有理数的乘方--浙教版
- 格式:ppt
- 大小:438.50 KB
- 文档页数:13
《有理数的乘方》作业设计方案(第一课时)一、作业目标通过本次作业,使学生掌握有理数乘方的概念和基本性质,能够正确理解和计算正整数指数的乘方运算,培养学生运用数学知识解决实际问题的能力,提高他们的数学逻辑思维和计算能力。
二、作业内容1. 基础练习:设计一系列有理数乘方的基础题目,包括正整数指数的乘方运算,如(2^3)、(-3^2)等,旨在让学生熟练掌握乘方的计算方法。
2. 概念理解:编写一些关于乘方概念的理解题,如“乘方的意义是什么?”、“乘方运算的规则有哪些?”等,帮助学生加深对乘方概念的理解。
3. 应用实践:设置一些实际问题的应用题,如“计算树苗的种植面积”、“计算火箭升空后的高度”等,通过实际问题让学生运用乘方知识解决实际问题。
4. 拓展提升:设计一些稍有难度的题目,如带有负指数的乘方运算、科学记数法的乘方运算等,旨在提升学生的数学思维和解题能力。
三、作业要求1. 学生在完成作业时,应先独立完成,不得抄袭他人答案。
2. 计算过程中应注重准确性和速度,既要保证计算结果正确,也要注意提高计算速度。
3. 对于应用实践题,学生应理解题意,合理运用所学知识解决问题,写出清晰的解题过程和答案。
4. 拓展提升题为选做题,学生可根据自身能力选择是否完成。
四、作业评价1. 教师将对每位学生的作业进行批改,评价其完成情况和正确性。
2. 对于基础练习和应用实践题的完成情况,教师将根据学生的解题过程和答案的准确性进行评价。
3. 对于拓展提升题的完成情况,教师将根据学生的解题思路和解题方法的创新性进行评价。
4. 教师将在批改过程中,对共性问题进行总结,并在课堂上进行讲解和指导。
五、作业反馈1. 教师将通过课堂讲解和个别辅导的方式,对学生的作业进行反馈和指导。
2. 对于共性问题,教师将在课堂上进行讲解和演示,帮助学生掌握正确的解题方法和思路。
3. 对于个别学生的问题,教师将通过个别辅导的方式,进行针对性的指导和帮助。
4. 学生在收到反馈后,应认真听取教师的建议和指导,及时改正错误,提高自己的学习效果。
浙教版数学七年级上册2.5《有理数的乘方》(第1课时)教学设计一. 教材分析《有理数的乘方》是浙教版数学七年级上册第2.5节的内容,主要介绍了有理数的乘方概念、性质及运算法则。
这部分内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
本节内容与现实生活紧密相连,有利于激发学生的学习兴趣。
二. 学情分析七年级的学生已具备一定的数学基础,掌握了有理数的加减乘除运算。
但学生对于乘方的概念和性质可能较为抽象,需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式各有不同,需要教师在教学中善于引导和调动学生的积极性。
三. 教学目标1.理解有理数的乘方概念,掌握有理数乘方的性质和运算法则。
2.能够运用乘方知识解决实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维和抽象思维能力,提高学生的数学素养。
4.激发学生学习数学的兴趣,养成良好的学习习惯。
四. 教学重难点1.有理数的乘方概念和性质的理解。
2.有理数乘方的运算法则的掌握。
3.乘方知识在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入乘方概念,激发学生学习兴趣。
2.引导发现法:教师引导学生发现乘方的性质和运算法则,培养学生的自主学习能力。
3.实践操作法:让学生通过实际操作,加深对乘方知识的理解和掌握。
4.巩固拓展法:通过课堂练习和课后作业,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教学PPT:制作包含乘方概念、性质和运算法则的PPT,以便于课堂展示和讲解。
2.教学案例:准备一些与生活紧密相关的乘方实例,以便于引导学生学习和应用。
3.练习题:准备一些有针对性的练习题,以便于课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)利用生活实例引入乘方概念,如“2的3次方表示3个2相乘,即2×2×2=8”。
通过实例让学生感受乘方的意义,激发学生的学习兴趣。
2.呈现(10分钟)呈现乘方的性质和运算法则,如“乘方的性质:a m×a n=a(m+n);乘方的运算法则:a m÷a n=a(m-n)”。
2.5 有理数的乘方数学(浙教版)七年级上册第2章第5节舟山市定海二中教育集团史芬顾苏芬 2009年12月在以学生发展为本的教育理念的指导下,为提高学生的学习兴趣及效率,提高教学质量,结合新课程标准的要求,对初一年级第二章第五节作如下的设计。
一、教材分析1.地位作用:有理数的乘方是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。
2.教学目标:(1)让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
(2)在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。
(3)让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。
(4)经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作交流的重要性。
3、教学重点:有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。
4、教学难点:有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。
二、教学方法启发诱导式、实践探究式。
三、学法根据初一学生好动、好问、好奇的心理特征,课堂上先创设一个问题情境,再由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养学生学习的积极性和主动性,使学习方式由“学会”变为“会学”。
最后再以小组评分的形式,激发学生的积极性。
四、说教学手段利用多媒体教学,目的之一是使课堂生动、形象又直观,能激发学生的学习兴趣,目的之二是增大教学容量,增强教学效果。
2.5 有理数的乘方(第1课时)一、教学目标:知识目标:掌握乘方的有关概念,能进行简单的乘方运算。
能力目标:掌握有理数的乘方运算,培养学生的观察、比较、分析、归纳、概括以及计算能力.情感目标:通过在现实背景中理解有理数乘方的意义,体会数学的应用价值.二、教学重难点:重点:幂、底数、指数的概念及表示难点:乘方的概念及表示方法、有理数的乘方运算三、教学过程:(一)导入新课:[师]假设一张厚度为0.09mm的纸连续对折始终是可能的,对折多少次后所得的厚度将超过你的身高?你能算吗?[生]1次对折后,厚度为0.09×2mm,2次对折后,厚度为0.09×2×2mm,14次对折后,厚度为0.09×2×2×2……×2≈1.47m。
14个2为了表示简便,我们把2×2×2……×2记为214。
14个2[师]像上面所表示的214的形式,就是我们今天研究的课题:有理数的乘方(板书).(二)探究新知:[师]如果对于几个相同的因数a相乘:a×a×a×a×……×a我们也将之记为a n。
n个a板书:求n个相同因数a的乘积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数。
把a n读做a的n次方。
1、几种常见的乘方[师]怎样表示图中正方形的面积,立方体的体积呢?[生]5×5平方单位,5×5×5立方单位。
[师]我们可以把5×5记做52,读作5的平方,5×5=52=25;5×5×5记作53,读作5的立方,即5×5×5=53=125。
注意:一个数可以看做这个数本身的一次方,例如,5就是51,指数1通常省略不写,二次方也叫做平方,如52通常读做5的平方;三次方也叫做立方,如53可读做5的立方。
做一做1、(口答)把下列相同因数的乘积写成幂的形式,并说出底数和指数。
浙教版七年级数学上册第二单元1.《有理数的乘方》(第一课时)一、教材分析:有理数的乘方是七年级上册第二章第五节的内容。
从教材内容上来看,本节内容分为两个课时,本课为第一课时。
在本节中,教材涉及有理数的乘方的相关概念以及运算,是对有理数乘法的进一步推广,也为学生学习后面的科学计数法、有理数混合运算等内容打下基础。
二、学情分析:从知识技能层面来看,在学习本节内容前,学生已掌握有理数的加、减、乘、除的运算,对有理数运算中的符号法则也有了一定的认识。
从情感态度层面来看,刚刚进入初一的学生,思想还比较稚嫩,还没有形成学习的自主性。
在教学过程中应充分调动学生的积极性,引导学生沉浸在课堂中。
三、教学目标:知识与技能:1.理解有理数乘方的意义2.理解有理数乘方中底、指数、幂的概念及相互关系3.掌握有理数乘方的简单运算数学思考:1.掌握将实际问题转为数学问题的思想2.培养观察、类比、总结的思维能力问题解决:培养通过不断探究、联系已有知识来解决数学问题的能力情感态度:1.体验通过自己的观察、探究来学习数学知识的过程,激发学习的内在动机。
2.养成良好的数学学习习惯,培养学习自主性。
四、教学重、难点:重点:1.理解有理数乘方中的相关概念2.掌握有理数乘方的简单运算难点:区分有理数乘方与幂五、教学方法手段:主要采用启发法,引导学生通过类比等方法理解有理数乘方的意义,并在思考问题、概括总结的过程中,逐步掌握有理数的乘方运算以及符号法则,重视学生的学习自主性。
六、教具准备:多媒体、粉笔七、教学过程:1.复习回顾,引入问题教师:同学们,小学时我们已学习过如何表示多个相同的数相加,比如5个2相加,我们可以用乘法表示为5×2;n个a相加可以表示成n×a。
在生活中,我们除了会碰到多个相同的数相加的情况,同样也会碰到多个相同的数相乘的问题。
【问题一】多媒体展示:1)边长为5的正方形,它的面积是_____2)棱长为5的正方体,它的体积是_____3)1个细胞每秒可以分裂成2个细胞,那你知道一个细胞经过4秒可以分裂成几个细胞吗?请学生思考,回答。
第二课时科学记数法教学分析:课本通过中国首次载人航天飞行的行程与城市用水量所表示的数,进一步使学生体会生活中经常会遇到大数,并通过“有简单的表示方法吗?〞这个问题,引起学生兴趣,引入科学记数法,并在教学中参透爱国主义教育与学生“节约〞思想的培养。
教学目标:[知识与技能]1.借助身边熟悉的事物进一步体会大数,并会利用科学记数法表示大于10的数。
2.使学生了解什么是科学记数法,并会用科学记数法表示大于10的数。
[情感态度与价值观]利用生活中的对一些大数的表示让学生体会到引入科学记数法的必要性,通过例题和练习感受到能利用科学记数法对一些大数进行描述。
教学重点:借助身边熟悉的事物进一步体会大数,并会利用科学记数法表示大于10的数。
教学难点:10的幂指数的特征。
教学活动过程设计:一、材料引入:问题:2003年10月15日,中国首次进行载人航天飞行,飞船绕地球飞行了14圈,行程约60万km,赤道长度约40000km,飞船行程相当于多少个赤道长?问题:如果某市每人每天节约用水,该市约有1千3百万人口,那么该市每天节约用水多少kg?[师]我们经常遇到一些较大的数,怎样使较大的数读写方便呢?我们先来探索10n的数的特征。
〔生答复〕101=10 〔10的1次幂等于1后面带1个0〕102=100 〔10的2次幂等于1后面带2个0〕103=1000 〔10的3次幂等于1后面带3个0〕104=10000 〔10的4次幂等于1后面带4个0〕105=100000 〔10的5次幂等于1后面带5个0〕……109=1000000000 〔10的9次幂等于1后面带9个0〕10n呢?〔10的n次幂等于1后面带n个0〕引导学生总结规律:10的几次幂就等于10的后面带几个0。
即10的n次幂等于1后面带n个0的〔n+1〕位的数。
反之,假设把等式右边的整数写成10的幂的形式;〔1〕幂指数等于0的个数。
〔2〕幂的指数比整数的位数少1。
二、感知新知:老师提问:怎样借用10的乘方的方法来表示较大的数呢?600 000=6×105。
2.5 有理数的乘方1教学目标1.理解有理数的乘方、幂、底数、指数的概念及其相互间的关系,会进行乘方的运算;2.在生动的情境中让学生获得有理数乘方的初步经验;3.培养学生观察、分析、归纳、概括的能力;4.经历从乘法到乘方的推广的过程,从中感受化归的数学思想,体会数学的简洁美。
2学情分析学生在学习了有理数的加法、减法、乘法、除法后,对于原本小学已学的四则运算也在一定程度上回顾和推广,在此基础上,学习有理数的乘方,水到渠成。
3重点难点【教学重点】:乘方的相关概念及运算方法。
【教学难点】:理解有理数的乘方、幂、底数、指数的概念及其相互间的关系。
4教学过程活动1【导入】新课引入灰太狼说:每天给我10元,一共给20年,我就不吃你。
喜羊羊说:如果你第一天给我1元,第二天给我2元,第三天给我4元,以此类推,一直给20天,我就答应你!你觉得灰太狼能吃了喜羊羊吗?〖设计意图〗:吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,引出课题。
活动2【讲授】新课讲解问题1:(1)边长为5的正方形的面积是什么?(2)棱长为5的正方体的体积是什么?式子为:(1)5×5=52(2)5×5×5=53请同学们用类似的方法表示下面的式子。
5×5×5×5×5=555×5×5×5×5×5×5×5×5×5=510象这样的运算就是我们今天要学习的乘方运算。
给出乘方的定义。
乘方:把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂。
〖设计意图〗:让学生体会到问题的存在性和引入新的表示方法——乘方的必要性!定义分析实质:是特殊的乘法运算特点:各因数相同幂的表示:an读作:a的n次方,也叫做a的n次幂,a叫做幂的底数,n叫做幂的指数。
an的意义:表示n个a相乘。
〖设计意图〗:承上启下,与小学所学知识联系,让学生体会乘方的表示方法的得出过程及这样表示的合理性,为定义得出作铺垫。
教案主题:有理数的乘方教学目标:1.理解有理数的乘方的定义;2.掌握有理数的平方和立方的计算方法;3.能够解决与有理数的乘方相关的实际问题。
教学重点:1.有理数的平方和立方的计算;2.实际问题的解决。
教学难点:1.理解和掌握有理数的乘方的定义;2.能够将实际问题转化为有理数的乘方运算。
教学准备:黑板、笔、课本《浙教版数学七年级上》,作业本、实物模型。
教学过程:Step 1:引入1.引导学生回顾上节课所学的内容:实数和有理数的概念。
2.引导学生思考,有理数可以进行哪些运算?Step 2:概念解释1.通过与学生的互动,引导他们理解有理数的平方和立方的定义。
2.解释乘方的定义:乘方就是将一个数连续乘以自己的运算。
Step 3:有理数的平方计算1.通过具体例子展示有理数的平方计算方法,并逐步引导学生掌握。
2.给学生分发练习册,让他们完成相关练习。
Step 4:有理数的立方计算1.展示有理数的立方计算方法,并通过例子引导学生掌握。
2.给学生分发练习册,让他们完成相关练习。
Step 5:应用题1.给学生提供一些实际问题,并引导他们将问题转化为有理数的乘方运算。
2.让学生自己思考解决问题的方法,并鼓励他们表达自己的答案和解决思路。
Step 6:练习和巩固1.配置学生实物模型,让学生使用模型进行有理数的乘方的计算。
2.再次让学生进行相关练习,巩固所学知识。
Step 7:总结与评价1.引导学生回顾本节课所学的内容,并总结有理数的乘方的要点。
2.对学生的答题情况进行评价,并鼓励他们继续努力。
Step 8:作业布置布置课后作业,要求学生进一步巩固所学内容。
Step 9:课堂小结1.核对课堂内容的完成情况;2.总结本节课的收获和困惑;3.督促学生完成课后作业。
教学反思:本节课通过概念解释、具体计算方法的引导和实际问题的应用,帮助学生理解和掌握有理数的乘方运算。
通过实物模型的使用,可以增加学生的参与性,提高课堂的互动性。
有理数的乘方(4种题型)【知识梳理】一、有理数的乘方1、求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂。
a 叫底数,n 叫指数,na 读作:a 的n 次幂(a 的n 次方)。
2、乘方的意义:n a 表示n 个a 相乘。
n a n a a a a a =⨯⨯⨯⨯ 个 3、写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了.4、n a 与-na 的区别.(1)n a 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.如:3)2(−底数是2−,指数是3,读作(-2)的3次方,表示3个(-2)相乘. 3)2(−=(-2)×(-2)×(-2)=-8.32−底数是2,指数是3,读作2的3次方的相反数.32−=-(2×2×2)=-8. 注:3)2(−与32−的结果虽然都是-8,但表示的含义并不同。
5、乘方运算的符号规律. (1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.(3)负数的偶次幂是正数.(4)0的奇数次幂,偶次幂都是0.所以,任何数的偶次幂都是正数或0。
二、有理数的混合运算1、有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的,再算括号外面的。
2、括号前带负号,去掉括号后括号内各项要变号,即a+−b−)(a−=+bab(,ba−−)=−三.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.【考点剖析】一.有理数的乘方(共11小题)1.(2022秋•南浔区期末)下列各组数中,运算结果相等的是()A.(﹣5)3与﹣53B.23与32C.﹣22与(﹣2)2D.与【分析】利用乘方运算法则计算后判断即可.【解答】解:A、(﹣5)3=﹣125,﹣53=﹣125,故相等,符合题意;B、23=8,32=9,故不相等,不符合题意;C、﹣22=﹣4,(﹣2)2=4,故不相等,不符合题意;D、,,故不相等,不符合题意;故选:A.【点评】本题考查了有理数的乘方,关键是掌握有理数的乘方的意义.2.(2022秋•苍南县期中)把写成幂的形式是.【分析】根据有理数的乘方得出结论即可.【解答】解:=()5,故答案为:()5.【点评】本题主要考查有理数的乘方,熟练掌握有理数的乘方计算是解题的关键.3.(2022秋•柯桥区月考)如果a,b,c是整数,且a c=b,那么我们规定一种记号(a,b)=c,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣3,﹣27)=.【分析】利用规定记号的意义将式子表示出乘方的形式,利用有理数乘方的意义解答即可.【解答】解:设(﹣3,﹣27)=x,∵ac=b,那么我们规定一种记号(a,b)=c,∴(﹣3)x=﹣27.∵(﹣3)3=﹣27,∴x=3.故答案为:3.【点评】本题主要考查了有理数的乘方,本题是新定义型题目,理解题干中的新规定并列出算式是解题的关键.4.(2023•西湖区校级二模)﹣33=()A.﹣9B.9C.﹣27D.27【分析】运用乘方知识进行计算、求解.【解答】解:﹣33=﹣27,故选:C.【点评】此题考查了实数的立方运算能力,关键是能准确理解并运用该知识进行计算.5.(2022秋•青田县期末)一张纸的厚度为0.09mm,假设连续对折始终都是可能的,那么至少对折n次后,所得的厚度可以超过厚度为0.9cm的数学课本.则n的值为()A.5B.6C.7D.8【分析】一张纸的厚度为0.09mm,对折1次后纸的厚度为0.09×2mm;对折2次后纸的厚度为0.09×2×2=0.09×22mm;对折3次后纸的厚度为0.09×23mm;对折n次后纸的厚度为0.09×2nmm,据此列出不等式,求出n的取值范围即可.【解答】解:∵折一次厚度变成这张纸的2倍,折两次厚度变成这张纸的22倍,折三次厚度变成这张纸的23倍,折n次厚度变成这张纸的2n倍,设对折n次后纸的厚度超过9mm,则0.09×2n>9,解得2n>100.而26<100<27.∴n为7.故选:C.【点评】本题考查从实际中寻找规律的能力,乘方是乘法的特征,乘方的运算可以利用乘法的运算来进行,乘方的意义就是多少个某个数字的乘积.6.(2022秋•文成县期中)下面的计算错在哪里?指出错误步骤的序号,并给出正确的解答过程.﹣3=……①=9÷1……②=9……③错误步骤的序号:;正确解答:;【分析】根据有理的乘除法则及运算顺序进行判断,并计算便可.【解答】解:∵﹣32=﹣9,∴步骤①错误;正确的解答如下:﹣3=﹣9÷(﹣8)×=﹣9×=﹣.故答案为:①;﹣.【点评】本题考查了有理数的乘除法,关键是熟记运算法则与运算顺序.7.(2019秋•萧山区期中)计算:23=.【分析】根据有理数的乘方计算即可【解答】解:23=8.故答案为:8.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义.8.(2020秋•义乌市校级月考)定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=.(2)劳格数有如下运算性质:若m,n为正数,则d(mn)=d(m)+d(n);d()=d(m)﹣d(n).若d(3)=0.48,d(4)=0.6,根据运算性质,填空:d(12)=,d()=,d()=.【分析】(1)根据劳格数的定义,可知:d(103)求得是10b=103中的b值;(2)由劳格数的运算性质可知,两数积的劳格数等于这两个数的劳格数的和;两数商的劳格数等于这两个数的劳格数的差,据此可解.【解答】解:(1)根据劳格数的定义,可知:d(103)=3;故答案为:3.(2)由劳格数的运算性质:若d(3)=0.48,d(4)=0.6,则d(12)=d(3)+d(4)=0.48+0.6=1.08,则d()=d(3)﹣d(4)=0.48﹣0.6=﹣0.12,∵d(4)=d(2×2)=d(2)+d(2)=0.6,∴d(2)=0.3,d()=d(9)﹣d(2)=d(3×3)﹣d(2)=d(3)+d(3)﹣d(2)=0.48+0.48−0.3=0.66,故答案为:1.08,﹣0.12,0.66.【点评】本题考查了有理数的乘方,定义新运算,读懂题中的定义及运算法则是解题的关键.9.(2021秋•吴兴区期中)已知三个互不相等有理数a,b,c,既可以表示为1,a,a+b的形式,又可以表示为0,,b的形式,则a2020b2021值是.【分析】由有意义,则a≠0,则应有a+b=0,=﹣1,故只能b=1,a=﹣1了,再代入代数式求解.【解答】解:因为三个互不相等的有理数1,a,a+b分别与0,,b对应相等,为有理数,∴a≠0,a+b=0,∴=﹣1,b=1,∴a=﹣1,∴a2020b2021=(﹣1)2020×12021=1,故答案为:1.【点评】本题主要考查了实数的运算,属于探索性题目,关键是根据已知条件求出未知数的值再计算.10.(2020秋•吴兴区校级期中)请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3=(4)计算:113+123+133+…3的值.【分析】根据已知一系列等式,得出一般性规律,计算即可得到结果.【解答】解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+n3=;(4)113+123+133+…+203=44100﹣3025=41075.故答案为:(1)3025;(2)44100;(3);(4)41075.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.11.(2020秋•萧山区期中)阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4….回答下列三个问题:①验证:(2×)100=,2100×()100=;②通过上述验证,归纳得出:(a•b)n=;(a•b•c)n=;③请应用上述性质计算:(﹣0.125)2019×22018×42017.【分析】①根据有理数的乘法法则、有理数的乘方解决此题.②通过猜想归纳解决此题.③根据积的乘方、有理数的乘法法则、有理数的乘方解决此题.【解答】解:①=1100=1,==1.故答案为:1,1.②(a•b)n=anbn,(a•b•c)n=anbncn.故答案为:anbn,anbncn.③(﹣0.125)2019×22018×42017=×22018×42017====.【点评】本题主要考查有理数的乘法、积的乘方,熟练掌握有理数的乘法法则、积的乘方是解决本题的关键.二.非负数的性质:偶次方(共5小题)12.(2022秋•丽水期中)已知a,b满足|a+3|+(b﹣2)2=0,则a+b的值为()A.1B.5C.﹣1D.﹣5【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得:a=﹣3,b=2,故a+b=﹣3+2=﹣1.故选:C.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13.(2022秋•青田县期中)若|m+1|+(n﹣3)2=0,则m n的值为()A.1B.﹣1C.3D.﹣3【分析】利用非负数的性质求出m与n的值,代入所求式子计算即可得到结果.【解答】解:∵|m+1|+(n﹣3)2=0,|m+1|≥0,(n﹣3)2≥0,∴m+1=0,n﹣3=0,即m=﹣1,n=3,则mn=(﹣1)3=﹣1.故选:B.【点评】此题主要考查了非负数的性质,正确得出m,n的值是解题关键.14.(2021秋•兰山区校级月考)若|x﹣2|+(y+3)2=0,则y x=.【分析】根据非负数的性质可求出x、y的值,再将它们代入yx中求解即可.【解答】解:∵x、y满足|x﹣2|+(y+3)2=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则yx=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.15.(2022秋•兰溪市期中)已知(a﹣2)2与|b+1|互为相反数,求(a﹣b)a+b的值.【分析】根据偶次方的非负性、绝对值的非负性、有理数的乘方解决此题.【解答】解:由题意得:(a﹣2)2+|b+1|=0.∵(a﹣2)2≥0,|b+1|≥0,∴a﹣2=0,b+1=0.∴a=2,b=﹣1.∴(a﹣b)a+b=[2﹣(﹣1)]2+(﹣1)=31=3.【点评】本题主要考查偶次方的非负性、绝对值的非负性、有理数的乘方,熟练掌握偶次方的非负性、绝对值的非负性、有理数的乘方是解决本题的关键.16.(2022秋•衢州期中)已知,则(ab)2022=.【分析】根据绝对值和偶次方是非负数的性质列式求出a、b的值然后代入代数式计算即可.【解答】解:∵,∴,b+2=0,∴,b=﹣2,∴,故答案为:1.【点评】本题考查了非负数的性质:根据几个非负数的和等于零,则每一个算式都等于零求出a、b的值是解此类题的关键.三.科学记数法—表示较大的数(共9小题)17.(2022秋•临海市期末)我国倡议的“一带一路”惠及约为4400000000人,用科学记数法表示该数为.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:4400000000=4.4×109,故答案为:4.4×109.【点评】本题考查了科学记数法的表示方法,用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,解题的关键是要正确确定a和n的值.18.(2023•杭州)杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为()A.8.8×104B.8.08×104C.8.8×105D.8.08×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:80800=8.08×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.19.(2023•路桥区校级二模)2022年12月28日,台州市域铁路S1线开通运营,标志着台州城市发展迈入轨道时代台州市域铁路S1线全长约52.4公里,总投资约228.19亿元,是连接椒江区、路桥区及温岭市之间重要的城市快速通道.其中数据228.19亿用科学记数法表示为()A.0.22819×1010B.0.22819×1011C.2.2819×1010D.2.2819×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:228.19亿=22819000000=2.2819×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.20.(2023•郧阳区模拟)2022年5月10日凌晨,长征7号火箭托举着天舟四号货运飞船发射升空,在距地面390000米的高度,与空间站完成自主交会对接任务.390000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:390000=3.9×105.故答案为:3.9×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a n的值.21.(2022秋•拱墅区月考)北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术.可根据不同项目分区域、分标准制冰.将数据12000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12000=1.2×104.故答案为:1.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,正确确定a的值以及n的值是解决问题的关键.22.(2023•余姚市二模)中国空间站2022年建成,轨道高度为400~450千米.“450千米”用科学记数法表示是()A.4.5×105米B.0.45×107米C.45×105米D.4.5×107米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:“450千米”等于“450000米”,用科学记数法表示是4.5×105米.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.23.(2021秋•越城区校级月考)一次自然灾害导致大约20万人受困,急需准备一批帐篷和粮食进行援助.估计每顶帐篷可以住10人,平均每人每天需要粮食0.4千克,共维持15天,那么有关部门需要筹集多少顶帐篷?多少吨粮食?(结果用科学记数法表示)【分析】根据题意列式计算,并用科学记数法表示结果即可.【解答】解:根据题意得:20万=200000,所以有关部门需要筹集200000÷10=20000(顶)帐篷,即2×104顶帐篷;需要筹集200000×0.4×15=1200000(千克)粮食,1200000千克=1200吨即1200=1.2×103吨粮食.a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.24.(2022秋•慈溪市期中)在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3×108×3.6×103=3×3.6×108×103=10.8×1011=1.08×1012(m).答:行驶的路程为1.08×1012m.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.25.(2022秋•永嘉县校级月考)已知一个U盘的名义内存为10GB,平均每个视频的内存为512MB,平均每首音乐的内存为10.24MB,平均每篇文章的内存为10.24KB.现该U盘已存16个视频,50首音乐.若该U盘的内存的实际利用率为90%,求还可以存文章的最多篇数(用科学记数法表示).(注:已知1GB =1024MB,1MB=1024KB)【分析】根据题意列式求解,最后化成科学记数法.【解答】解:(10×1024×1024×0.9﹣512×1024×16﹣10.24×50×1024)÷10.24=5.12×104,答:还可以存文章的最多篇数是5.12×104.【点评】本题考查了科学记数法,掌握科学记数法的形式是解题的关键.四.科学记数法—原数(共1小题)26.(2021秋•平阳县期中)用科学记数法表示的数为4.315×103,这个数原来是()A.4315B.431.5C.43.15D.4.315【分析】将小数点向右移动3位即可得出原数.【解答】解:用科学记数法表示的数为4.315×103,这个数原来是4315,故选:A.【点评】本题主要考查科学记数法—原数,科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【过关检测】一、单选题1.(2023·浙江·七年级假期作业)()23−的相反数为()A.3−B.3C.9−D.9【答案】C【分析】根据乘方运算以及相反数的定义进行计算即可得到答案.【详解】解:()239−=,根据相反数的定义可知:9的相反数是9−.故选:C.【点睛】本题考查了乘方运算以及相反数的定义,一个数的相反数就是在这个数前面添上“-”号;正数的相反数是负数,负数的相反数是正数,0的相反数是0.2.(2022秋·浙江·七年级期末)32的意义是( ) A .2×3 B .2+3 C .2+2+2 D .2×2×2【答案】D【分析】根据幂的意义即可得出答案.【详解】解:,32222=⨯⨯故选:D .【点睛】本题考查了有理数的乘方,掌握na 表示n 个a 相乘是解题的关键. 3.(2023·浙江·七年级假期作业)代数式22222n ⨯⨯⨯⋅⋅⋅⨯个可以表示为( )A .2n +B .2nC .2nD .n2【答案】C【分析】根据有理数乘方的意义解答即可得.【详解】解:代数式22222n ⨯⨯⨯⋅⋅⋅⨯个可以表示为2n; 故选:C.【点睛】本题考查了有理数的乘方,理解乘方的意义是关键.【答案】C【分析】由相反数的定义和非负数的性质求出a 、b 的值,代入计算即可. 【详解】解:∵5a +与6b −互为相反数,560a b ∴++−=,50a ∴+=,60b −=,解得5a =−,6b =,202120212021()(56)11a b ∴+=−+==.故选C .【点睛】本题考查了相反数的定义和非负数的性质,解题的关键是求出a 、b 的值.5.(2022春·浙江金华·七年级统考期末)下列对于式子()23−的说法,错误的是( ) A .指数是2 B .底数是3− C .幂为3− D .表示2个3−相乘【答案】C【分析】根据乘方的定义解答即可. 【详解】A .指数是2,正确; B .底数是3−,正确; C .幂为9,故错误;D .表示2个3−相乘,正确;. 故选C .【点睛】此题考查了乘方的意义,熟练掌握乘方的意义是解本题的关键.乘方的定义为:求n 个相同因数a 的积的运算叫做乘方,乘方运算的结果叫做幂.在na 中,它表示n 个a 相乘,其中a 叫做底数,n 叫做指数.6.(2023·浙江·七年级假期作业)观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…,根据其中的规律可得30122027777++++的结果的个位数字是( )A .0B .1C .7D .8【答案】A【分析】由已知可得尾数1,7,9,3的规律是4个数一循环,则30122027777++++的结果的个位数字与01237777+++的个位数字相同,即可求解.【详解】解:∵071=,177=,2749=,37343=,472401=,5716807=,…,∴尾数1,7,9,3的规律是4个数一循环, ∵179320+++=,∴01237777+++的个位数字是0,又∵20244506÷=,∴30122027777++++的结果的个位数字与01237777+++的个位数字相同, ∴30122027777++++的结果的个位数字是0.故选:A .【点睛】本题考查数的尾数特征,能够通过所给数的特点,确定尾数的循环规律是解题的关键. 7.(2022秋·浙江绍兴·七年级校联考期中)某种细胞每过15秒便由1个分裂成2个.经过3分钟,这种细胞由2个分裂成( )个. A .102 B .112 C .122 D .132【答案】C【分析】根据题意可得3分钟有12个15秒,进而根据有理数乘方的意义即可求解. 【详解】解:∵3分钟3601215=⨯=⨯秒, ∴经过3分钟,这种细胞由2个分裂成122个, 故选:C .【点睛】本题考查了有理数乘方的应用,理解题意是解题的关键. 8.(2023·浙江·七年级假期作业)已知n 为正整数,计算()()22111nn +−−−的结果是( )A .1B .-1C .0D .2【答案】D【分析】根据有理数乘方运算法则进行计算即可.【详解】解:()()22111112nn +−−−=+=,故选:D .【点睛】本题考查了有理数的乘方,熟练掌握有理数的乘方运算法则以及乘方的符号规律是解本题的关键. 9.(2023·浙江·七年级假期作业)已知28.6274.3044=,若20.743044x =,则x 的值( ) A .86.2 B .0.862 C .0.862± D .86.2±【答案】C【分析】根据两式结果相差2位小数点,利用乘方的意义即可求出x 的值.【详解】解:∵28.6273.96=,20.7396x =,∴220.862x =,则0.862x =±. 故选C .【点睛】本题考查了有理数的乘方,熟练掌握乘方的意义是解题的关键.二、填空题10.(2022秋·浙江·七年级专题练习)计算:()3232−⨯−=_____. 【答案】72【分析】直接利用有理数的乘方运算法则计算得出答案. 【详解】解:()()32329872−⨯−=−⨯−=.故答案为:72.【点睛】此题主要考查了有理数的乘方运算,正确化简各数是解题关键.11.(2022秋·浙江绍兴·七年级校考期中)把22222⨯⨯⨯⨯写成幂的形式是____________. 【答案】52【分析】根据有理数的乘方的定义及幂的定义解答即可. 【详解】解:22222⨯⨯⨯⨯写成幂的形式为:52. 故答案为:52.【点睛】本题考查了有理数的乘方及幂的定义,是基础题,熟记概念是解题的关键.【分析】先根据()2320a b −++=求出a 和b 的值,再把a 和b 的值代入()2022a b +即可求解.【详解】解:∵()2320a b −++=,∴,a b −=+=3020,解得:3,2a b ==−,∴()()a b =−=+20222022132,故答案为:1.【点睛】本题主要考查了绝对值与偶次幂的非负性,幂的运算,熟练掌握绝对值与偶次幂的非负性是解题的关键.【答案】 34 3 ﹣2764【分析】根据有理数的乘方的定义和意义,在na 中,a 叫做底数,n 叫做指数;na 表示n 个a 相乘,即可.【详解】∵在na 中,a 叫做底数,n 叫做指数∴334⎛⎫− ⎪⎝⎭的底数是34,指数是3∵na 表示n 个a 相乘∴3332744464⎛⎫−⨯⨯=−⎪⎝⎭故答案为:34;3;﹣2764.【点睛】本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和意义. 14.(2023·浙江·七年级假期作业)已知24m =,则m =______________. 【答案】2【分析】把4写成22即可求出m 的值.【详解】解:∵24m =且24=2,∴222m =,∴2m =, 故答案为:2.【点睛】本题主要考查了乘方的意义,正确把4写成22是解答本题的关键.【答案】243【分析】根据题意可求出第一次截去全长的13,剩下213⨯米,第二次截去余下的13,剩下2123⨯,从而即可得出第五次截去余下的13,剩下532133224⨯=米.【详解】解:第一次截去全长的13,剩下1111332⎛⎫⨯−=⨯⎪⎝⎭米,第二次截去余下的13,剩下2911111133432⎛⎫⎛⎫⨯−⨯−=⨯=⎪ ⎪⎝⎭⎝⎭米,…第五次截去余下的13,剩下532133224⨯=米.故答案为:32 243.【点睛】本题考查有理数乘方的应用,数字类规律探索.理解乘方的定义是解题关键.三、解答题【答案】(1)正(2)负(3)负(4)负【分析】根据有理数乘方的符号规律解答即可.【详解】(1)解:∵12(6)−的指数是12,为偶数,负数的偶次幂是正数,∴12(6)−的结果为正;(2)解:∵9(0.0033)−的指数是9,为奇数,负数的奇次幂是负数,∴9(0.0033)−的结果为负;(3)解:∵85−表示的是85的相反数,正数的任何次幂都是正数, 85的结果为正,所以85−的结果为负;(4)解:∵1125⎛⎫− ⎪⎝⎭的指数是11,为奇数,负数的奇次幂是负数, ∴1125⎛⎫− ⎪⎝⎭的结果为负.【点睛】本题主要考查了有理数乘方的符号规律,掌握负数的偶次幂为正、奇次幂为负成为解答本题的关键.【答案】(1)625(2)85−(3)0.027【分析】(1)4(5)−表示4个5−相乘,即可得出答案;(2)先计算2的立方,即可得出答案;(3)根据在一个数的前面加上负号就是这个数的相反数,乘方是几个相同因数的简便运算,可得答案.【详解】(1)4(5)(5)(5)(5)(5)625−=−⨯−⨯−⨯−=;(2)322228555⨯⨯−=−=−; (3)[]3(0.3)(0.3)(0.3)(0.3)(0.027)0.027−−=−−⨯−⨯−=−−=.【点睛】本题考查了乘方的定义,理解乘方的意义是解题的关键. 18.(2023·浙江·七年级假期作业)(1)计算下面两组算式: ①2(35)⨯与2235⨯;②2[(2)3]−⨯与222)3⨯(-;(2)根据以上计算结果想开去:3()ab 等于什么?(直接写出结果)(3)猜想与验证:当n 为正整数时, ()n ab 等于什么? 请你利用乘方的意义说明理由. (4)利用上述结论,求20202021(4)0.25−⨯的值. 【答案】(1)①225,225,2(35)⨯=2235⨯;②36,36,2[(2)3]−⨯=222)3⨯(-,(2)33a b(3)见详解 (4)0.25.【分析】(1)①先算括号内的数,再算平方;先算平方,再计算乘法即可,比较计算结果, ②先算括号内的数,再算平方;先算平方,再计算乘法即可,比较计算结果, (2)直接按(1)写结果即可,(3)利用乘方()nab 的意义写成n 个数相乘,利用交换律转化为n a aa 个与n b bb个乘积即可.(4)利用积的乘方的逆运算把202120200.250.250.25=⨯,然后20202021(4)0.25−⨯=()202040.250.25−⨯⨯,再简便运算即可.【详解】(1)①2(35)⨯=152=225,2235⨯=9×25=225,2(35)⨯=2235⨯,②2[(2)3]−⨯=(-6)2=36,222)3⨯(-=4×9=36, 2[(2)3]−⨯=222)3⨯(-,(2)333()ab a b =(3)()()()()=n n n n n n ab ab ab ab a a a b b b a b ⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭个个个.(4)20202021(4)0.25−⨯=()202040.250.2510.250.25−⨯⨯=⨯=.【点睛】本题考查有理数乘法法则问题,先通过不同形式的计算,验证结果相同,达到初步认证,再次认证结果,通过证明先算计积再算乘法,与先算每个数的乘方再算积,验证结论成立,会逆用积的乘方运算来简便运算是解题关键.【答案】(1)1,1;(2)ab ,anbn ,abc ,anbncn ;(3)﹣0.125【分析】(1)先算括号内的,再算乘方;先乘方,再算乘法.(2)根据有理数乘方的定义求出即可;(3)根据根据阅读材料可得(﹣0.125×2×4)2014×(﹣0.125),再计算,即可得出答案.【详解】(1)解:(4×0.25)100=1100=1;4100×0.25100=1,故答案为:1,1. (2)解:(ab )n =anbn ,(abc )n =anbncn ,故答案为:ab ,anbn ,abc ,(3)解:原式=(﹣0.125)2014×22014×42014×(﹣0.125)=(﹣0.125×2×4)2014×(﹣0.125)=(﹣1)2014×(﹣0.125)=1×(﹣0.125)=﹣0.125【点睛】本题考查了有理数乘方的应用,主要考查学生的计算能力,理解阅读材料是解题的关键. 20.(2022秋·浙江·七年级专题练习)先阅读下列材料,再解答后面的问题材料:一般地,n 个相同的因数a 相乘n a a a ⋅个,记为an . 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8(即2log 83=).一般地,若n a b =(0a >且10a b ≠>,),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =). 如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814=).问题:(1)计算以下各对数的值:2log 4=_________,2log 16=_________,2log 64=_________.(2)通过观察(1),思考:2log 4、2log 16、2log 64之间满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?log log a a M N +=______(0a >且100a M N ≠>>,,).(4)利用(3)的结论计算44log 2log 32+=______.【答案】(1)2,4,6(2)222log 4log 16log 64+=(3)()log a MN(4)3【分析】(1)根据对数的定义求解;(2)认真观察,即可找到规律:41664⨯=,222log 4log 16log 64+=; (3)由特殊到一般,得出结论:()log log log a a a M N MN +=(4)根据(3【详解】(1)解:(1)∵24624216264===,, ∴222log 42log 164log 646===,,,故答案为:2,4,6;(2)∵41664⨯=,2log 42=,2log 164=,2log 646=, ∴222log 4log 16log 64+=, 故答案为:222log 4log 16log 64+=;(3)观察(2)的结果,我们发现,底数不变,后面两个数相乘.则()log log log a a a M N MN +=, 故答案为:()log a MN .(4)44log 2log 32+()4log 232=⨯4log 64=3=. 故答案为:3.【点睛】本题考查了有理数的乘方运算,对数,类比、归纳,推测出对数应有的性质是解题的关键.【答案】(1)710,8a(2)m n a +(3)2023x ,31n y +(4)18【分析】(1)根据题目中给出的信息进行运算即可;(2)总结题目信息得出同底数幂的运算法则;(3)根据同底数幂的运算法则进行运算即可;(4)逆用同底数的乘法公式进行运算即可.【详解】(1)257101010⨯=,358a a a ⨯=,故答案为710,8a ;(2)m n mn a a a ⨯=(m 、n 都是正整数),故答案为m n a +;(3)220201*********x x x x x ++=⋅=⋅,212131n n n n n y y y y ++++⋅==,故答案为2023x ,31n y +;(4)∵3,6a b x x ==,∴3618a b a b x x x +=⋅=⨯=,故答案为18.【点睛】本题主要考查了乘方的定义和意义,得到同底数幂的运算法则:同底数幂相乘,底数不变,指数相加,是解题的关键. ,一般地,把n a a a aa a ÷÷÷个(a ≠02⎝⎭深入思考【答案】(1)12,8− (2)213,415,82 (3)21n a −(4)1−【分析】(1)(2)根据新定义内容列出算式,然后将除法转化为乘法,再根据乘法和乘方的运算法则进行化简计算;(3)根据(1)(2)得出规律21n a a −=ⓝ;(4)根据(3)的规律求解即可.【详解】(1)解:122222=÷÷=③, 1111118222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−=−÷−÷−÷−÷−=− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤, 故答案为:12,8−;(2)解:(3)−=④21(3)(3)(3)(3)3−÷−÷−÷−=, 4155555555÷÷÷=÷÷=⑥, 1111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−−−−−−−−−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎝=÷⎭÷÷÷÷÷÷÷÷⎭⎝⎭⎭⎝⎝⎭⎝⎭⑩82=; 故答案为:213,415,82;(3)解:21n a a a a a a −=÷÷⋯⋯÷=ⓝ, 故答案为:21n a −;(4)解:3242(16)2÷+−⨯④21248(16)2=÷+−⨯ 13(16)4=+−⨯34=−1=−.【点睛】本题属于新定义题型,考查有理数乘除运算法则及对有理数乘方运算的理解,理解新定义内容,掌握有理数乘除法和有理数乘方的运算法则是解题关键.。