第15章分式复习课(2)
- 格式:doc
- 大小:73.50 KB
- 文档页数:1
《分式复习》教案一、教学目标:1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)熟练运用分式的化简、运算和比较大小;(3)能够解决实际问题,运用分式进行合理计算。
2. 过程与方法:(1)通过复习,巩固分式的基本概念和性质;(2)运用举例、讲解、练习等方法,提高学生对分式的理解和运用能力;(3)培养学生独立思考、合作交流的学习习惯。
3. 情感态度与价值观:(2)培养学生勇于探索、积极向上的精神风貌;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 分式的概念与基本性质;2. 分式的化简与运算;3. 分式的比较大小;4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念、基本性质、化简、运算和比较大小;2. 难点:分式的化简与运算,以及分式在实际问题中的应用。
四、教学过程:1. 导入:回顾分式的概念和基本性质,引导学生进入复习状态;2. 新课:讲解分式的化简与运算,通过例题展示解题思路和方法;3. 练习:学生独立完成练习题,教师巡回指导,解答疑难问题;4. 应用:结合实际问题,引导学生运用分式进行计算和解决问题;五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和积极性;2. 练习完成情况:检查学生完成的练习题,评价学生的掌握程度;3. 实际应用:评估学生在解决实际问题时运用分式的准确性和灵活性。
教学资源:教材、PPT、练习题、实际问题案例。
教学时间:1课时。
六、教学步骤:1. 复习分式的概念与基本性质,通过提问方式检查学生对分式知识的掌握情况。
2. 讲解分式的化简与运算,包括分式的乘法、除法、加法和减法,通过例题展示解题思路和方法。
3. 进行分式化简与运算的练习,学生独立完成练习题,教师巡回指导,解答疑难问题。
4. 结合实际问题,引导学生运用分式进行计算和解决问题,培养学生的应用能力。
七、教学方法:1. 采用问题驱动法,通过提问引导学生思考和复习分式的概念与基本性质。
15 分式复习(2)学教目标:1、能将实际问题中的等量关系用分式方程表示,体会分式方程的模型思想。
2、理解分式方程概念、分式方程解法的过程,会解可化为一元一次方程的分式方程,会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系与区别。
3、经历“实际问题—分式方程模型—求解—解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识。
学教重难点: 能将实际问题中的等量关系用分式方程表示、分式方程概念学教过程:1、 当x 时,分式32-x x 无意义.2、当x =_________时,分式1x x +的值为03、已知实数x 满足4x 2-4x +l=O ,则代数式2x +x21的值为________. 4、若分式13-x的值为整数,则整数x= 5、 把分式y x yx 5.15.01.0+-的分子和分母中各项系数都化为整数为 .6、 化简3123)()(---bc a = . (结果只含有正整数指数形式)= . 7、 观察给定的分式: ,16,8,4,2,15432x x x x x --,猜想并探索规律,第10个分式是 ,第n 个分式是 .8、 某工厂原计划a 天完成b 件产品,由于情况发生变化,要求提前x 天完成任务,则现在每天要比原计划每天多生产 件产品.9、 写一个分式 ,并举出一个生活中的实例解释10、.已知两个分式:244A x =-,1122B x x=++-,其中2x ≠±,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B11、下列各式是最简分式的是( ) A.a 84 B.a b a 2 C.y x -1 D.22a b ab --12、李刚同学在黑板上做了四个简单的分式题:①()130=-;②a a a =÷22;③()()235a a a =-÷-;④22414m m =-.其中做对的题的个数有( )A.1个B.2个C.3个D.4个13、若023=-y x ,则1+y x 等于( ) A.32 B.23 C.35 D.-3514、甲班与乙班同学到离校15千米的公园秋游,两班同时出发,甲班的速度是乙班同学速度的1.2倍,结果比乙班同学早到半小时,求两个班同学的速度各是多少?若设乙班同学的速度是x 千米/时,则根据题意列方程,得( ) A.21152.115-=x x B. 21152.115+=x x C. 30152.115-=x x D. 30152.115+=x x15、计算题 ()1302341200431-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛- (xx x x x 2)2422+÷-+-16、解方程:(1)33122xx x-+=--(2) 31523162x x-=--17、已知22221111x x xy xx x x+++=÷-+--。
第2课时 分式方程的应用1.进一步熟练地解可化为一元一次方程的分式方程.2.使学生能较熟练地列可化为一元一次方程的分式方程解应用题.重点在不同的实际问题中审明题意设未知数,列分式方程,解决实际问题. 难点在不同的实际问题中,设未知数列分式方程.一、复习引入 1.解下列方程:(1)3-x x +1=4+x x +1-2;(2)2x +3+32=72x +6. 2.列方程解应用题的一般步骤:(1)审;(2)设;(3)列;(4)解;(5)答.[概括] 这些解题方法与步骤,对于解分式方程应用题也适用.这节课,我们将学习列分式方程解应用题.二、探究新知例 1 某校招生录取时,为了防止数据输入出错,2 640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用了2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?[分析] (1)如何设元?(2)题目中有几个相等关系?(3)怎样列方程? 本题有两个相等关系: (1)甲速=2乙速 (2)甲时+120=乙时其中(1)用来设,(2)用来列方程.[概括] 列分式方程解应用题的一般步骤: (1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程; (4)解方程,并验根,还要看方程的解是否符合题意; (5)写出答案(要有单位).例2 A ,B 两地相距135千米,两辆汽车从A 开往B ,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5∶2,求两车的速度.练习:(1)甲乙两人同时从A 地出发,骑自行车到B 地,已知AB 两地的距离为30 km ,甲每小时比乙多走3 km ,并且比乙先到40分钟.设乙每小时走x km ,则可列方程为( )A .30x -30x -3=23B .30x -30x +3=23C .30x +3-30x =23 D .30x -3-30x =23(2)我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必须是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度.例3(教材例3) 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?分析:甲队1个月完成工程的13,设乙队单独施工1个月能完成总工程的1x ,那么甲队半个月完成总工程的________,乙队半个月完成总工程的________,两队半个月完成总工程的________.本题是工程问题,注意基本公式是:工作量=工时×工效. 等量关系为:甲、乙两个工程总量总工程量.列方程:13+16+12x=1.例4(教材例4) 某次列车平均提速v km /h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?分析:这里的字母v ,s 表示已知数据,设提速前列车的平均速度为x km /h ,那么提速前列车行驶s km 所用时间为________h ,提速后列车的平均速度为________km /h ,提速后列车运行(s +50)km 所用时间为________h .本题是列含字母系数的分式方程,解这个方程并且检验是难点,在解题过程中注意把s ,v 当作已知数.等量关系:提速前行驶50 km 所用的时间=提速后行驶(s +50) km 所用的时间.列方程:sx=错误!.练习:教材第154页练习第1,2题. 三、课堂小结1.列分式方程解应用题的一般步骤: (1)审:审清题意;(2)设:设未知数(要有单位);(3)列:根据题目中的数量关系找出相等关系,列出方程; (4)解:解方程,并验根,还要看方程的解是否符合题意; (5)答:写出答案(要有单位). 2.几种基本题型: (1)行程问题; (2)数字问题; (3)工程问题; (4)顺水逆水问题; (5)利润问题. 四、布置作业教材第154~155页习题15.3第3,4,5题.本节课结合具体的数学内容采用“问题情境——建立数学模型——解释应用与拓展”的模式展开,选择有现实意义的,对学生具有一定挑战性的内容,使学生在自主探索和合作交流的过程中建立数学模型,让学生能够自觉的用数学的眼光观察世界,提高发现问题、分析问题、解决问题的能力.第2课时 线段的垂直平分线的有关作图1.作出轴对称图形的对称轴,即线段垂直平分线的尺规作图.(重点)2.依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴.(重点)一、情境导入有时我们感觉两个平面图形成轴对称,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、合作探究探究点一:作线段的垂直平分线【类型一】 作某条线段的垂直平分线如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?(注:作一对对应点的对称轴就是作线段AB 的垂直平分线)解析:本题其实就是作线段AB 的垂直平分线,根据线段垂直平分线的作法作出即可. 解:作法:(1)分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于E 、F两点;(2)作直线EF ,EF 即为所求的直线.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.方法总结:要熟练掌握线段垂直平分线的作法,作出的图形中的作图痕迹要保留.【类型二】 垂直平分线的作法与垂直平分线的性质的综合如图,已知点A 、点B 以及直线l .(1)用尺规作图的方法在直线l 上求作一点P ,使PA =PB .(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM =PN ,BN =PM ,求证:∠MAP =∠NPB .解析:(1)利用线段垂直平分线的作法作出即可;(2)利用全等三角形的判定方法以及利用其性质得出即可.解:(1)如图所示:(2)在△AMP 和△BNP 中,∵⎩⎪⎨⎪⎧AM =PN ,PM =BN ,AP =BP ,∴△AMP ≌△PNB (SSS),∴∠MAP =∠NPB .方法总结:解决此类问题首先要正确作出图形,然后运用相关的知识解决其他问题.【类型三】 垂直平分线作法的应用如图,某地由于居民增多,要在公路l 边增加一个公共汽车站,A ,B 是路边两个新建小区,这个公共汽车站C 建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?解析:作线段AB 的垂直平分线,由垂直平分线的定理可知,垂直平分线上的点到A ,B 的距离相等.解:连接AB ,作AB 的垂直平分线交直线l 于O ,交AB 于E .∵EO 是线段AB 的垂直平分线,∴点O 到A ,B 的距离相等,∴这个公共汽车站C 应建在O 点处,才能使到两个小区的路程一样长.方法总结:对于作图题首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.【类型四】 线段垂直平分线与角平分线作法的综合运用如图,某地有两所大学和两条交叉的公路.图中点M ,N 表示大学,OA ,OB 表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)解析:到两条公路的距离相等,在这两条公路的夹角的平分线上;到两所大学的距离相等,在这两所大学两个端点的连线的垂直平分线上,所画两条直线的交点即为所求的位置.解:如图,点P为所求.方法总结:通过本题要熟练地掌握角平分线的作法以及线段垂直平分线的作法.探究点二:对称轴的画法【类型一】画出已知图形的对称轴画出下列轴对称图形的所有对称轴(不考虑颜色).解析:利用轴对称图形的性质分别得出其对称轴即可.解:如图所示:方法总结:画轴对称图形的对称轴,先找出对称点,然后作对称点的垂直平分线即可.【类型二】补全图形,并画出对称轴如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在如图方格内填涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.解析:根据轴对称的性质画出图形即可.解:如图所示:方法总结:解答此类问题,一般要先设计出轴对称图形,然后根据图形的特点,画出对称轴.三、板书设计线段的垂直平分线的有关作图1.线段垂直平分线的作法.2.作轴对称图形的对称轴的方法.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.[菱形]说课稿一、教材分析1、在教材中的作用与地位[菱形]紧接[矩形]一节之后。
第2课时 分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念. 2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.重点运用分式的基本性质正确地进行分式的约分与通分. 难点通分时最简分分母的确定;运用通分法则将分式进行变形.一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +bab相等吗?为什么? 利用分式的基本性质,分式a 2+aba 2b 约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab.教师点拨:分式a 2+ab a 2b 可以化为a +bab ,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分?类似的,你能把分式a b ,cd变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分__.二、探究新知1.约分:(1)-25a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9; (3)6x 2-12xy +6y23x -3y.分析:为约分,要先找出分子和分母的公因式. 解:(1)-25a 2bc 315ab 2c =-5abc ·5ac 25abc ·3b =-5ac23b; (2)x 2-9x 2+6x +9=(x +3)(x -3)(x +3)2=x -3x +3; (3)6x 2-12xy +6y 23x -3y =6(x -y )23(x -y )=2(x -y ).若分子和分母都是多项式,则往往需要把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母没有公因式,我们把这样的分式称为__最简分式__.(不能再化简的分式)2.练习:约分:2ax 2y 3axy 2;-2a (a +b )3b (a +b );(a -x )2(x -a )3;x 2-4xy +2y ;m 2-3m 9-m 2;992-198. 学生先独立完成,再小组交流,集体订正.3.讨论:分式12x 3y 2z ,14x 2y 3,16xy4的最简公分母是什么?提出最简公分母概念.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母. 学生讨论、小组交流、总结得出求最简公分母的步骤: (1)系数取各分式的分母中系数最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.4.通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3xx +5 .分析:为通分,要先确定各分式的公分母.解:(1)最简公分母是2a 2b 2c . 32a 2b=3·bc 2a 2b ·bc =3bc2a 2b 2c, a -b ab 2c =(a -b )·2a ab 2c ·2a =2a 2-2ab2a 2b 2c. (2)最简公分母是(x -5)(x +5). 2x x -5=2x (x +5)(x -5)(x +5)=2x 2+10xx 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 5.练习:通分:(1)13x 2与512xy ;(2)1x 2+x 与1x 2-x ;(3)1(2-x )2与xx 2-4. 教师引导:通分的关键是先确定最简公分母;如果分式的分母是多项式则应先将分母分解因式,再按上述的方法确定分式的最简公分母.学生板演并互批及时纠错.6.思考:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么? 教师让学生讨论、交流,师生共同作以小结. 三、课堂小结1.什么是分式的约分? 怎样进行分式的约分? 什么是最简分式?2.什么是分式的通分? 怎样进行分式的通分? 什么是最简公分母?3.本节课你还有哪些疑惑?四、布置作业教材第133页习题15.1第6,7题.本节课是在学习了分式的基本性质后学的,重点是运用分式的基本性质正确的约分和通分,约分时要注意一定要约成最简分式,熟练运用因式分解;通分时要将分式变形后再确定最简公分母.§18.1 平行四边形的性质教案(1)一、教学目标1知识目标:1、通过经历运用图形的变换探索图形性质的过程,体验数学研究和发现的过程,并得出正确的结论.2、在对平行四边形的原有认识的基础上,探索并掌握平行四边形的性质.2能力目标:培养学生的观察猜想、实践操作、团队合作、数学说理能力和数学语言规范表达的能力.3情感目标:渗透化未知为已知的数学方法;渗透从特殊到一般、从具体到抽象、从感性到理性的辩证思想;渗透严谨求实的科学态度的理念;营造“民主、和谐”的课堂氛围让学生在愉快的学习中不断获得成功的体验.二、教学重点、难点教学重点:让学生亲历平行四边形性质的“观察——猜想——验证”过程,理解性质内容,并学会用它们进行有关的说理和计算教学难点:通过性质的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.三、教学过程(一)、创设情境、导入新课①多媒体课件展示图片,通过观察图案,指出平行四边形是我们生活中常见的一种图形.②问题情境导入:如图是某区部分街道示意图,其中BC∥AD∥EG,AB//FH∥DC从学校站乘车到书店站只有两条路线有直接到达的公交车,喜羊羊走路线1:学校—E—A—F—书店;美羊羊走路线2:学校—H—O—G—书店.谁先到书店?(二)、概念引入1、两组对边分别平行的四边形叫做平行四边形. 学校书店ACEFGH记作: ABCD 读作:平行四边形ABCD ∵AB∥CD AD∥BC∴四边形ABCD 是平行四边形.或 ∵四边形ABCD 是平行四边形 ∴AB∥CD AD∥BC 教师提示:平行四边形的对边平行 2、下面的图形中 是平行四边形.(三)探索发现 画一画 1、如何画一个ABCD ?2、我们刚才画平行四边形的过程就是利用了平行四边形的特征,请同学们试一试,用什么方法可以再画一个和ABCD 一样大小的EFGH ?量一量1、以同桌为单位,用直尺,量角器等工具度量你的平行四边形的边和角,并记录下数据,猜想平行四边形的对边对角之间的关系.教师请部分同学公布测量结果.2、用几何画板动画展示运动中的平行四边形的对边、对角之间的关系.让学生加深对平行四边形的对边,对角的认识.转一转在平行四边形ABCD 中连结AC 、BD ,它们的交点记为O.用一枚图钉在O 点穿过,观察旋转后的 ABCD 与是否重合用几何画板动态展示平行四边形绕对角线交点旋转180度的情况,引导学生推出平行四边形的性质.引导学生得出结论124563平行四边形的性质:平行四边形的对边相等、对角相等 几何语言描述:∵ 四边形ABCD 是平行四边形∴ AB=CD ,AD =BC .(平行四边形的对边相等) ∠D= ∠B, ∠C= ∠B .(平行四边形的对角相等)(四)例题讲解 例1 如图,在ABCD 中,已知∠A =40°,求其它各个内角的度数.解 ∵四边形ABCD 是平行四边形 ∴ ∠C =∠A = 40° ∵ AD ∥BC ,∴ ∠B = 180°-∠A = 180° - 40° = 140° ∴ ∠D = ∠B = 140°变式1.已知: ABCD 中, 若∠A+∠C=80°,你能求出各角的度数吗?说说你的理由.变式2.已知 ABCD 中, 若∠B=2 ∠A ,你能求出各角的度数吗?说说你的理由. 例2如图,在□ABCD 中,AB=8,周长等于24.求其余三条边的长. 解:在□ABCD 中, AB=CD, AD=BC. ∵ AB=8,∴ CD=8. 又∵AB+BC+CD+AD=24, ∴ AD=BC= = 4.变式1.如图:已知平行四边形ABCD 周长等于16,AB :BC=3:5, 求平行四边形的各边长.变式2.如图:已知平行四边形 ABCD ,CD=3cm,BC=5cm,AC=4cm, 求 ABCD 的面积. 试一试如图,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺量出平行线之间这些垂线段的长度.1(242)2AB经过度量,我们发现这些垂线段的长度都相等.由此,我们得到平行线的又一个性质:平行线之间的距离处处相等.(五)巩固提高1、(基础题)如图所示,四边形ABCD 是平行四边形 ①若∠A=120° ,则∠B=.∠C= ;∠D=.②若AB =5,BC =3,求它的周长(请写出推理过程). 解决问题引导学生利用平行四边形的性质解决刚才喜羊羊与美羊羊碰到的问题,2、(提高题)如图所示,在平行四边形ABCD 中BC=9,若BE 平分∠ABC,且把AD 分成两段的长度差为1cm,求CD 的长.(六)小结回顾1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2、平行四边形的性质:(七)作业布置 基础题课本习题18.1第1、2题 中等题对边对边平行且相等角对角相等 邻角互补231ECBDABACDEF C如右图,AB=AC,且AB=5,从等腰三角形底边上任一点,分别作两腰的平行线,求所成的平行四边形AEDF的周长?提高题(深圳中考题)如图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将ΔABC向上翻折,点A正好落在CD上的点F处,若ΔFDE的周长为8,ΔFCB的周长为22,则FC的长为单项式与单项式相乘1教学目标知识与技能学生能理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.正确区别各单项式中的系数,同底数的幂和不同底数幂的因式.过程与方法让学生感知单项式乘法法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式;经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力.情感、态度与价值观注意培养学生的归纳、概括能力以及运算能力,充分调动学生的积极性,主动性.重点难点重点对单项式运算法则的理解和应用.难点应用单项式与单项式的乘法法则解决数学问题.教学过程一、复习旧知,导入新课我们已经学习了幂的运算性质,你能解答下面的问题吗?1.判断下列计算是否正确,如有错误加以改正.(1)a3·a5=a10;(2)a·a2·a5=a7;(3)(a3)2=a9;(4)(3ab2)2·a4=6a2b4.2.计算:(1)10×102×104=( );(2)(a+b)·(a+b)3·(a+b)4=( );(3)(-2x2y3)2=( ).【教师活动】我们刚才已经复习了幂的运算性质.从本节开始,我们学习整式的乘法.我们知道,整式包括什么?(包括单项式和多项式.)因此整式的乘法可分为单项式乘以单项式、单项式乘以多项式、多项式乘以多项式.这节课我们就来学习最简单的一种:单项式与单项式相乘.二、师生互动,探究新知1.一个长方体底面积是4xy,高度是3x,那么这个长方体的体积是多少?【学生活动】小组合作完成,在小组交流讨论后由代表发言.【教师活动】每一步的依据是什么?(乘法交换律)因此4xy·3x=4·xy·3·x=(4·3)·(x·x)·y=12x2y.(要强调解题的步骤和格式)2.仿照刚才的作法,你能解出下面的题目吗?(1)3x2y·(-2xy3)=[3·(-2)]·(x·x2)(y·y3)=-6x3y4.(2)(-5a2b3)·(-4b2c)=[(-5)×(-4)]·a2·(b3·b2)·c=20a2b5c.【教师活动】第(2)题中在第二个单项式-4b2c中出现的c怎么办?【学生活动】由小组讨论归纳单项式乘单项式的法则,教师板书.单项式和单项式相乘,系数与系数相乘,相同字母的幂分别相乘;对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.三、随堂练习,巩固新知1.3x5·5x3= ,4y·(-2xy3)= .2.3×103×5×102= .3.(-3x2y)·xy2= .4.下列计算正确的是( )A.4a2·2a2=8a6B.2x4·3x4=6x8C.3x2·4x2=12x2D.(2ab2)·(-3abc)=-6a2b3【答案】1.15x8,-8xy4×1063.-x3y34.B四、典例精析,拓展新知【例1】边长是a的正方形面积是a·a,反过来说,a·a也可以看作是边长为a的正方形的面积. 探讨:3a·2a的几何意义.探讨:3a·5ab的几何意义.【答案】可以看做是长为a,宽为5b,高为3a的长方体的体积,也可以看作是长为5a,宽为b,高为3a的长方体的体积.【例2】纳米是一种长度单位,1米=109纳米,试计算长为5米,宽为4米,高为3米的长方体的体积是多少立方纳米?【分析】长方体体积=长×宽×高【答案】6×1028(立方纳米)【教学说明】注意单位换算.五、运用新知,深化理解1.边长分别为2a和a的两个正方形按如图形式摆放,则图中阴影部分的面积是( )A.2a2B.2C.5a2-3aD.a22.光速约为3×105 km/s,太阳光照射到地球所需的时间为5×102 s,则太阳与地球间的距离是km.【答案】1.A ×108【教学说明】第1题若学生思维受阻时,引导阴影部分可以转化成哪些图形的积和差?直角三角形的底和高各是多少?六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.教学反思这节课内容较为简单,在探索单项式乘单项式法则时,注意让学生自己归纳,以提高学生使用数学语言的能力,在推导的过程中,注意每步依据为后面几何证明服务,从而培养逻辑思维能力,变式训练中表达阴影部分面积,旨在培养学生直观图感,将图形语言向数学符号语言转化能力,同时注意转化数学思想的应用.。
第十四课时 第15章分式复习与小结【学习目标】1.复习整理本章的知识结构,形成知识体系.解决生活中的实际问题. 2.掌握列分式方程解决实际问题的基本方法,深化数学思想的认识. 【学习重点】建立本章知识结构,准确、熟练、灵活地进行分式的四则运算. 一、知识结构:二、熟记知识点1、若A 、B 均为_____式, 且B 中含有_________. 则式子 分式 有意义的条件是 ,值为零的条件是 ,2、分式的基本性质: 分式的分子与分母都乘以(或除以)___________ .分式的值________. 用式子表示:3、通分关键是找____________________,约分与通分的依据都是:______________________4、分式乘分式, , 用式子表示: 分式除以分式, , 用式子表示:5、同分母的分式相加减, 用式子表示:异分母的分式相加减:先 ,化为 分式,再加减。
用式子表示:6、当n 是正整数时,=-na,7、科学计数也可表示一些绝对值较小的数,将他们表示成 的形式,其中n 是 , ≤a< 。
8、解分式方程的步骤:(1)___________________;(2)___________________(3)____________________.(4)三、知识应用1、当x = 时,分式31-x 有意义. 2、一种病菌的直径为0.0000036m ,用科学记数法表示为 .3、某班a 名同学参加植树活动,其中男生b 名(b<a ).若只由男生完成,每人需植树15棵;若只由女生完成,每人需植树 棵.4、已知a 2-6a +9与|b -1|互为相反数,则(a b b a -)÷(a +b )=______。
5、若非零实数a ,b 满足4a 2+b 2=4ab ,则ab =_____。
6、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。
§15.1.2 分式的基本性质(2)——分式的约分和通分一、内容分析本节教学内容是人教版八年级上册《15.1.2分式的基本性质》第二课时,即分式的约分和通分。
本节是在学生有小学学习的分数的约分通分、初一学习了因式分解及上节课学习了分式的基本性质的知识基础上,进一步学习分式基本性质的应用。
学生通过类比分数的约分和通分来总结出分式的约分与通分的法则,从中体会数学的类比思想。
同时分式的约分和通分,是进行分式的加减乘除四则运算所必须掌握的分式变形,为后边分式的计算学习做铺垫,在本章中也有着非常重要的地位和作用。
二、教材分析(一)教学目标知识与技能:理解分式约分和通分的基本概念,认识到约分和通分其实是分式基本性质的应用和巩固,并会用分式的基本性质将分式进行正确的约分和通分。
过程与方法:应用分式的基本性质将分式变形,通过复习分数的约分、通分类比分式的约分、通分,从中渗透数学的类比思想方法,并在探究过程中掌握分式约分通分的关键。
情感态度与价值观:通过思考、探究等活动获得学习数学的成功体验,树立学习数学的信心,培养独立思考、合作交流的能力。
(二)教学重难点教学重点:分式的约分和通分教学难点:分式的约分和通分三、学情分析学生已经学过分数的约分和通分,已具备一定的知识基础,因而对于分式的约分和通分理解要相对容易一点。
但学生基础不是很好,无法灵活运用所学知识,在约分过程中先找分子和分母的公因式和在通分过程中先确定最简公分母这两个关键点不能很好地把握,尤其是当分子分母是多项式时要先进行因式分解,这样的变形过程对于学生来说更困难。
四、教学法分析本着以学生为主,教师为辅,充分发挥学生的主体地位,让学生积极主动地参与探索,互动交流学习,体现以“自主、探究、合作”为特征的教与学方式。
五、教学过程设计(一)温故知新分式的基本性质:_________________________________________________________ 用数学符号怎么表示:_________________________________________________________ 师生活动:学生回忆并举手发言,师展示答案。
第十五章分式15.1分式15. 1.1从分数到分式1.以描绘实质问题中的数目关系为背景抽象出分式的观点,成立数学模型,并理解分式的观点.2.能够经过分式的定义理解和掌握分式存心义的条件.要点理解分式存心义的条件及分式的值为零的条件.难点能娴熟地求出分式存心义的条件及分式的值为零的条件.一、复习引入1. 什么是整式?什么是单项式?什么是多项式?2. 判断以下各式中 ,哪些是整式?哪些不是整式?① 8m + n ;② 1+ x + y 2;③ a 2 b +ab 2a +b 2;⑥3;⑦3x 2- 43 ;④ ;⑤ a 2+ b 2 .32x 2+ 2x +12x二、研究新知1. 分式的定义(1) 学生看教材的问题:一艘轮船在静水中的最大航速为30 千米 /时,它沿江以最大航速顺流航行 90 千米所用时间 ,与以最大航速逆流航行 60 千米所用的时间相等 ,江水的流速为多少?剖析:设江水的流速为 v 千米 / 时.轮船顺流航行 90 千米所用的时间为90小时 ,逆流航行 60 千米所用时间为60小时,30+ v 30- v所以 90 = 60.30+ v 30- v(2) 学生达成教材第 127 页“思虑”中的题.察看:以上的式子 9060S V30+ v ,30-v , a , s ,有什么共同点?它们与分数有什么相同点和不同点?能够发现 ,这些式子都像分数相同都是AB (即 A ÷B) 的形式.分数的分子 A 与分母 B 都是整数 ,而这些式子中的 A , B 都是整式 ,并且 B 中都含有字母.A归纳:一般地 ,假如 A ,B 表示两个整式 ,并且 B 中含有字母 ,那么式子 B 叫做分式. 稳固练习:教材第 129 页练习第 2 题.2. 自学教材第 128 页思虑:要使分式存心义 ,分式中的分母应知足什么条件?分式的分母表示除数 ,因为除数不可以为 0,所以分式的分母不可以为 0,即当 B ≠ 0 时,分 式 A才存心义.B学生自学例 1.例 1以下分式中的字母知足什么条件时分式存心义?2 ;(2) x; (3) 1 ; (4)x +y (1) 3xx - 1 5- 3bx - y.解: (1)要使分式 3x 2存心义 ,则分母 3x ≠ 0,即 x ≠ 0;(2) 要使分式x存心义 ,则分母x - 11(3) 要使分式存心义 ,则分母 5- 3bx + y(4) 要使分式 x - y 存心义 ,则分母x - 1≠ 0,即 x ≠ 1;55- 3b ≠ 0,即 b ≠ ;x - y ≠ 0,即 x ≠ y.思虑:假如题目为:当x 为何值时 ,分式无心义.你知道怎么解题吗?稳固练习:教材第 129 页练习第 3 题. 3. 增补例题:当 m 为何值时 ,分式的值为 0?m ;(2) m - 2; (3) m 2- 1(1) m - 1 m + 3 m + 1 .思虑:当分式为 0 时,分式的分子、分母各知足什么条件?剖析:分式的值为 0 时,一定同时知足两个条件: (1) 分母不可以为零;(2)分子为零.答案: (1)m = 0; (2)m = 2; (3)m = 1. 三、归纳总结 1. 分式的观点.2. 分式的分母不为 0 时,分式存心义;分式的分母为 0 时,分式无心义.3. 分式的值为零的条件: (1)分母不可以为零; (2) 分子为零.四、部署作业教材第 133 页习题 15.1 第 2, 3 题.在引入分式这个观点从前先复习分数的观点,经过类比来自主研究分式的观点 ,分式有意义的条件 ,分式值为零的条件 ,从而更好更快地掌握这些知识点,同时也培育学生利用类比转变的数学思想方法解决问题的能力.15. 1.2 分式的基天性质 (2 课时 )第 1 课时分式的基天性质1.认识分式的基天性质,灵巧运用分式的基天性质进行分式的变形.2.会用分式的基天性质求分式变形中的符号法例.要点理解并掌握分式的基天性质.难点灵巧运用分式的基天性质进行分式变形.一、类比引新 1. 计算:(1) 5 2 4 8× 15 ; (2) ÷ .6 5 15 思虑:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基天性质. 2. 你能说出分数的基天性质吗?分数的分子与分母都乘 (或除以 )同一个不为零的数 ,分数的值不变.3. 试试用字母表示分数的基天性质:小组议论沟通如何用字母表示分数的基天性质,而后写出分数的基天性质的字母表达式.a = a ·c a = a ÷cb b ·c , b b ÷c .( 此中 a , b ,c 是实数 ,且 c ≠ 0) 二、研究新知1. 分式与分数也有近似的性质 ,你能说出分式的基天性质吗?分式的基天性质:分式的分子与分母乘 (或除以 )同一个不为零的整式 ,分式的值不变. 你能用式子表示这个性质吗? AA ·C A A ÷CB = B ·C , B = B ÷C .(此中 A , B ,C 是整式 ,且 C ≠ 0)如 x = 1, b =ab2,你还可以举几个例子吗?2x 2 a a回首分数的基天性质 ,让学生类比写出分式的基天性质 ,这是从详细到抽象的过程.学生试试着用式子表示分式的性质 ,增强对学生的抽象表达能力的培育.2. 想想以下等式成立吗?为何?- a a ; - a a a= = =- . - b b b - b b教师出示问题.学生小组议论、沟通、总结.例 1 不改变分式的值 ,使以下分式的分子与分母都不含“-”号:- 2a- 3x- x 2(1) - 3a ; (2) 2y ; (3)- y.例 2不改变分式的值 ,使以下分式的分子与分母的最高次项的系数都化为正数:x + 1 2- x - x - 1(1) - 2x - 1; (2)- x 2+ 3;(3) x + 1 .指引学生在达成习题的基础长进行归纳 ,使学生掌握分式的变号法例.例 3填空:x 3( ) 3x 2+ 3xy=x + y;= y,( )(1) xy6x 2(),2a -2 ( ) .(b ≠ 0)(2)1=2b = 2aba b a a bx 3解: (1)因为 xy 的分母 xy 除以 x 才能化为 y ,为保证分式的值不变 ,依据分式的基天性 质,分子也需除以 x ,即x 3= x 3 ÷x =x 2. xy xy ÷ x y相同地 ,因为 3x 2+ 3xy的分子 3x 2+3xy 除以 3x 才能化为 x + y ,所以分母也需除以 3x ,6x 2即3x 2+ 3xy(3x 2+ 3xy ) ÷( 3x ) x + y6x 2=6x 2 ÷( =2x.3x )所以 ,括号中应分别填入 x 2和 2x.(2) 因为 ab1的分母 ab 乘 a 才能化为 a 2b ,为保证分式的值不变 ,依据分式的基天性质 ,分子也需乘 a ,即1 = 1·a = a2 . ab ab ·a a b2a - b相同地 ,因为a2 的分母 a 2乘 b 才能化为 a 2b ,所以分子也需乘 b ,即2a - b ( 2a -b ) ·b 2ab -b 22 == 2.a a 2 ·b a b所以 ,括号中应分别填 a 和 2ab - b 2.在解决例题 1, 2 的第 (2)小题时 ,教师能够指引学生察看等式两边的分母发生的变化,再思虑分式的分子如何变化;在解决例2 的第 (1)小题时 ,教师指引学生察看等式两边的分子发生的变化 ,再思虑分式的分母随之应当如何变化.三、讲堂小结1. 分式的基天性质是什么? 2. 分式的变号法例是什么?3. 如何利用分式的基天性质进行分式的变形? 学生在教师的指引下整理知识、理顺思想. 四、部署作业教材第 133 页习题 15.1 第 4, 5 题.经过算数中分数的基天性质,用类比的方法给出分式的基天性质,学生接受起来其实不感觉困难,但要要点重申分子分母同乘 (或除 )的整式不可以为零,让学生养成谨慎的态度和习惯.第 2 课时分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的观点.2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.要点运用分式的基天性质正确地进行分式的约分与通分.难点通分时最简分分母确实定;运用通分法例将分式进行变形.一、类比引新1.在计算56×152时,我们采纳了“约分”的方法,分数的约分约去的是什么?分式a+ b相等吗?为何?aba2+ab利用分式的基天性质,分式a2b约去分子与分母的公因式a,其实不改变分式的值a+ b获得. a2+ ab a2b,,能够教师点拨:分式a2+ ab能够化为a+ b__分式的约分 __.a2b ab ,我们把这样的分式变形叫做4 64 62. 如何计算 5+ 7?如何把 5,7通分?近似的 ,你能把分式 a, c变为同分母的分式吗?b d利用分式的基天性质 ,把几个异分母的分式分别化成与本来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分 __.二、研究新知- 25a 2bc 3;(2) x 2- 9; 1. 约分: (1) 15ab 2c x 2+ 6x +9 6x 2- 12xy + 6y 2 (3) 3x -3y .剖析:为约分 ,要先找出分子和分母的公因式.2322解: (1) - 25a bc =- 5abc ·5ac =-5ac ;15ab 2c5abc · 3b 3bx 2- 9 ( x + 3)( x - 3) x - 3(2)x2+= (x + 3) 2 =;6x +9x + 36x 2- 12xy + 6y 2 6( x - y )2(3)3x -3y==2(x - y).3(x - y )若分子和分母都是多项式 ,则常常需要把分子、分母分解因式(即化成乘积的形式 ) ,然后才能进行约分. 约分后 ,分子与分母没有公因式 ,我们把这样的分式称为 __最简分式 __.( 不 能再化简的分式 )2. 练习:约分:2ax 2y ; - 2a ( a +b ) ( a - x ) 2 2- 4 ; m 2- 3m 2-13b ( a +b ) ; ; x ; 99.3axy 2 ( x -a ) 3 xy + 2y9- m 298学生先独立达成 ,再小组沟通 ,集体校正.3. 议论:分式1 , 114的最简公分母是什么?3 22 3, 6xy2x y z 4x y提出最简公分母观点.一般取各分母的所有因式的最高次幂的积作公分母 ,它叫做最简公分母.学生议论、小组沟通、总结得出求最简公分母的步骤:(1) 系数取各分式的分母中系数最小公倍数; (2) 各分式的分母中所有字母或因式都要取到; (3) 相同字母 (或因式 )的幂取指数最大的;(4) 所得的系数的最小公倍数与各字母 (或因式 )的最高次幂的积 (此中系数都取正数 ) 即为最简公分母.4. 通分: (1) 32 与a -2 b; (2) 2x 与 3x .2a b ab c x - 5 x + 5 剖析:为通分 ,要先确立各分式的公分母.解: (1)最简公分母是 2a 2b 2c.33·bc 3bc2a 2b = 2a 2b · bc =2a 2b 2 c , a - b ( a -b ) ·2a 2a 2 -2abab 2c =ab 2c · 2a = 2a 2b 2c .(2) 最简公分母是 (x - 5)(x + 5) .2x=2x( x+ 5)=2x2+ 10xx- 5 ( x- 5)( x+ 5)x2- 25,3x =3x( x- 5)= 3x2- 15x x+ 5 ( x+ 5)( x- 5)x2- 25. 5.练习:通分: (1) 12与 5 ; (2) 21与 2 1 ; (3) 12与2x.3x 12xy x + x x - x (2- x)x - 4教师指引:通分的要点是先确立最简公分母;假如分式的分母是多项式则应先将分母分解因式,再按上述的方法确立分式的最简公分母.学生板演并互批实时纠错.6.思虑:分数和分式在约分和通分的做法上有什么共同点?这些做法的依据是什么?教师让学生议论、沟通,师生共同作以小结.三、讲堂小结1.什么是分式的约分?如何进行分式的约分?什么是最简分式?2.什么是分式的通分?如何进行分式的通分?什么是最简公分母?3.本节课你还有哪些迷惑?四、部署作业教材第 133 页习题 15.1 第 6, 7 题.本节课是在学习了分式的基天性质后学的,要点是运用分式的基天性质正确的约分和通分,约分时要注意必定要约成最简分式,娴熟运用因式分解;通分时要将分式变形后再确立最简公分母.15. 2分式的运算15. 2.1分式的乘除(2课时)第 1 课时分式的乘除法1.理解并掌握分式的乘除法例.2.运用法例进行运算,能解决一些与分式相关的实质问题.要点掌握分式的乘除运算.难点分子、分母为多项式的分式乘除法运算.一、复习导入1. 分数的乘除法的法例是什么?2. 计算: 3 × 15 ; 3 155 12 ÷ .5 2由分数的运算法例知3 15 = 3× 15 315 3 × 2 = 3× 2× 12 5× 12 ; ÷ = 15 .5 5 2 5 5× 153. 什么是倒数? 我们在小学学习了分数的乘除法 ,关于分式如何进行计算呢?这就是我们这节要学习的内容.二、研究新知问题 1:一个水平搁置的长方体容器 ,其容积为 V ,底面的长为 a ,宽为 b 时,当容器的水占容积的 m时,水面的高度是多少?n问题 2:大拖沓机 m 天耕地 a hm 2,小拖沓机 n 天耕地 b hm 2,大拖沓机的工作效率是小拖沓机的工作效率的多少倍?问题 1 求容积的高 V m,问题 2 求大拖沓机的工作效率是小拖沓机的工作效率的 a b ·÷ 倍.ab nm n依据上边的计算 ,请同学们总结一下对分式的乘除法的法例是什么?分式的乘法法例:分式乘分式 ,用分子的积作为积的分子 ,分母的积作为积的分母. 分式的除法法例:分式除以分式 ,把除式的分子、分母颠倒地点后,与被除式相乘.a ca ·c a c a d a ·d·=; ÷ = ·=.b d b ·d b d bc b ·c 三、举例剖析例 1 计算:4x y ab 3 - 5a 2b 2(1) 3y ·2x 3; (2)2c 2÷4cd.剖析:这道例题就是直策应用分式的乘除法法例进行运算.应当注意的是运算结果应约分到最简 ,还应注意在计算时跟整式运算相同 ,先判断运算符号 ,再计算结果.解: (1)4xy = 4xy = 2 ;3y ·36x 3y 3x 22x(2) ab 3- 5a 2b 2 ab 34cd 4ab 3cd 2bd2c 2÷ = 2· 2 2=- 2 2 2=- .4cd 2c - 5a b 10a b c 5ac 例 2 计算:a 2- 4a +4 a - 1(1) a 2- 2a +1·a 2- 4;1 1(2) 49-m 2÷ m 2- 7m . 剖析:这两题是分子与分母是多项式的状况 ,第一要因式分解 ,而后运用法例.( a -2) 2 a - 1 a - 2解: (1)原式 ( a -1) 2· ( a + 2)( a - 2)= ( a -1)( a + 2) ;(2) 原式 1 1÷( 7- m )( 7+ m ) m ( m - 7)= 1 m ( m - 7) =- m7+m ) · 1 .( 7- m )( m + 7例 3 “丰产 1 号”小麦试验田边长为 a 米 (a > 1)的正方形去掉一个边长为 1 米的正方形蓄水池后余下的部分 ,“丰产 2 号”小麦的试验田是边长为 (a - 1)米的正方形 ,两块试验田的小麦都收获了 500 千克.(1) 哪一种小麦的单位面积产量高?(2) 高的单位面积产量是低的单位面积产量的多少倍?剖析:此题的实质是分式的乘除法的运用.解: (1)略.500500 500 a 2- 1 a + 1 (2) ( a -1) 2÷ a 2- 1=( a - 1) 2· 500 =a - 1.“丰产 2 号”小麦的单位面积产量是“丰产1 号”小麦的单位面积产量的a + 1倍.a - 1四、随堂练习1. 计算: (1) c 2 · a 2b 2 (2)- n 2 · 4m 2 y 2; 2m 5n 3;(3) ÷(- );ab c 7x x 2ya 2- 4 a 2- 1 (4) - 8xy ÷ ; (5)- 2 ·2 4a + 4 ;5x a -2a + 1 a +y 2- 6y + 9(6)÷(3- y).y + 2答案: (1)abc ; (2)- 2m; (3)- y; (4)- 20x 2;(5) ( a + 1)( a - 2) ;(6) 3- y 5n 14-( a - 1)( a + 2) y + 2 . 2. 教材第 137 页练习 1, 2,3 题.五、讲堂小结(1) 分式的乘除法法例; (2) 运用法例时注意符号的变化;(3) 因式分解在分式乘除法中的应用;(4) 步骤要完好 ,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也能够写成一个多项式 ,如 ( a - 1) 2 a 2- 2a + 1或 a .a六、部署作业教材第 146 页习题 15.2 第 1, 2 题.本节课从两个拥有实质背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实质需要产生的,从而激发他们学习的兴趣,接着,从分数的乘除法例的角度指引学生经过察看、研究、归纳总结出分式的乘法法例.有益于学生接受新知识,并且能表现由数到式的发展过程.第 2课时分式的乘方及乘方与乘除的混淆运算1.进一步娴熟分式的乘除法法例,会进行分式的乘、除法的混淆运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.要点分式的乘方运算,分式的乘除法、乘方混淆运算.难点分式的乘除法、乘方混淆运算,以及分式乘法、除法、乘方运算中符号确实定.一、复习引入1.分式的乘除法法例.分式的乘法法例:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母.分式的除法法例:分式除以分式,把除式的分子、分母颠倒地点后,与被除式相乘.2.乘方的意义:a n= a·a·a· ·a(n 为正整数 ).二、研究新知例 1(教材例 4) 计算2x 3 x÷·.5x- 3 25x 2- 9 5x + 3解:2x 3·x÷+ 3 5x-3 25x 2- 9 5x25x 2- 9x (先把除法一致成乘法运算 )= 2x ·3 · 5x - 3 5x+3 2x 2 =3 .( 约分到最简公式 ) 分式乘除运算的一般步骤:(1) 先把除法一致成乘法运算;(2) 分子、分母中能分解因式的多项式分解因式; (3) 确立分式的符号 ,而后约分;(4) 结果应是最简分式.1. 由整式的乘方引出分式的乘方,并由特别到一般地指引学生进行归纳.2(1)( a )2=a a= a2;bb ·b b↑↑由乘方的意义 由分式的乘法法例(2) 同理:a 3 a a aa 3( )= ··= 3;b b b b ba n a a aa · a · · an 个a n( ) = ·· ·n个== n .b b b bb · b · · bn 个 b2. 分式乘方法例:n分式: (a b )n = ab n .(n 为正整数 )文字表达:分式乘方是把分子、分母分别乘方. 3. 当前为止 ,正整数指数幂的运算法例都有什么?(1)a n · a n = a m +n ; (2)a m ÷ a n = a m -n ;(3)(a m ) n =a mn ;(4)(ab) n = a n b n ;a a n(5)( b )n= b n . 三、举例剖析 例2计算:- 2a 2b(1)( 3c )2;2a b3÷2a· (c2(3)( - x 2 y 2 )3÷ y )4;y )2· (- x (-x a 2- b 2 a - b(4) 22÷ () 2.a + ba + b22 4 2(- 2a b )=4a b 2 ;解: (1)原式= ( 3c ) 29ca 6b 3 d 3c 2a 3b 3 (2) 原式= -c 3d 9· 2a ·4a 2=- 8cd 6;46 4(3) 原式=x · (- y x =- x 5; y 2x 3)·4y(4) 原式= ( a + b )( a - b ) ( a + b ) 2 ( a + b ) 32 2· ( a - b ) 2=22 .a +b ( a - b )( a + b )学生板演、 纠错并实时总结做题方法及应注意的地方: ①关于乘、 除和乘方的混淆运算 ,应注意运算次序 ,但在做乘方运算的同时 ,可将除变乘;②做乘方运算要先确立符号.例3 计算:b3n -1c2a2n -1(1) a 2n+1·b 3n-2;x 2-2xy + y 2x - y(2)(xy - x 2) ÷ · x 2 ;xy (3)( a 2- b 2 a -b )2.ab )2÷ (a解: (1)原式= b 3n -2· b · c 2 a 2n - 1bc 2 a2n -1· a 2·b 3n -2=a 2;x ( x - y ) xy2· x - y(2) 原式=-1 ·x 2 =- y ;( x - y )( a + b )2( a - b ) 2 a 2 a 2+ 2ab +b 2 (3) 原式= a 2b 2· (a -b ) 2=b 2. 本例题是本节课运算题目的拓展,关于 (1)指数为字母 ,可是方法不变; (2)(3) 是较复杂的 乘除乘方混淆运算 ,要进一步让学生熟习运算次序,注意做题步骤.四、稳固练习教材第 139 页练习第 1, 2 题. 五、讲堂小结 1. 分式的乘方法例. 2. 运算中的注意事项. 六、部署作业教材第 146 页习题 15.2 第 3 题.分式的乘方运算这一课的教课先让学生回想从前学过的分数的乘方的运算方法用类比的方法让学生得出分式的乘方法例.在解说例题和练习时充分调换学生的踊跃性大家都参加进来 ,提升学习效率.,而后采,使15. 2.2分式的加减(2 课时)第 1 课时分式的加减理解并掌握分式的加减法例,并会运用它们进行分式的加减运算.要点运用分式的加减运算法例进行运算.难点异分母分式的加减运算.一、复习发问 1. 什么叫通分? 2. 通分的要点是什么? 3. 什么叫最简公分母?4. 通分的作用是什么? (引出新课 ) 二、研究新知1. 出示教材第 139 页问题 3 和问题 4. 教材第 140 页“思虑”.1 分式的加减法与分数的加减法近似,它们的实质相同. 察看以下分数加减运算的式子:5+2=31- 2=- 11+1= 3+2=5 1- 1= 3- 2=1,得出分式的加减法5 5,5 55, 2 3666, 2 3 6 6 6.你能将它们推行 法例吗?教师提出问题 ,让学生列出算式 ,获得分式的加减法法例. 学生议论:组内沟通 ,教师点拨. 2. 同分母的分式加减法.a b a ±b公式: ±=c .c c文字表达:同分母的分式相加减 ,分母不变 ,把分子相加减.3. 异分母的分式加减法.分式: a c ad bc ad ±bc± = ± = bd .b d bd bd文字表达:异分母的分式相加减 ,先通分 ,变为同分母的分式 ,而后再加减.三、典型例题 例 1(教材例 6) 计算:5x +3y- 2x2; (2)1 + 1(1) 2- y 2 2.xx - y2p + 3q 2p - 3q解: (1)5x + 3y - 2xx 2- y2 x 2- y 25x + 3y - 2x 3x + 3y 3 = 2 2 = 2 - y 2 = ;x - y x x -y(2) 1 + 12p +3q2p - 3q=2p - 3q +2p + 3q ( 2p + 3q )( 2p - 3q ) ( 2p + 3q )( 2p - 3q )= 2p - 3q + 2p + 3q=4p( 2p + 3q )( 2p - 3q ) 4p 2- 9q 2.小结:(1) 注意分数线有括号的作用 ,分子相加减时 ,要注意添括号.(2) 把分子相加减后 ,假如所得结果不是最简分式 ,要约分.例2 计算:m + 2n + n - 2m . n - m m - n n - m剖析: (1)分母能否相同? (2)如何把分母化为相同的?(3)注意符号问题.解:原式= m + 2n - n - 2mn - m n -m n - m= m + 2n - n - 2mn -m=n - mn - m= 1. 四、讲堂练习1. 教材第 141 页练习 1, 2 题.5232.计算: (1)-+ ;12 2(2) m 2- 9+3- m ;(3)a + 2- 4;2- aa 2-b 2 ab - b 2(4) ab -ab -ab 2.五、讲堂小结1. 同分母分式相加减 ,分母不变 ,只要将分子作加减运算 ,但注意每个分子是个整体 ,要合时添上括号.2.关于整式和分式之间的加减运算 ,则把整式当作一个整体 ,即当作是分母为 1 的分式 ,以便通分.3.异分母分式的加减运算 ,第一察看每个公式能否为最简分式 ,能约分的先约分 ,使分式简化 ,而后再通分 ,这样可使运算简化.4. 作为最后结果 ,假如是分式则应当是最简分式. 六、部署作业教材第 146 页习题 15.2 第 4, 5 题.从直观的分数加减运算开始,先介绍同分母分式的加减运算的详细方法,经过类比的思想方法,由数的运算引出式的运算规律,表现了数学知识间详细与抽象、从特别到一般的内在联系.尔后,利用相同的类比方法,安排学习异分母的分式加减运算,这样由简到繁、由易到难,切合学生认知的发展规律,有助于知识的层层落实与掌握.第 2 课时分式的混淆运算1.明确分式混淆运算的次序,娴熟地进行分式的混淆运算.2.能灵巧运用运算律简易运算.要点娴熟地进行分式的混淆运算.难点娴熟地进行分式的混淆运算.一、复习引入回想:我们已经学习了分式的哪些运算?1.分式的乘除运算主假如经过( )进行的,分式的加减运算主假如经过( ) 进行的.2.分数的混淆运算法例是再算 (),最后算 ( ( ) ,近似的,分式的混淆运算法例是先算 ) ,有括号的先算 ( )里面的.( ),二、研究新知1.典型例题例1计算:( x+2 + 4 ) ÷x .x-2 x2- 4x+ 4 x- 2 剖析:应先算括号里的.例 2计算:4y 24x 2yx + 2y + x - 2y - x 2- 4y2. 剖析: (1)此题应采纳逐渐通分的方法挨次进行; (2)x + 2y 能够看作 x + 2y.1 例 31 -2x 计算:1x + yx + y ·( 2x -x -y).剖析:此题可用分派律简易计算.例 4 [ 1 2-1 2] ÷( 1 - 1 ).( a + b ) ( a - b ) a +b a - b 剖析:可先把被除式利用平方差公式分解因式后再约分.例 5(教材例 7)2a 21a b计算 ()·- ÷ .b a - b b 4解: 2a1- ab( )2· b ÷b a -b 4= 4a 2 1 - a 4 b 2 · ·a -b b b4a 24a4a 2 4a ( a -b ) = b 2( a - b ) - b 2= b 2( a - b )- b 2( a - b )4a 2- 4a 2+ 4ab 4ab= b 2( a - b ) =b 2( a - b ) = 4a ab - b 2.点拨:式与数有相同的混淆运算次序:先乘方 ,再乘除 ,而后加减. 例 6(教材例 8)计算: (1)(m + 2+ 52m - 4) · ;2- m 3- mx + 2 - x - 1x -4 (2)( x 2- 2x x 2- 4x + 4) ÷ x .解: (1)(m + 2+ 5 2m - 4) ·2- m 3- m = ( m + 2)( 2- m )+ 5 2m - 42-m ·3- m= 9- m 2 2( m - 2) 2- m · 3- m= ( 3- m )( 3+ m ) - 2( 2- m ) 2- m · 3- m=- 2(m + 3);(2)( x + 2- x - 1x -4x 2 x 2) ÷ x - 2x - 4x + 4= [ x + 2 -x - 1 x ( x - 2) 2] ·x ( x - 2)x - 4=( x + 2)( x - 2)-( x -1) x ·x x ( x - 2) 2x - 4 = x 2- 4- x 2+ x( x - 2) 2( x - 4)1= ( x - 2) 2. 分式的加、减、乘、除混淆运算要注意以下几点:(1) 一般按分式的运算次序法例进行计算,但合适地使用运算律会使运算简易.(2) 要随时注意分子、分母可进行因式分解的式子,以备约分或通分时用 ,可防止运算烦 琐.(3) 注意括号的“添”或“去”、“变大”与“变小”.(4) 结果要化为最简分式.增强练习 ,指引学生实时纠正在例题中出现的错误 ,进一步提升运算能力.三、稳固练习x 21. (1)x - 1- x - 1;(2)(1 - 2)2÷x - 1;x +1 x + 12ab2bc(3)( a -b )( a - c ) + ( a - b )( c - a );(4)( 1 + 1 ) ÷2 xy2 .x - y x + y x - y 2. 教材第 142 页第 1, 2 题. 四、讲堂小结1.分式的混淆运算法例是先算 ( ),再算 () ,最后算 (),有括号先算 ()里的.2. 一些题应用运算律、公式能简易运算. 五、部署作业1. 教材第 146 页习题 15.2 第 6 题.1 - 1 x 2- 2x + 1,此中 x = 2-1.2. 先化简再求值 x + 1 x 2- 1· x + 1分式的混淆运算是分式这一章的要点和难点,波及到因式分解和通分这两个较难的知识点,可依据学生的详细状况,合适增添例题、习题,让学生娴熟掌握分式的运算法例并提升运算能力.15. 2.3整数指数幂1.知道负整数指数幂a-n=1n.(a≠ 0, n 是正整数 ) a2.掌握整数指数幂的运算性质.3.会用科学记数法表示绝对值小于 1 的数.要点掌握整数指数幂的运算性质 ,会有科学记数法表示绝对值小于1 的数.难点负整数指数幂的性质的理解和应用.一、复习引入1. 回想正整数指数幂的运算性质:(1) 同底数的幂的乘法: a m · a n = a m +n (m , n 是正整数 ) ;(2) 幂的乘方: (a m )n = a mn (m , n 是正整数 ); (3) 积的乘方: (ab)n = a n b n (n 是正整数 );(4) 同底数的幂的除法: a m ÷ a n =a m -n (a ≠ 0, m , n 是正整数 , m >n) ;a n a n(5) 分式的乘方: ( ) =n (n 是正整数 ).bb2. 回想 0 指数幂的规定 ,即当 a ≠ 0 时, a 0= 1. 二、研究新知3 312,再假定正整数指数幂的运算性质am÷ a n( 一)1.计算当 a ≠ 0 时, a 3÷ a 5= a5=a =aa 3· a 2 a-- -2.于是= a m n (a ≠ 0, m , n 是正整数 , m > n)中的 m > n 这个条件去掉 ,那么 a 3÷ a 5= a 3 5= a - 2 1获得 a =2(a ≠ 0).a总结:负整数指数幂的运算性质:一般的 ,我们规定:当 n 是正整数时 ,a -n= 1n (a ≠ 0).a 2. 练习稳固: 填空:(1) - 22= ________, (2)( - 2)2= ________, (3)( - 2)0= ________,(4)20= ________,-3-3 =________. (5)2 = ________, (5)( - 2) 3.例 1 (教材例 9) 计算:-2 5 b 3- 2; (1)a÷ a ; (2)( 2)a(3)(a -1 b 2 )3; (4)a - 2b 2· (a 2b - 2)-3.解: (1)a -2÷ a 5= a -2- 5=a -7= a 17;b 3-6a 4 -b -(2)( 2) 2= - 4= a 4b 6 = 6; a ab 6(3)(a -1 b2 )3= a -3b6=ba 3;- - - - - -b 8 (4)a 2b 2· (a 2b 2) 3= a 2b 2· a 6 b 6= a 8b 8= 8.a[剖析 ] 本例题是应用推行后的整数指数幂的运算性质进行计算 ,与用正整数指数幂的 运算性质进行计算相同 ,但计算结果有负指数幂时 ,要写成分式形式.4. 练习:计算: (1)(x 3y - 2)2; (2)x 2y - 2· (x -2y)3;(3)(3x 2y -2 2 - 23) ÷ (x y) . 5.例 2 判断以下等式能否正确?(1)a m÷ a n= a m·a -n; (2)(ab)n = a n b -n .[ 剖析 ] 类比负数的引入使减法转变为加法 ,获得负指数幂的引入能够使除法转变为幂的乘法这个结论 ,从而使分式的运算与整式的运算一致同来 ,而后再判断等式能否正确.( 二)1.用科学记数法表示值较小的数因为 0.1= 1 = 10 - 110 ; 0.01=________= ________;0. 001= ________=________所以 0.000 025= 2.5× 0.000 01= 2.5×10-5.我们能够利用 10 的负整数次幂 ,用科学记数法表示一些绝对值较小的数,马上它们表示成 a ×10-n 的形式 ,此中 n 是正整数 ,1≤ |a|< 10.2. 例 3(教材例 10) 纳米是特别小的长度单位 , 1 纳米= 10-9米,把 1 纳米的物体放到 乒乓球上 ,就好像把乒乓球放到地球上 .1 立方毫米的空间能够放多少个1 立方纳米的物体?(物体之间的空隙忽视不计 )[ 剖析 ]这是一个介绍纳米的应用题,是应用科学记数法表示小于 1 的数.3.用科学记数法表示以下各数:0. 00 04,- 0.034,0.000 000 45, 0.003 009.4.计算:-8 3 -3 2 -3 3.(1)(3 × 10 )× (4× 10 ); (2)(2 ×10 ) ÷(10 )三、讲堂小结1.引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍旧成立.2.科学记数法不单能够表示一个值大于10 的数,也能够表示一些绝对值较小的数,在应用中,要注意 a 一定知足1≤ |a|< 10,此中 n 是正整数.四、部署作业教材第 147 页习题 15.2 第 7, 8, 9 题.本节课教课的主要内容是整数指数幂学设计上,教师要点发掘学生的潜伏能力,将从前所学的相关知识进行了扩大.在本节的教,让学生在讲堂上经过察看、考证、研究等活动,加深对新知识的理解.15.3分式方程(2课时)第 1 课时分式方程的解法1.理解分式方程的意义.2.理解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原由,并掌握解分式方程的验根方法.要点解分式方程的基本思路和解法.难点理解解分式方程时可能无解的原由.一、复习引入问题: 一艘轮船在静水中的最大航速为 30 km/h ,它以最大航速沿江顺流航行 90 km 所用时间 ,与以最大航速逆流航行 60 km 所用的时间相等 ,江水的流速为多少?90=60[ 剖析 ] 设江水的流速为 x 千米 /时,依据题意 ,得 30+ v 30- v .①方程①有何特色?[ 归纳 ] 方程①中含有分式 ,并且分母中含有未知数 ,像这样的方程叫做分式方程. 发问:你还可以举出一个分式方程的例子吗? 辨析:判断以下各式哪个是分式方程.x + 2= 2y - z ; (3)1; (4)y=0; (5)1+ 2x = 5.(1)x + y = 5; (2) 5 3 x x + 5 x依据定义可得: (1)(2) 是整式方程 , (3) 是分式 , (4)(5) 是分式方程.二、研究新知1. 思虑:如何解分式方程呢?为认识决本问题 ,请同学们先思虑并回答以下问题:(1) 回首一下解一元一次方程时是怎么去分母的,从中可否获得一点启迪?(2) 有没有方法能够去掉分式方程的分母把它转变为整式方程呢? [ 可先松手让学生自主研究 ,合作学习并进行总结]方程①能够解答以下:方程两边同乘以 (30+ v)(30 -v),约去分母 ,得 90(30- v)= 60(30 + v). 解这个整式方程 ,得 v = 6. 所以江水的流度为 6 千米 /时.[ 归纳 ]上述解分式方程的过程 ,实质上是将方程的两边乘以同一个整式 ,约去分母 ,把分式方程转变为整式方程来解.所乘的整式往常取方程中出现的各分式的最简公分母.2. 例 1 解方程:1 = 210.②x - 5 x - 25解:方程两边同乘 (x 2- 25),约去分母 ,得 x + 5= 10.解这个整式方程 ,得 x = 5.事实上 ,当 x = 5 时,原分式方程左侧和右侧的分母 (x - 5)与 (x 2- 25)都是 0,方程中出现的两个分式都没存心义 ,所以 ,x = 5 不是分式方程的根 ,应当舍去 ,所以原分式方程无解.解分式方程的步骤:在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不合适原分式方程的解 (或根 ) ,这类根往常称为增根.所以,在解分式方程时一定进行查验.3.那么,可能产生“增根”的原由在哪里呢?解分式方程去分母时,方程两边要乘同一个含未知数的式子(最简公分母 ).方程①两边乘 (30+ v)(30 - v),获得整式方程,它的解 v=6.当 v= 6 时, (30+ v)(30 - v)≠ 0,这就是说,去分母时,①两边乘了同一个不为 0 的式子,所以所得整式方程的解与①的解相同.方程②两边乘(x- 5)(x + 5),获得整式方程,它的解 x= 5.当 x= 5 时,(x -5)(x + 5)= 0,这就是说,去分母时,②两边乘了同一个等于0 的式子,这时所得整式方程的解使②出现分母为 0 的现象,所以这样的解不是②的解.4.验根的方法:解分式方程进行查验的要点是看所求得的整式方程的根能否使原分式方程中的分式的分母为零.有时为了简易起见,也可将它代入所乘的整式 (即最简公分母 ),看它的值能否为零.假如为零,即为增根.如例 1 中的 x= 5,代入 x2- 25=0,可知 x= 5 是原分式方程的增根.三、举例剖析例 2(教材例 1) 解方程 2 =3.x- 3 x解:方程两边乘x(x -3) ,得 2x = 3x- 9.解得 x= 9.查验:当x= 9 时, x(x - 3)≠ 0.所以,原分式方程的解为x=9.例 3(教材例 2) 解方程x - 1= 3.x- 1 (x- 1)( x+ 2)解:方程两边乘 (x- 1)(x +2),得x(x + 2)- (x- 1)(x + 2)= 3.解得 x= 1.查验:当x= 1 时, (x-1)(x + 2)= 0,所以 x= 1 不是原分式方程的解.所以,原分式方程无解.四、讲堂小结1.分式方程:分母中含有未知数的方程.2.解分式方程的一般步骤以下:。
第15章分式单元要点分析教材内容本单元教学的主要内容:本单元主要内容是分式的概念、根本性质、分式运算以及分式方程的应用.本单元知识构造图.本单元教材分析:本单元是继整式之后对代数式的进一步研究,主要从三个方面展开讨论:1.密切分式与现实生活的联系,突出分式、分式方程的模型作用,•分式也是表示具体问题情境中数量关系的工具;分式方程那么是将具体问题“数学化〞的重要模型.本单元首先通过从分数到分式,以适移的手法引入分式概念,在分式的运算中安排了丰富的实际问题,让学生在这些实际问题中,学习法那么、应用法那么,感受分式运算的意义,理解算理.在学习分式方程时,教材设置了现实中的速度问题、工程问题等,让学生经历“建立分式方程模型〞这一数学化的过程,体会分式方程的意义与使用,培养抽象、概括能力.在分式方程应用方面,力求使应用问题贴近学生生活实际,增强学生解决问题的能力,激发学生的学习兴趣.2.注意数学思想方法的应用,突出培养学生的合情推理能力.•教材十分重视观察、类比、归纳、猜测等思维方法的应用.在分式根本性质的探索过程中,采用观察、类比的方法,让学生在讨论、交流中获得结论,在分式加减乘除运算法那么的探索中,与分数进展类比,得到有关结论;分式方程的概念也是通过抽象、概括获得的.这样,既渗透了常用的数学思维方法,又培养了学生的合情推理能力.3.适当降低分式运算的难度,注重对算理的理解、分式的化简、求值、•运算,是代数运算的根底,但它与分数非常类似.因此,适当控制难度、注意对算理的理解是本单元的特点.在分式运算方面,教材的例、习题难度都不大,运算步骤不多,注意一题多解,对分式方程,注重对解的合理性的讨论.三维目标1.知识与技能〔1〕熟练掌握分式的根本性质,会进展分式的约分、•通分和加减乘除混合运算,会解可化为一元一次方程的分式方程〔方程中分式不超过两个〕,会检验分式方程的根.〔2〕能解决一些与分式、分式方程有关的实际问题,具有一定的分析问题、•解决问题的能力和应用意识.2.过程与方法〔1〕经历用字母表示现实情境数量关系〔分式、分式方程〕的过程,•了解分式、分式方程的概念,体会分式、分式方程的模型思想,进一步开展符号感.〔2〕经历通过观察、归纳、类比、猜测,获得分式的根本性质、•分式乘除运算法那么、分式加减运算法那么的过程;开展学生的合情推理能力与代数恒等变形能力.3.情感、态度与价值观通过学习,获取代数知识的常用方法,感受代数学习的实际应用价值.重难点、关键1.重点:分式的混合运算以及分式方程的应用.2.难点:异分母的分式的通分,特别是分母是多项式的分式的通分,另一个是分式方程的“建模〞问题.3.关键:把握分式的根本性质,在通分中的充分应用.抓住最简公分母的寻找方法是解决通分这一难点的关键.复习与交流教学内容本节课主要内容是对本单元进展回忆.教学目标1.知识与技能会进展分式的根本运算〔加、减、乘、除、乘方〕,熟练掌握分式方程的解法,能应用“建模〞思想解决实际问题.2.过程与方法经历回忆分式概念、计算、应用的过程,提高观察、类比归纳、猜测等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的根本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模〞.3.关键:把握分式的根本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式根本性质、约分、通分、混合运算,•以及分式方程、应用内容后进展反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式到达稳固提高本单元知识的目的.教学过程一、回忆交流,稳固反应【组织交流】教师活动:翻开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是〔1〕单元知识构造图;〔2〕课本P41“回忆与思考〞的5个问题;〔3〕自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的根本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.〔投影显示本单元知识体系,见课本P157〕1.分式的根本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:〔1〕根本性质中的字母表示整数,〔,A A M A A M B B M B B M⨯÷==⨯÷,M≠0〕 〔2〕要特别强调M≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用根本性质时,重点要考察M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、一样因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是〔1〕因式分解,〔2〕约分.5.分式的加减法本质就是〔1〕通分,〔2〕分解因式,〔3〕约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,以下分式有意义?〔1〕22461;(2);(3)512x x x x m-++. 思路点拨:〔1〕令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.〔 x≠-15〕;〔2〕由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;〔3〕因为任何数的平方均为非负数,那么m 2≥0,所以m≠0即可.演练题2:当x 取什么数,以下分式的值为零?〔1〕23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•假设等于零,那么分式无意义,应舍去.〔1〕x=-32;〔2〕x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,稳固深化1.x 为何值时,2||5x x-的值为零;〔x±5〕 2.x 为何值时,259x x +-没有意义;〔x=9〕 3.x 为何值时,6721a a -+的值等于1.〔a=2〕 4.课本P158复习题15第6题.四、范例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案 思路点拨:按法那么进展分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进展;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化. 例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:〔1〕•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.〔2〕对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性.学生活动:参与例1、例2的分析,同教师一道领会算理,掌握正确的学习方法.五、随堂练习,稳固深化1.计算.22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程根本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建立,每天比原方案增加25%,可提前10天完成任务,问原方案每天生产多少台?〔80台〕思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原方案每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模〞方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8〔无解〕2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P159“复习题15〞第9,10题.八、布置作业,专题突破1.课本P158“复习题15〞第1,2〔3〕〔4〕〔6〕,3〔2〕〔4〕〔6〕〔8〕,4,5,8题.2.选用课时作业设计.九、课后反思。