA⊥矩形ABCD,下列结论中不正确的是()A.PD⊥BD B.PD⊥CD C.PB⊥BC D.PA⊥BD 面面垂直性质定理的应用知识讲解1.平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂文字语言直.符号语言⇒a⊥β图形语言例题精讲面面垂直性质定理的应用例1.如图所示,三棱锥PABC的底面在平面α内,且AC⊥PC,平面PAC⊥平面PBC,点P,A,B 是定点,则动点C的轨迹是()A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点例2.已知平面α,β,γ,直线l,m满足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么可推出的结论有________.(请将你认为正确的结论的序号都填上)①m⊥β;②l⊥α;③β⊥γ;④α⊥β.例3.'如图,三棱锥PABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC.'例4.'如图,四面体P-ABC中,PA=PB=,平面PAB⊥平面ABC,∠ABC=90°,AC=8,BC =6,求PC的长度.'垂直关系的综合应用知识讲解1.证明或判定线面垂直的常用方法(1)线面垂直的判定定理;(2)面面垂直的性质定理;(3)若a∥b,a⊥α,则b⊥α(a、b为直线,α为平面);(4)若a⊥α,α∥β,则a⊥β(a为直线,α,β为平面).2.两平面垂直的性质定理告诉我们要将面面垂直转化为线面垂直,方法是在其中一个面内作(找)与交线垂直的直线.例题精讲垂直关系的综合应用例1.'如图,△ABC是边长为2的正三角形.若AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD =CD,且BD⊥CD.(1)求证:AE∥平面BCD;(2)求证:平面BDE⊥平面CDE.'例2.'如图所示,在三棱锥P-ABC中,PA=BC=3,PC=AB=5,AC=4,PB=.(1)求证:PA⊥平面ABC;(2)过C作CF⊥PB交PB于F,在线段AB上找一点E,使得PB⊥平面CEF.'例3.如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将其沿对角线BD 折成四面体A-BCD,使平面ABD⊥平面BCD,则下列说法中不正确的是()A.平面ACD⊥平面ABD B.AB⊥CDC.平面ABC⊥平面ACD D.AB∥平面ABC备选题库知识讲解本题库作为知识点“空间中的垂直关系”的题目补充.例题精讲备选题库例1.在正方体ABCD-A1B1C1D1中,E为AD1的中点,F为BD的中点,则()A.EF∥C1D1B.EF⊥AD1C.EF∥平面BCC1B1D.EF⊥平面AB1C1D例2.正方体ABCD-A1B1C1D1中与AD1垂直的平面是()A.平面DD1C1C B.平面A1DBC.平面A1B1C1D1D.平面A1DB1例3.如图,四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A.A′C⊥BDB.∠BA′C=90°C.CA′与平面A′BD所成的角为30°D.四面体A′-BCD的体积为例4.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC上的射影H 必在()A.直线AB上B.直线BC上C.直线CA上D.△ABC内部当堂练习单选题练习1.已知α、β为两个不同平面,l为直线且l⊥β,则“α⊥β”是“l∥α”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件练习2.如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥△EFH所在平面B.AH⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面练习3.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC上的射影H 必在()A.直线AB上B.直线BC上C.直线CA上D.△ABC内部阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点,求证:平面PAC⊥平面BDE.证明:因为PO⊥底面ABCD,所以PO⊥BD.又因为AC⊥BD,且AC∩PO=O,所以__________.又因为BD⊂平面BDE,所以平面PAC⊥平面BDE.A.BD⊥平面PBC B.AC⊥平面PBDC.BD⊥平面PAC D.AC⊥平面BDE填空题练习1.在平面几何中,有真命题:如果一个角的两边和另一个角的两边分别垂直,则这两个角相等或互补.某同学将此结论类比到立体几何中,得一结论:如果一个二面角的两个面和另一个二面角的两个面分别垂直,那么这两个二面角相等或互补.你认为这个结论________.(填“正确”或“错误”)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上一动点.当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)练习3.如图,在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°,F是AC的中点,E是PC上的点,且EF⊥BC,则=________.解答题练习1.'如图,底面ABCD是边长为3的正方形,DE⊥平面ABCD,CF∥DE,DE=3CF,BE与平面ABCD所成的角为45°.(1)求证:平面ACE⊥平面BDE;(2)求二面角F-BE-D的余弦值.'练习2.'如图,在直三棱柱ABC-A1B1C1中,AA1=AC,且BC1⊥A1C,点D是棱A1C1的中点.(1)求证:平面ABC1⊥平面A1ACC1;(2)在线段BB1上是否存在点E,使DE∥平面ABC1,请说明理由.'练习3.'已知在直角梯形ABC′D中,∠A=∠B=90°,AD=AB=1,BC′=2,将△C′BD沿BD折起至△CBD,使二面角C-BD-A为直角.(1)求证:平面ADC⊥平面ABC;(2)若点M满足=λ,λ∈[0,1],当二面角M-BD-C为45°时,求λ的值.'。
空间几何体平行、垂直关系的探究
一.教学目标
1.掌握并运用线面、面面平行、垂直的判定定理与性质定理进行推理与证明;
2. 培养学生空间想象能力,逻辑推理能力和运算能力,掌握解决立体几何推理过程中常规的转化和化归思想.
二.例题剖析
例题:如图,在正方体ABCD-A
1B
1
C
1
D
1
中,P是线段AC上异于点C的点,
(1)过点P作出一条直线与平面CB
1D
1
平行,并说明理由.
(2)过点P作出一个平面与平面CB
1D
1
平行,并说明理由.
(高考真题):平面α过正方体ABCD-A
1B
1
C
1
D
1
的顶点A,α∥平面CB
1
D
1
,α∩平
面ABCD=m,α∩平面ABB
1A
1
=n,则m,n所成角的正弦值为()
(A)
3
2
(B)
2
2
(C)
3
3
(D)
1
3
(3)过点P作出一条直线与直线B
1D
1
垂直,并说明理由.
(4)过点P作出一条直线同时与直线B
1D
1
和A
1
D垂直.
(5)(教材改编题,人教版必修2 P79 B2)
过点P作出一条直线与平面A
1
BD垂直,并说明理由.
,︒=∠120ABC
(6)(教材改编题,人教版必修2 P 74 B1)
过点P 作出一个平面与平面A 1BD 垂直,并说明理由.
(7)探究在侧棱CC 1上是否存在一点F ,使得平面A 1BD ⊥平面BDF ?
变式:
1.在直四棱柱ABCD-A 1B 1C 1D 1,侧棱长为,底面ABCD 是边长为2的菱形,且
探究在侧棱1DD 上是否存在一点F ,使得平面C AB 1⊥平面AFC ?
2.(高考真题)如图,四边形ABCD 为菱形,∠ABC=120°,E 、F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.
(Ⅰ)证明:平面AEC ⊥平面AFC ;
(Ⅱ)求直线AE 与直线CF 所成角的余弦值.
三.巩固练习
全程设计本节练习P261四.课堂小结。