人教版中考数学试题
- 格式:doc
- 大小:254.50 KB
- 文档页数:8
2020年某某省某某市中考数学试卷一、单选题(下列各题的备选答案中.只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题3分,共30分)1.(3分)在有理数1,,﹣1,0中,最小的数是()A.1 B.C.﹣1 D.0【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<0<<1,∴在1,,﹣1,0这四个数中,最小的数是﹣1.故选:C.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()A.B.C.D.【分析】根据从正面看是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)下列运算正确的是()A.a3•a3=a9B.a6÷a3=a2C.a3+a3=2a6D.(a2)3=a6【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a3•a3=a6,原式计算错误,故此选项不合题意;B、a6÷a3=a3,原式计算错误,故此选项不合题意;C、a3+a3=2a3,原式计算错误,故此选项不合题意;D、(a2)3=a6,正确;故选:D.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)不等式4x+1>x+7的解集在数轴上表示正确的是()A.B.C.D.【分析】移项,合并同类项,系数化成1,求得不等式的解集,在数轴上表示即可.【解答】解:4x+1>x+7,4x﹣x>7﹣1,3x>6,x>2;在数轴上表示为:故选:A.【点评】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.5.(3分)下列命题正确的是()A.圆内接四边形的对角互补B.平行四边形的对角线相等C.菱形的四个角都相等D.等边三角形是中心对称图形【分析】根据圆内接四边形的性质、平行四边形和菱形的性质、中心对称图形的概念判断即可.【解答】解:A、圆内接四边形的对角互补,本选项说法正确,符合题意;B、平行四边形的对角线不一定相等,本选项说法错误,不符合题意;C、菱形的四条边相等,但四个角不一定都相等,本选项说法错误,不符合题意;D、等边三角形不是中心对称图形,本选项说法错误,不符合题意;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(3分)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160 160≤x<170 170≤x<180 x≥180人数60 260 550 130 根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.【解答】解:样本中身高不低于170cm的频率==0.68,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.7.(3分)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁【分析】根据方差的意义求解可得.【解答】解:∵四人的平均成绩相同,而观察图形可知:丁比甲稳定有两次恰好为平均成绩,故选:D.【点评】本题考查方差,解答本题的关键是明确题意,掌握方差的意义.8.(3分)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x2【分析】首先设芦苇长x尺,则为水深为(x﹣1)尺,根据勾股定理可得方程(x﹣1)2+52=x2.【解答】解:设芦苇长x尺,由题意得:(x﹣1)2+52=x2,故选:B.【点评】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型.9.(3分)如图,在△ABC中,AB=BC,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为线段OB上的一点,OE:EB=1:,连接DE并延长交CB的延长线于点F,连接OF 交⊙O于点G,若BF=2,则的长是()A.B.C.D.【分析】连接OD、BD,通过证得△ABD是等腰直角三角形得出OD⊥AB,进而证得OD∥FC,即可得到△DOE∽△FBE,得出=,进一步得到∠BOF=60°,OB=2,然后根据弧长公式求得即可.【解答】解:连接OD、BD,∵在△ABC中,AB=BC,∠ABC=90°,∴∠A=∠C=45°,∵AB是直径,∴∠ADB=90°,∵OA=OB,∴OD⊥AB,∴∠AOD=90°,∴∠AOD=∠ABC,∴OD∥FC,∴△DOE∽△FBE,∴=,∵OB=OD,OE:EB=1:,∴=,∴∠BOF=60°,∴BF=2,∴OB=2,∴的长==π,故选:C.【点评】本题考查了等腰直角三角形的性质,圆周角定理,三角形相似的判定和性质解直角三角形以及弧长公式等,作出辅助线构建直角三角形是解题的关键.10.(3分)如图,四边形ABCD是边长为1的正方形,点E是射线AB上的动点(点E不与点A,点B重合),点F在线段DA的延长线上,且AF=AE,连接ED,将ED绕点E顺时针旋转90°得到EG,连接EF,FB,BG.设AE=x,四边形EFBG的面积为y,下列图象能正确反映出y与x的函数关系的是()A.B.C.D.【分析】分两种情况求出函数的解析式,再由函数解析式对各选项进行判断.【解答】解:∵四边形ABCD是边长为1的正方形,∴∠DAB=90°,AD=AB,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS),∴∠ADE=∠ABF,DE=BF,∵∠DEG=90°,∴∠ADE+∠AED=∠AED+∠BEG,∴∠BEG=∠ADE,∴∠BEG=∠ABF,∴EG∥BF,∵DE=BF,DE=GE,∴EG=BF,∴四边形BFEG是平行四边形,∴四边形EFBG的面积=2△BEF的面积=2×BE•AF,设AE=x,四边形EFBG的面积为y,当0≤x≤1时,y=(1﹣x)•x=﹣x2+x;当x>1时,y=(x﹣1)•x=x2﹣x;综上可知,当0≤x≤1时,函数图象是开口向下的抛物线;当x>1时,函数图象是开口向上的抛物线,符合上述特征的只有B,故选:B.【点评】本题综合考查了正方形的性质和二次函数图象及性质,分段求出函数的解析式是解题的关键.二、填空题(每小题3分,共18分)11.(3分)《2019年中国国土绿化状况公报》表明,全国保护修复湿地93000公顷,将数据93000用科学记数法表示为9.3×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据93000用科学记数法表示为9.3×104.故答案为:9.3×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值X围是m<1 .【分析】利用判别式的意义得到△=22﹣4m>0,然后解关于m的不等式即可.【解答】解:根据题意得△=22﹣4m>0,解得m<1.故答案为m<1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.13.(3分)如图,直线a∥b,△ABC的顶点A和C分别落在直线a和b上,若∠1=60°,∠ACB=40°,则∠2的度数是20°.【分析】根据平行线的性质可证得∠1=∠ACB+∠2,由∠1=60°,∠ACB=40°可求解∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠ACB+∠2,∵∠1=60°,∠ACB=40°,∴∠2=60°﹣40°=20°,故答案为20°.【点评】本题主要考查平行线的性质,掌握平行线的性质是解决问题的关键.14.(3分)如图,△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以点O 为位似中心,相似比为,将△AOB缩小,则点B的对应点B'的坐标是(2,4)或(﹣2,﹣4).【分析】利用相似三角形的性质求解即可.【解答】解:如图,∵△OAB∽△OA′B′,相似比为3:2,B(3.6),∴B′(2,4),根据对称性可知,△OA″B″在第三象限时,B″(﹣2,﹣4),∴满足条件的点B′的坐标为(2,4)或(﹣2,﹣4).故答案为(2,4)或(﹣2,﹣4).【点评】本题考查位似变换,相似三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,注意一题多解.15.(3分)如图,菱形ABCD的边长为4,∠A=45°,分别以点A和点B为圆心,大于AB 的长为半径作弧,两弧相交于M,N两点,直线MN交AD于点E,连接CE,则CE的长为2.【分析】如图,连接EB.证明△AEB是等腰直角三角形,利用勾股定理求出AE,EB,EC 即可.【解答】解:如图,连接EB.由作图可知,MN垂直平分线段AB,∴EA=EB,∴∠A=∠EBA=45°,∴∠AEB=90°,∵AB=4,∴EA=EB=2,∵四边形ABCD是菱形,∴AD∥BC,∴∠EBC=∠AEB=90°,∴EC===2,故答案为2.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.(3分)如图,在矩形ABCD中,AB=1,BC=2,点E和点F分别为AD,CD上的点,将△DEF沿EF翻折,使点D落在BC上的点M处,过点E作EH∥AB交BC于点H,过点F作FG∥BC交AB于点G.若四边形ABHE与四边形BCFG的面积相等,则CF的长为.【分析】设CF=x,CH=y,根据“四边形ABHE与四边形BCFG的面积相等”得出x与y 的关系式,再证明△EMH∽△MFC,由相似三角形的性质列出x的方程,便可解答得出答案.【解答】解:设CF=x,CH=y,则BH=2﹣y,∵四边形ABHE与四边形BCFG的面积相等,∴2﹣y=2x,∴y=2﹣2x,由折叠知,MF=DF=1﹣x,EM=ED=CH=y=2﹣2x,∠EMF=∠D=90°,∴∠EMH+∠CMF=90°,∵∠C=90°,∴∠CMF+∠CFM=90°,∴∠EMH=∠MFC,∵∠EHM=∠C=90°,∴△EMH∽△MFC,∴,即,解得,x=.经检验,x=是原方程的解,故答案为:.【点评】本题主要考查了矩形的性质,矩形的面积,相似三角形的性质与判定,勾股定理,方程思想,关键是证明三角形相似列出方程.三、解答题(本大题9个小题,共102分)17.先化简,再求值:,其中a=+1.【分析】根据分式的乘法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:==,当a=+1时,原式==.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.有四X正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一X卡片,卡片上的数字是奇数的概率为.(2)随机抽取一X卡片,然后放回洗匀,再随机抽取一X卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.【分析】(1)由概率公式即可得出结果;(2)画出树状图,由树状图求得所有等可能的结果与抽到的两X卡片上标有的数字之和等于6的结果,再由概率公式即可求得答案.【解答】解:(1)随机抽取一X卡片,卡片上的数字是奇数的概率为=;故答案为:;(2)画树状图如图:共有16个等可能的结果,两次抽取的卡片上的数字和等于6的结果有3个,∴两次抽取的卡片上的数字和等于6的概率=.【点评】本题考查了列表法与树状图法、概率公式,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.19.某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A 2nB 0≤t<1 20C n+10D 5请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.【分析】(1)根据B组的频数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据频数分布表中的数据,可以得到中位数落在哪一组;(3)根据频数分布表中的数据,可以计算出该校有多少名学生平均每天课外阅读时间不少于1小时.【解答】解:(1)m=20÷40%=50,2n+(n+10)=50﹣20﹣5,解得,n=5,A组所占的百分比为:2×5÷50×100%=20%,C组所占的百分比为:(5+10)÷50×100%═30%,补全的扇形统计图如右图所示;(2)∵A组有2×5=10(人),B组有20人,抽查的学生一共有50人,∴所抽取的m名学生平均每天课外阅读时间的中位数落在B组;(3)1500×=600(名),答:该校有600名学生平均每天课外阅读时间不少于1小时.【点评】本题考查频数分布表、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.20.如图,A、B两点的坐标分别为(﹣2,0),(0,3),将线段AB绕点B逆时针旋转90°得到线段BC,过点C作CD⊥OB,垂足为D,反比例函数y=的图象经过点C.(1)直接写出点C的坐标,并求反比例函数的解析式;(2)点P在反比例函数y=的图象上,当△PCD的面积为3时,求点P的坐标.【分析】(1)根据旋转的性质和全等三角形的性质求得C点的坐标,即可求得结论;(2)由解析式设出P点的坐标,根据三角形面积公式得出方程,解方程可求得P点坐标.【解答】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BC,∴AB=BC,∠ABC=90°,∵CD⊥OB,∴∠CDB=∠AOB=∠ABC=90°,∴∠ABO+∠CBD=∠CBD+∠DCB=90°,∴∠ABO=∠DCB,∴△ABO≌△BCD(AAS),∴CD=OB=3,BD=OA=2,∴OD=3﹣2=1,∴C点的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为:;(2)设P(,m),∵CD⊥y轴,CD=3,由△PCD的面积为3得:CD•|m﹣1|=3,∴×3|m﹣1|=3,∴m﹣1=±2,∴m=3或m=﹣1,当m=3时,=1,当m=﹣3时,=﹣1,∴点P的坐标为(1,3)或(﹣3,﹣1).【点评】本题考查了待定系数法求反比例函数的解析式,全等三角形的判定和性质,旋转的性质,三角形的面积的计算,正确的识别图形是解题的关键.21.如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.测量项目测量数据测角仪到地面的距离点D到建筑物的距离BD=4m从C处观测建筑物顶部A的仰角∠ACE=67°从C处观测建筑物底部B的俯角∠BCE=22°请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB的高度.(结果精确到0.1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36.sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)(选择一种方法解答即可)【分析】过C作CE⊥AB于E,则四边形BDCE是矩形,由矩形的性质得到BE=CD=1.6m,CE=BD=4m,根据三角函数的定义即可得到结论.【解答】解:选择CD=1.6m,BD=4m,∠ACE=67°,过C作CE⊥AB于E,则四边形BDCE是矩形,∴BE=CD=1.6m,CE=BD=4m,在Rt△ACE中,∵∠ACE=67°,∴tan∠ACE=,∴AE≈9.2m,∴AB=AE+BE=9.4+1.6=11.0(m),答:建筑物AB的高度为11.0m.【点评】本题考查了解直角三角形﹣仰角俯角问题,矩形的性质,正确的作出辅助线构造直角三角形是解题的关键.22.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当,CE=4时,直接写出CG的长.【分析】(1)想办法证明∠B+∠BAE=90°即可解决问题.(2)①连接OA,想办法证明OA⊥AG即可解决问题.②过点C作CH⊥AG于H.设CG=x,GH=y.利用相似三角形的性质构建方程组解决问题即可.【解答】(1)证明:∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴AD⊥BC.(2)①证明:连接OA,AC.∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线.②解:过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=4,∴BE=10,∵BC⊥AD,∴=,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴=,∴AE2=4×10,∵AE>0,∴AE=2,∴AH=AE=2,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴==,∴==,解得x=.【点评】本题属于圆综合题,考查了切线的判定,垂径定理,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.23.某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为y=﹣x+110 .(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w 元,问:x为何值时,w最大?最大值是多少?【分析】(1)利用待定系数法求出一次函数解析式即可;(2)当x=200时,代入y=﹣x+110,确定批发单价,根据总价=批发单价×200,进而求出答案;(3)首先根据服装厂获利w元,当100≤x≤300且x为10整数倍时,得出w与x的函数关系式,进而得出最值,再利用当300<x≤400时求出最值,进而比较得出即可.【解答】解:(1)当100≤x≤300时,设y与x的函数关系式为:y=kx+b,根据题意得出:,解得:,∴y与x的函数关系式为:y=﹣x+110,故答案为:y=﹣x+110;(2)当x=200时,y=﹣20+110=90,∴90×200=18000(元),答:某零售商一次性批发A品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x≤300时,w=(﹣x+110﹣71)x=﹣+39x=﹣(x﹣195)2+3802.5,∵批发件数x为10的正整数倍,∴当x=190或200时,w有最大值是:﹣(200﹣195)2+3802.5=3800;②当300<x≤400时,w=(80﹣71)x=9x,当x=400时,w有最大值是:9×400=3600,∴一次性批发A品牌服装x(100≤x≤400)件时,x为190元或200元时,w最大,最大值是3800元.【点评】此题主要考查了二次函数的应用,待定系数法求一次函数解析式以及二次函数最值求法等知识,利用x的取值X围不同得出函数解析式是解题关键.24.如图,四边形ABCD是正方形,点F是射线AD上的动点,连接CF,以CF为对角线作正方形CGFE(C,G,F,E按逆时针排列),连接BE,DG.(1)当点F在线段AD上时.①求证:BE=DG;②求证:CD﹣FD=BE;(2)设正方形ABCD的面积为S1,正方形CGFE的面积为S2,以C,G,D,F为顶点的四边形的面积为S3,当时,请直接写出的值.【分析】(1)①证明△BCE≌△DCG(SAS)可得结论.②如图1中,设CD交FG于点O,过点G作GT⊥DG交CD于T.证明△DGT是等腰直角三角形,再证明△DGF≌△TGC即可解决问题.(2)分两种情形:当点F在线段AD上时,如图1中,当点F在AD的延长线上时,分别求解即可.【解答】(1)①证明:如图1中,∵四边形ABCD,四边形EFGC都是正方形,∴∠BCD=∠ECG=90°,CB=CD,CE=CG,∴∠BCE=∠DCG,∴△BCE≌△DCG(SAS),∴BE=DG.②证明:如图1中,设CD交FG于点O,过点G作GT⊥DG交CD于T.∵∠EDC=∠EGC=90°,∴C,F,D,G四点共圆,∴∠CDG=∠CFG=45°,∵GT⊥DG,∴∠DGT=90°,∴∠GDT=∠DTG=45°,∴GD=GT,∵∠DGT=∠FGC=90°,∴∠DGF=∠TGC,∵GF=GC,∴△GDF≌△GTC(SAS),∴DF=CT,∴CD﹣DF=CD﹣CT=DT=DG.(2)解:当点F在线段AD上时,如图1中,∵,∴可以假设S2=13k,S1=25k,∴BC=CD=5,CE=CG=,∴CF=,在Rt△CDF中,DF==,∴DF=CT=,DT=4∴DG=GT=2,∴S3=S△GFC+S△DFG=××+××2=k,∴==.当点F在AD的延长线上时,同法可得,S3=S△DCF+S△FGC=×5×+××=9k,∴=,综上所述,的值为或.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四边形的面积等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.如图1,直线y=x﹣4与x轴交于点B,与y轴交于点A,抛物线y=﹣x2+bx+c经过点B和点C(0,4),△ABO沿射线AB方向以每秒个单位长度的速度平移,平移后的三角形记为△DEF(点A,B,O的对应点分别为点D,E,F),平移时间为t(0<t<4)秒,射线DF交x轴于点G,交抛物线于点M,连接ME.(1)求抛物线的解析式;(2)当tan∠EMF=时,请直接写出t的值;(3)如图2,点N在抛物线上,点N的横坐标是点M的横坐标的,连接OM,NF,OM 与NF相交于点P,当NP=FP时,求t的值.【分析】(1)求出等B的坐标,利用待定系数法解决问题即可.(2)分两种情形:如图1中,当点M在线段DF的上方时,求出DM=7,构建方程求解即可,当点M在线段DF上时,DM=1,构建方程求解即可.(3)如图2中,过点N作NT∥y轴于T.由题意D(t,t﹣4),则M(t,﹣t2+t+4),N(t,﹣t2+t+4),T(t,﹣t2+t+2),F(t,t),利用全等三角形的性质证明NT=MF,由此构建方程解决问题即可.【解答】解:(1)∵直线y=x﹣4与x轴交于点B,与y轴交于点A,∴B(4,0),A(0,﹣4),把B(4,0),C(0,4)代入y=﹣x2+bx+c得到,解得,∴抛物线的解析式为y=﹣x2+x+4.(2)如图1中,当点M在线段DF的上方时,由题意,D(t,t﹣4),则M(t,﹣t2+t+4),∴DM=﹣t2+8,在Rt△MEF中,tan∠EMF===,∴MF=3,∵DF=EF=4,∴DM=7,∴﹣t2+8=7,∴t=或﹣(舍弃)当点M在线段DF上时,DM=1,∴﹣t2+8=1,解得t=或﹣(舍弃),综上所述,满足条件的t的值为或.(3)如图2中,过点N作NT∥y轴于T.由题意D(t,t﹣4),则M(t,﹣t2+t+4),N(t,﹣t2+t+4),T(t,﹣t2+t+2),F(t,t)∵NT∥FM,∴∠PNT=∠PFM,∵∠NPT=∠MPF,PN=PF,∴△NPT≌△FPM(ASA),∴NT=MF,∴﹣t2+t+4﹣(﹣t2+t+2)=﹣t2+t+4﹣t,解得t=或﹣(舍弃),【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
人教版七年级数学上册第六章6.1《平方根》一.选择题(共13小题)1.(20XX•绵阳)±2是4的()A.平方根B.相反数C.绝对值D.算术平方根2.(20XX•黄冈)9的平方根是()A.±3 B.±C.3 D.﹣33.(20XX•六盘水)下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是34.(20XX•日照)的算术平方根是()A.2 B.±2 C.D.±5.(20XX•湖州)4的算术平方根是()A.±2 B.2 C.﹣2 D.6.(20XX•滨州)数5的算术平方根为()A.B.25 C.±25 D.±7.(20XX•天津)己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm8.(20XX•齐齐哈尔)下列各式正确的是()A.﹣22=4 B.20XX C.=±2 D.|﹣|=9.(20XX•内江)9的算术平方根是()A.﹣3 B.±3 C.3 D.10.(20XX•通辽)的算术平方根是()A.﹣2 B.±2 C.D.211.(20XX•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④12.(20XX•大庆)a2的算术平方根一定是()A.a B.|a| C.D.﹣a13.(20XX•南京)8的平方根是()A.4 B.±4 C.2D.二.填空题(共17小题)14.(20XX•恩施州)4的平方根是.15.(20XX•凉山州)的平方根是.16.(20XX•徐州)4的算术平方根是.17.(20XX•南京)4的平方根是;4的算术平方根是.18.(20XX•资阳)已知:(a+6)2+=0,则2b2﹣4b﹣a的值为.19.(20XX•安顺)的算术平方根是.20XX20XX•恩施州)16的算术平方根是.21.(20XX•沈阳)计算:= .22.(20XX•泰州)= .23.(20XX•鄂州)的算术平方根为.24.(20XX•滨州)计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得= .25.(20XX•咸宁)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).26.(20XX•菏泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n 的代数式表示)27.(20XX•岳阳)计算:﹣= .28.(20XX•本溪)一个数的算术平方根是2,则这个数是.29.(20XX•大庆)若,则x y﹣3的值为.30.(20XX•盐城)16的平方根是.人教版七年级数学上册第六章6.1平方根3年参考答案与试题解析一.选择题(共13小题)1.(20XX•绵阳)±2是4的()A.平方根B.相反数C.绝对值D.算术平方根考点:平方根.分析:根据平方根的定义解答即可.解答:解:±2是4的平方根.故选:A.点评:本题考查了平方根的定义,是基础题,熟记概念是解题的关键.2.(20XX•黄冈)9的平方根是()A.±3 B.±C.3 D.﹣3考点:平方根.分析:根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.解答:解:9的平方根是:±=±3.故选:A.点评:此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.3.(20XX•六盘水)下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是3考点:平方根;相反数;绝对值;倒数.专题:计算题.分析:利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.解答:解:A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D点评:此题考查了平方根,相反数,绝对值以及倒数,熟练掌握各自的定义是解本题的关键.4.(20XX•日照)的算术平方根是()A.2 B.±2 C.D.±考点:算术平方根.专题:计算题.分析:先求得的值,再继续求所求数的算术平方根即可.解答:解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.点评:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.5.(20XX•湖州)4的算术平方根是()A.±2 B.2 C.﹣2 D.考点:算术平方根.分析:根据开方运算,可得一个数的算术平方根.解答:解:4的算术平方根是2,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.6.(20XX•滨州)数5的算术平方根为()A.B.25 C.±25 D.±考点:算术平方根.分析:根据算术平方根的含义和求法,可得:数5的算术平方根为,据此解答即可.解答:解:数5的算术平方根为.故选:A.点评:此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.7.(20XX•天津)己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm考点:算术平方根.分析:根据正方体的表面积公式:s=6a2,解答即可.解答:解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选B.点评:此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.8.(20XX•齐齐哈尔)下列各式正确的是()A.﹣22=4 B.20XX C.=±2 D.|﹣|=考点:算术平方根;有理数的乘方;实数的性质;零指数幂.分析:根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.解答:解:A、﹣22=﹣4,故本选项错误;B、20XX,故本选项错误;C、=2,故本选项错误;D、|﹣|=,故本选项正确.故选D.点评:本题考查了算术平方根的定义,有理数的乘方,实数的性质,零指数幂的定义,是基础题,熟记概念与性质是解题的关键.9.(20XX•内江)9的算术平方根是()A.﹣3 B.±3 C.3 D.考点:算术平方根.分析:算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.解答:解:9的算术平方根是3.故选:C.点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.10.(20XX•通辽)的算术平方根是()A.﹣2 B.±2 C.D.2考点:算术平方根.分析:首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.解答:解:∵,2的算术平方根是,∴的算术平方根是.故选:C.点评:此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.11.(20XX•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④考点:算术平方根;平方根;无理数;不等式的解集.分析:①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.解答:解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.点评:(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.12.(20XX•大庆)a2的算术平方根一定是()A.a B.|a| C.D.﹣a考点:算术平方根.分析:根据算术平方根定义,即可解答.解答:解:=|a|.故选:B.点评:本题考查了对算术平方根定义的应用,能理解定义并应用定义进行计算是解此题的关键,难度不是很大.13.(20XX•南京)8的平方根是()A.4 B.±4 C.2D.考点:平方根.分析:直接根据平方根的定义进行解答即可解决问题.解答:解:∵,∴8的平方根是.故选:D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二.填空题(共17小题)14.(20XX•恩施州)4的平方根是±2 .考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.(20XX•凉山州)的平方根是±3 .考点:平方根;算术平方根.分析:首先化简,再根据平方根的定义计算平方根.解答:解:=9,9的平方根是±3,故答案为:±3.点评:此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.16.(20XX•徐州)4的算术平方根是 2 .考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.17.(20XX•南京)4的平方根是±2 ;4的算术平方根是 2 .考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.18.(20XX•资阳)已知:(a+6)2+=0,则2b2﹣4b﹣a的值为12 .考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:首先根据非负数的性质可求出a的值,和2b2﹣2b=6,进而可求出2b2﹣4b﹣a的值.解答:解:∵(a+6)2+=0,∴a+6=0,b2﹣2b﹣3=0,解得,a=﹣6,b2﹣2b=3,可得2b2﹣4b=6,则2b2﹣4b﹣a=6﹣(﹣6)=12,故答案为:12.点评:本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.19.(20XX•安顺)的算术平方根是.考点:算术平方根.分析:直接根据算术平方根的定义求解即可.解答:解:∵()2=,∴的算术平方根是,即=.故答案为.点评:本题考查了算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.20XX20XX•恩施州)16的算术平方根是 4 .考点:算术平方根.专题:计算题.分析:根据算术平方根的定义即可求出结果.解答:解:∵42=16,∴=4.故答案为:4.点评:此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.21.(20XX•沈阳)计算:= 3 .考点:算术平方根.专题:计算题.分析:根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.故答案为:3.点评:本题较简单,主要考查了学生开平方的运算能力.22.(20XX•泰州)= 2 .考点:算术平方根.专题:计算题.分析:如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.解答:解:∵22=4,∴=2.故答案为:2点评:此题主要考查了学生开平方的运算能力,比较简单.23.(20XX•鄂州)的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∵=2,∴的算术平方根为.故答案为:.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.24.(20XX•滨州)计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得= 1020XX.考点:算术平方根;完全平方公式.专题:压轴题;规律型.分析:先计算得到=10=101,=100=102,=1000=103,=10000=104,计算的结果都是10的整数次幂,且这个指数的大小与被开方数中每个数中9的个数相同,即可得出规律.解答:解:∵=10=101,=100=102,=1000=103,=10000=104,∴=1020XX.故答案为:1020XX.点评:本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 叫做a的算术平方根.记为a.25.(20XX•咸宁)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.26.(20XX•菏泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n 的代数式表示)考点:算术平方根.专题:规律型.分析:观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n﹣1行的数据的个数,再加上n﹣2得到所求数的被开方数,然后写出算术平方根即可.解答:解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观察数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.27.(20XX•岳阳)计算:﹣= ﹣3 .考点:算术平方根.分析:根据算术平方根的定义计算即可得解.解答:解:﹣=﹣3.故答案为:﹣3.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.28.(20XX•本溪)一个数的算术平方根是2,则这个数是 4 .考点:算术平方根.专题:计算题.分析:利用算术平方根的定义计算即可得到结果.解答:解:4的算术平方根为2,故答案为:4点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.29.(20XX•大庆)若,则x y﹣3的值为.考点:非负数的性质:算术平方根;非负数的性质:绝对值;负整数指数幂.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵,∴,解得,∴x y﹣3=22﹣3=.故答案为:.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.30.(20XX•盐城)16的平方根是±4 .考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决。
2020年某某省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点评】本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b【分析】根据合并同类项、幂的乘方,同底数幂乘法以及完全平方公式,逐项判断即可.【解答】解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2+2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.【点评】本题考查合了并同类项,同底数幂的乘法和积的乘方、以及完全平方公式,解题关键是熟记运算法则和公式.3.(3分)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106【分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故先将1109万换成11090000,再按照科学记数法的表示方法表示即可得出答案.【解答】解:∵1109万=11090000,∴11090000=1.109×107.故选:A.【点评】本题考查了科学记数法的简单应用,属于基础知识的考查,比较简单.4.(3分)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的和看不到的棱都应表现在左视图中.【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.5.(3分)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141 144 145 146学生人数(名) 5 2 1 2则关于这组数据的结论正确的是()A.平均数是144 B.众数是141【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.【解答】解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D选项错误;故选:B.【点评】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.6.(3分)若m2+2m=1,则4m2+8m﹣3的值是()A.4 B.3 C.2 D.1【分析】把变形为4m2+8m﹣3=4(m2+2m)﹣3,再把m2+2m=1代入计算即可求出值.【解答】解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.【点评】此题考查了求代数式的值,以及“整体代入”思想.解题的关键是把代数式4m2+8m﹣3变形为4(m2+2m)﹣3.7.(3分)如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21 B.28 C.34 D.42【分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.【点评】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答8.(3分)关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】先计算判别式,再进行配方得到△=(k﹣1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【解答】解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.(3分)如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B (1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2 B.﹣2<x<0或x>1C.x>1 D.x<﹣2或0<x<1【分析】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的X围即可.【解答】解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.【点评】本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.10.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1 D.【分析】延长CO交⊙O于点E,连接EP,交AO于点P,则PC+PD的值最小,利用平行线份线段成比例分别求出CD,PO的长即可.【解答】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴,即,解得,PO=故选:B.【点评】此题主要考查了轴对称﹣﹣﹣最短距离问题,同时考查了平行线分线段成比例,掌握轴对称性质和平行线分线段成比例定理是解题的关键.11.(3分)若关于x的不等式组有且只有3个整数解,则a的取值X围是()A.0≤a≤2B.0≤a<2 C.0<a≤2D.0<a<2【分析】先求出不等式组的解集(含有字母a),利用不等式组有三个整数解,逆推出a 的取值X围即可.【解答】解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数求出关于a的不等式组12.(3分)若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【分析】根据a⊗b=,可得当x+2≥2(x﹣1)时,x≤4,分两种情况:当x≤4时和当x>4时,分别求出一次函数的关系式,然后判断即可得出结论.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.【点评】本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)因式分解:x2y﹣9y=y(x+3)(x﹣3).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)若|a﹣2|+=0,则a+b= 5 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.【点评】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.(3分)如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=55 °.【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出α.【解答】解:如图,∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠2=90°,∴∠AMQ=90°﹣∠2=90°﹣35°=55°,∵∠α与∠AMQ是对顶角,∴∠α=∠AMQ=55°.故答案为:55°.【点评】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.(3分)若关于x的分式方程+1有增根,则m= 3 .【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x的值,代入到转化以后的整式方程中计算即可求出m的值.【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.【点评】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.17.(3分)如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG 和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE=.【分析】根据折叠的性质结合勾股定理求得GE=5,BC=AD=8,证得Rt△EGF∽Rt△EAG,求得,再利用勾股定理得到DE的长,即可求解.【解答】解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=90°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.【点评】本考查了翻折变换,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.18.(3分)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是4039π.【分析】曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,再计算弧长.【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.【点评】此题主要考查了弧长的计算,弧长的计算公式:,找到每段弧的半径变化规律是解题关键.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.【分析】先将括号里的进行通分运算,然后再计算括号外的除法,把除法运算转化为乘法运算,进行约分,得到最简分式,最后把x值代入运算即可.【解答】解:原式=,=,=,=.∵x是16的算术平方根,∴x=4,当x=4时,原式=.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【分析】过点C作CD⊥AB,垂足为D,根据在C处测得桥两端A,B两点的俯角分别为60°和45°,可得∠CAD=∠MCA=60°,∠CBD=∠NCB=45°,利用特殊角懂得三角函数求解即可.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD===40(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40+120)(米).答:桥AB的长度为(40+120)米.【点评】本题考查了特殊角的三角函数的运算,熟悉特殊角的三角函数值是解题的关键.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.【分析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;(2)先求出B档所占百分比,再乘以1200即可得到结论;(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.【解答】解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)==.【点评】本题考查条形统计图以及树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【分析】(1)连接BF,证明BF∥CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.【解答】解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.【点评】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)【分析】(1)设y与x之间的函数表达式为y=kx+b,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w关于x的二次函数,根据二次函数的性质即可求解.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为W元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.【点评】本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD =AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【分析】(1)利用“SAS”证得△ACE≌△ABD即可得到结论;(2)利用“SAS”证得△ACE≌△ABD,推出∠ACE=∠ABD,计算得出AD=BC=,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【解答】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EF B=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)直接将A(﹣2,0)和点B(8,0)代入y=ax2+bx+8(a≠0),解出a,b 的值即可得出答案;(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM三种情况讨论结合图形得出边之间的关系,即可得出答案.【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),∴,解得,∴抛物线解析式为:;(2)当x=0时,y=8,∴C(0,8),∴直线BC解析式为:y=﹣x+8,∵,∴,过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,∴F(t,﹣t+8),∴,∴,即,∴t1=2,t2=6,∴P1(2,12),P2(6,8);(3)∵C(0,8),B(8,0),∠COB=90°,∴△OBC为等腰直角三角形,抛物线的对称轴为,∴点E的横坐标为3,又∵点E在直线BC上,∴点E的纵坐标为5,∴E(3,5),设,①当MN=EM,∠EMN=90°,当△NME~△COB时,则,解得或(舍去),∴此时点M的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则,解得:或(舍去),∴此时点M的坐标为;③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴,∴,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),或(3,11).【点评】本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.。
【精品】人教版九年级数学中考压轴试题(含答案)1.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.2.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于 P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈ 2.9 .(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为2.3 cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.4.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m 即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是 0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.5.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.【分析】(1)连接BC,想办法证明AC=BC,EC=BC即可解决问题;(2)首先证明∠DBF=∠BAF,可得sin∠BAF=sin∠DBF==,由此即可解决问题;【解答】(1)证明:连结BC.∵AB是的直径,C在⊙O上∴∠ACB=90°,∵=,∴AC=BC∴∠CAB=45°.∵AB是⊙O的直径,EF切⊙O于点B,∴∠ABE=90°,∴∠AEB=45°,∴AB=BE,∴AC=CE.(2)在Rt△ABE中,∠ABE=90°,AE=8,AE=BE ∴AB=8,在Rt△ABF中,AB=8,sin∠BAF=,解得:BF=6,连结BD,则∠ADB=∠FDB=90°,∵∠BAF+∠ABD=90°,∠ABD+∠DBF=90°,∴∠DBF=∠BAF,∵sin∠BAF=,∴sin∠DBF=,∴=,∴DF=.【点评】本题考查切线的性质、圆周角定理、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是(﹣2,0)或(6,0).【分析】(1)利用待定系数法即可解决问题;(2)利用三角形的面积公式求出PA的长即可解决问题;【解答】解:(1)∵一次函数y=x+b的图象与x轴交于点A(2,0),∴2+b=0,∴b=﹣2,∴y=x﹣2,当x=3时,y=1,∴B(3,1),代入y=中,得到k=3,∴反比例函数的解析式为y=.(2)∵△PAB的面积是2,∴PA=4,∴P(﹣2,0)或(6,0).【点评】本题考查一次函数的性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)【分析】作AH⊥BN于H,设AH=xm,根据正切的概念表示出CH、BH,根据题意列出方程,解方程即可.【解答】解:如图,作AH⊥BN于H,设AH=xm,∵∠ACN=45°,∵tanB=,∴BH=x,则BH﹣CH=BC,即x﹣x=100,解得x=50(+1).答:这座山的高度为50(+1)m;【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确作出辅助线、熟记锐角三角函数的概念是解题的关键.8.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.【分析】(1)由平行四边形的性质知CD∥AB,即∠DAF=∠CDE,再由CE⊥AD、DF⊥BA知∠AFD=∠DEC=90°,据此可得;(2)根据△ADF∽△DCE知=,据此求得DC=9,再根据平行四边形的性质可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠DAF=∠CDE,又∵CE⊥AD、DF⊥BA,∴∠AFD=∠DEC=90°,∴△ADF∽△DCE;(2)∵AD=6、且E为AD的中点,∴DE=3,∵△ADF∽△DCE,∴=,即=,解得:DC=9,∵四边形ABCD是平行四边形,∴AB=CD=9.【点评】本题主要考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质及平行四边形的性质.9.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.【分析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【解答】解:(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x2﹣2mx+5m的对称轴是x=﹣,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴当x=﹣1时,y取得最小值﹣6,由表可知当x=﹣4时y=3,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤3.【点评】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.10.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.【分析】(1)直接利用圆周角定理以及切线的性质定理得出∠ACD=∠ABC,进而得出答案;(2)首先得出DC的长,即可得出FC的长,再利用已知得出BC的长,结合勾股定理求出答案.【解答】(1)证明:连接DC,∵AC是⊙O的直径,∴∠BDC=90°,∴∠ABC+∠BCD=90°,∵⊙O的切线CB与AD的延长线交于点B,∴∠BCA=90°,∴∠ACD+∠BCD=90°,∴∠ACD=∠ABC,∴∠ABC=∠AED;(2)解:连接BF,∵在Rt△ADC中,AD=,tan∠AED=,∴tan∠ACD==,∴DC=AD=,∴AC==8,∵AF=6,∴CF=AC﹣AF=8﹣6=2,∵∠ABC=∠AED,∴tan∠ABC==,∴=,解得:BD=,故BC=6,则BF==2.【点评】此题主要考查了切线的性质与判定以及勾股定理等知识,正确得出∠ACD=∠ABC是解题关键.11.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A (﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P 关于直线y=t的对称点为点Q,若点Q落在△OBC的内部,求t的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)分别求出点Q落在直线BC和x轴上时的t的值即可判断;【解答】解:(1)∵抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图,易知抛物线的顶点坐标为(1,4).观察图象可知当点P关于直线y=t的对称点为点Q中直线BC上时,t=3,当点P关于直线y=t的对称点为点Q在x轴上时,t=2,∴满足条件的t的值为2<t<3.【点评】本题考查二次函数的性质、待定系数法、轴对称等知识,解题的关键是熟练掌握基本知识,学会寻找特殊点解决问题,属于中考常考题型.。
最新人教版中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.(4分)下列说法,你认为正确的是()A.0的倒数是0 B.3﹣1=﹣3 C.π是有理数D.是有理数2.(4分)有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个3.(4分)下列计算正确的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5D.a2p÷a﹣p=a3p4.(4分)下列命题中,真命题的个数有()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②过直线外一点有且只有一条直线与这条直线平行.③两条直线被第三条直线所截,同旁内角互补.④内错角相等,两直线平行.A.4 B.3 C.2 D.15.(4分)估计2﹣2的值介于下列哪两个整数之间()A.2和3 B.3和4 C.4和5 D.5和66.(4分)同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D.x=27.(4分)已知△ABC中,点D、E分别是AB、AC边上的点,DE∥BC,点F是BC边上一点,连接AF交DE于点G.下列结论一定正确的是()A. = B. = C. = D. =8.(4分)设x<0,x﹣=,则代数式的值()A.1 B.C.D.9.(4分)在平面直角坐标系中,设点A(0,4)、B(3,8).若点P(x,0),使得∠APB 最大,则x=()A.3 B.0 C.4 D.10.(4分)观察下列图形的构成规律,依照此规律,第10个图形中共有()个“•”.A.90 B.91 C.110 D.11111.(4分)如图,已知点A是反比例函数y=的图象在第一象限上的动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC使点C落在第二象限,且边BC交x轴于点D,若△ACD与△ABD的面积之比为1:2,则点C的坐标为()A.(﹣3,2) B.(﹣5,)C.(﹣6,)D.(﹣3,2)12.(4分)已知关于x的方程﹣=1的解为负数,且关于x、y的二元一次方程组的解之和为正数,则下列各数都满足上述条件a的值的是()A.,2,5 B.0,3,5 C.3,4,5 D.4,5,6二.填空题(共6小题,满分24分,每小题4分)13.(4分)请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约千克大米!(结果用科学记数法表示,已知1克大米约52粒)14.(4分)计算:2﹣1﹣=15.(4分)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为米.16.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.17.(4分)A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.18.(4分)在Rt△ABC中,D为斜边AB的中点,点E在AC上,且∠EDC=72°,点F在AB 上,满足DE=DF,则∠CEF的度数为.三.解答题(共2小题,满分16分,每小题8分)19.(8分)如图,已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是CB延长线上一点,且∠DEC=∠DCE,F是AC上一点且DF∥BC,若∠A=60°.求证:EB=AD.20.(8分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).四.解答题(共5小题,满分50分,每小题10分)21.(10分)(1)解不等式组:(2)化简:(﹣2)•.22.(10分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=,OA=2.(1)求反比例函数和一次函数的解析式;(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.23.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,康福特公司有A,B两种型号的健身器材可供选择.(1)康福特公司2016年每套A型健身器材的售价为2.5万元,经过连续两年降价,2018年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2018年市政府经过招标,决定年内采购并安装康福特公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元,A型健身器材最多可购买多少套?24.(10分)如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒)(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B 方向运动.当t≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.25.(10分)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.五.解答题(共1小题,满分12分,每小题12分)26.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.(4分)下列说法,你认为正确的是()A.0的倒数是0 B.3﹣1=﹣3 C.π是有理数D.是有理数【解答】解:A、0没有倒数,错误;B、,错误;C、π是无理数,错误;D、=3是有理数,正确;故选:D.2.(4分)【分析】根据中心对称图形和轴对称图形判断即可.解:A、等边三角形是轴对称图形,不是中心对称图形,原命题是假命题;B、等腰三角形是轴对称图形,是真命题;C、等腰直角三角形是轴对称图形,不是中心对称图形,原命题是假命题;D、直角三角形不是轴对称图形,原命题是假命题;故选:B.3.(4分)下列计算正确的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5D.a2p÷a﹣p=a3p 【解答】解:A、﹣5x﹣2x=﹣7x,故此选项错误;B、(a+3)2=a2+6a+9,故此选项错误;C、(﹣a3)2=a6,故此选项错误;D、a2p÷a﹣p=a3p,正确.故选:D.4.(4分)下列命题中,真命题的个数有()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②过直线外一点有且只有一条直线与这条直线平行.③两条直线被第三条直线所截,同旁内角互补.④内错角相等,两直线平行.A.4 B.3 C.2 D.1【解答】解:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行是真命题.②过直线外一点有且只有一条直线与这条直线平行是真命题.③两条平行线被第三条直线所截,同旁内角互补是假命题.④内错角相等,两直线平行是真命题.故选:B.5.(4分)估计2﹣2的值介于下列哪两个整数之间()A.2和3 B.3和4 C.4和5 D.5和6【解答】解:∵3<<3.5,∴2<﹣1<2.5,∴4<2﹣2<5,即2﹣2在4和5之间,故选:C.6.(4分)同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D.x=2【解答】解:由题意得:x2+6x+8≠0,且(x+1)2﹣9=0,(x+2)(x+4)≠0,x+1=3或﹣3,x≠﹣2且x≠﹣4,x=2或x=﹣4,∴x=2,故选D.7.(4分)已知△ABC中,点D、E分别是AB、AC边上的点,DE∥BC,点F是BC边上一点,连接AF交DE于点G.下列结论一定正确的是()A. = B. = C. = D. =【解答】解:∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF,∴,∴,故选:C.8.(4分)设x<0,x﹣=,则代数式的值()A.1 B.C.D.【解答】解:∵x﹣=,∴(x)2=5,∴x2+=7,∴(x+)2=x2+2+=9,∵x<0,∴x+=﹣3,∴x2+1=﹣3x,∴x4+1=7x2,∵(x2+)2=x4+2+,∴x4+=47,∴x8+1=47x4,∵x3+=(x+)(x2﹣1+),∴x3+=﹣18,∴x6+1=﹣18x3,∴原式=====故选:B.9.(4分)在平面直角坐标系中,设点A(0,4)、B(3,8).若点P(x,0),使得∠APB 最大,则x=()A.3 B.0 C.4 D.【解答】解:如图,以AB为弦作圆C与x轴相切,切点为P.在x轴上选取一个异于点P的任一点,例如P'点,连接AP、BP、AP′、BP′,则必有∠1=∠2>∠3.故此时∠APB最大.连接CP,则CP⊥x轴,所以C点横坐标与P点横坐标相等.设点C(x,y).∵CP=CA=CB,∴y2=x2+(y﹣4)2=(x﹣3)2+(y﹣8)2,由y2=x2+(y﹣4)2,得8y=x2+16 ①,由y2=(x﹣3)2+(y﹣8)2,得x2﹣6x+73﹣16y=0 ②,①代入②,整理得x2+6x﹣41=0,解得x1=5﹣3,x2=﹣5﹣3(不合题意舍去).故选:D.10.(4分)观察下列图形的构成规律,依照此规律,第10个图形中共有()个“•”.A.90 B.91 C.110 D.111【解答】解:由图形可知:n=1时,“•”的个数为:1×2+1=3,n=2时,“•”的个数为:2×3+1=7,n=3时,“•”的个数为:3×4+1=13,n=4时,“•”的个数为:4×5+1=21,所以n=n时,“•”的个数为:n(n+1)+1,n=10时,“•”的个数为:10×11+1=111.故选:D.11.(4分)如图,已知点A是反比例函数y=的图象在第一象限上的动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC使点C落在第二象限,且边BC交x轴于点D,若△ACD与△ABD的面积之比为1:2,则点C的坐标为()A.(﹣3,2) B.(﹣5,)C.(﹣6,)D.(﹣3,2)【解答】解:如图,作CM⊥OD于M,AE⊥OD于E,作DF⊥AB于F,连接CO,根据题意得:AO=BO∵S△ACD:S△ADB=1:2∴CD:DB=1:2即DB=2CD∵△ABC为等边三角形且AO=BO∴∠CBA=60°,CO⊥AB且DF⊥AB∴DF∥CO∴∴DF=CO,BF=BO,即FO=BO∵∠CBA=60°,CO⊥AB∴CO=BO∴DF=BO∵∠DOF=∠AOE,∠DFO=∠AEO=90°∴△DFO∽△AOE∴∴AE=2OE∵点A是反比例函数y=的图象在第一象限上的动点∴AE×OE=2∴AE=2,OE=1∵∠COM+∠AOE=90°,∠AOE+∠EAO=90°∴∠COM=∠EAO,且∠CMO=∠AEO=90°∴△COM∽△AOE∴CM=,MO=6且M在第二象限∴M(﹣6,)故选:C.12.(4分)已知关于x的方程﹣=1的解为负数,且关于x、y的二元一次方程组的解之和为正数,则下列各数都满足上述条件a的值的是()A.,2,5 B.0,3,5 C.3,4,5 D.4,5,6【解答】解:﹣=1,去分母得:a﹣3=x+3,(a≠3),x=a﹣6,由题意得a﹣6<0,a<6且a≠3,,①+②得:5x=5a+15,x=a+3③,把③代入①得:2(a+3)﹣y=7,y=2a﹣1,∴x+y=a+3+2a﹣1=3a+2>0,∴a>﹣,则a的取值为:﹣<a<6,故选:A.二.填空题(共6小题,满分24分,每小题4分)13.(4分)请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约 2.5×104千克大米!(结果用科学记数法表示,已知1克大米约52粒)【解答】解:1 300 000 000÷52÷1 000(千克)=25 000(千克)=2.5×104(千克).故填2.5×104.14.(4分)计算:2﹣1﹣= ﹣2【解答】解:原式=﹣3=﹣2,故答案为:﹣215.(4分)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A 测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为6+29 米.【解答】解:延长AB交DC于H,作EG⊥AB于G,如图所示:则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:x2+(x)2=122,解得:x=6,∴BH=6米,CH=6米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=6+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=6+20(米),∴AB=AG+BG=6+20+9=(6+29)m.故答案为:6+29.16.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4 .【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.17.(4分)A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有90 千米.【解答】解:由题意可得,甲车的速度为:30÷=45千米/时,甲车从A地到B地用的时间为:240÷45=5(小时),乙车刚开始的速度为:[45×2﹣10]÷(2﹣)=60千米/时,∴乙车发生故障之后的速度为:60﹣10=50千米/时,设乙车发生故障时,乙车已经行驶了a小时,60a+50×()=240,解得,a=,∴乙车修好时,甲车行驶的时间为: =小时,∴乙车修好时,甲车距B地还有:45×(5)=90千米,故答案为:90.18.(4分)在Rt△ABC中,D为斜边AB的中点,点E在AC上,且∠EDC=72°,点F在AB 上,满足DE=DF,则∠CEF的度数为54°或144°.【解答】解:如图,当点F在BD上时,∵Rt△ABC中,D为斜边AB的中点,∴DC=AB=DB,∴∠CDB=180°﹣2∠B,∵DE=DF,∴△DEF中,∠DFE=(180°﹣∠EDF)=(180°﹣∠EDC﹣∠CDB)=(108°﹣∠CDB)=54°﹣∠CDB=54°﹣(180°﹣2∠B)=∠B﹣36°,∵∠CEF是△AEF的外角,∴∠CEF=∠A+∠AFE=90°﹣∠B+∠B﹣36°=54°,当点F'在AD上时,由DF=DE=DF',可得∠FEF'=90°,∴∠CEF'=∠CEF+∠FEF'=54°+90°=144°,故答案为:54°或144°.三.解答题(共2小题,满分16分,每小题8分)19.(8分)如图,已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是CB延长线上一点,且∠DEC=∠DCE,F是AC上一点且DF∥BC,若∠A=60°.求证:EB=AD.【解答】证明:∵DF∥BC,∵∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.20.(8分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).【解答】解:(1)∵A是36°,∴A占36°÷360=10%,∵A的人数为20人,∴这次被调查的学生共有:20÷10%=200(人),故答案为:200;(2)如图,C有:200﹣20﹣80﹣40=60(人),(3)画树状图得:∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为: =.四.解答题(共5小题,满分50分,每小题10分)21.(10分)(1)解不等式组:(2)化简:(﹣2)•.【解答】解:(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组的解集为﹣1<x<5;(2)原式=(﹣)•=•=.22.(10分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=,OA=2.(1)求反比例函数和一次函数的解析式;(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.【解答】解:(1)∵在直角△ACM中,tan∠CAM==,CM=3,∴AM=4,∴OM=AM﹣OA=4﹣2=2.∴n=2,则C的坐标是(2,3).把(2,3)代入y=得m=6.则反比例函数的解析式是y=;根据题意得,解得,则一次函数的解析式是y=x+;(2)在y=中令y=﹣3,则x=﹣2.则D的坐标是(﹣2,﹣3).AD=3,则S△ABD=×3×2=3.23.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,康福特公司有A,B两种型号的健身器材可供选择.(1)康福特公司2016年每套A型健身器材的售价为2.5万元,经过连续两年降价,2018年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2018年市政府经过招标,决定年内采购并安装康福特公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元,A型健身器材最多可购买多少套?【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套.24.(10分)如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒)(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B 方向运动.当t≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.【解答】解:(1)如图1,由题可得BD=CE=t.∵△ABC是等边三角形,∴BC=AC,∠B=∠ECA=60°.在△BDC和△CEA中,,∴△BDC≌△CEA,∴∠BCD=∠CAE,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2,∵∠AFG=180°﹣120°=60°,FG=FA,∴△FAG是等边三角形,∴AG=AF=FG,∠AGF=∠GAF=60°.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠FAC.在△AGB和△AFC中,,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=120°,∴∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,BH=BG•sin∠BGH=BG•sin60°=y,GH=BG•cos∠BGH=BG•cos60°=y,∴FH=FG﹣GH=x﹣y.在Rt△BHF中,BF2=BH2+FH2=(y)2+(x﹣y)2=x2﹣xy+y2.∴==1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6.∴BE=6﹣(2t﹣6)=12﹣2t,BN=BE•cosB=BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°,∴∠NDE=∠MEC.在△DNE和△ECM中,,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sinB=6×=3;当t=6时,E在点C,D在点A,此时点M在点C.∴当3≤t≤6时,M点所经历的路径长为3.25.(10分)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.【解答】解:(1)根据“极数”的意义得,1287,2376,8712,任意一个“极数”都是99的倍数,理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴百位数字为(9﹣x),千位数字为(9﹣y),∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),∵x是0到9的整数,y是0到8的整数,∴100﹣10y﹣x是整数,∴99(100﹣10y﹣x)是99的倍数,即:任意一个“极数”都是99的倍数;(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴m=99(100﹣10y﹣x),∵m是四位数,∴m=99(100﹣10y﹣x)是四位数,即1000≤99(100﹣10y﹣x)<10000,∵D(m)==3(100﹣10y﹣x),∴30≤3(100﹣10y﹣x)≤303∵D(m)完全平方数,∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,∴3(100﹣10y﹣x)只有36,81,144,225这四种可能,∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.五.解答题(共1小题,满分12分,每小题12分)26.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t, t2﹣t﹣1),E(t, t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.。
2020年某某省某某市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(4分)若实数a的相反数是﹣2,则a等于()A.2 B.﹣2 C.D.0【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数.即可求出a的值.【解答】解:∵2的相反数是﹣2,∴a=2.故选:A.【点评】本题考查了实数的性质、相反数,解决本题的关键是掌握相反数的概念.2.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A.4,5 B.5,4 C.5,5 D.5,6【分析】根据中位数、众数的意义和计算方法进行计算即可.【解答】解:这组数据4,3,4,6,5,5,6,5,4,5中,出现次数最多的是5,因此众数是5,将这组数据从小到大排列后,处在第5、6位的两个数都是5,因此中位数是5.故选:C.【点评】本题考查中位数、众数的意义和计算方法,理解中位数、众数的意义是正确解答的前提,掌握计算方法是解决问题的关键.4.(4分)如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A.30°B.35°C.40°D.45°【分析】由AC⊥BC可得∠ACB=90°,又∠B=50°,根据直角三角形两个锐角互余可得∠CAB=40°,再根据平行线的性质可得∠DCA=∠CAB=40°.【解答】解:∵AC⊥BC,∴∠ACB=90°,又∵∠B=50°,∴∠CAB=90°﹣∠B=40°,∵CD∥AB,∴∠DCA=∠CAB=40°.故选:C.【点评】本题主要考查了平行线的性质以及直角三角形的性质,根据题意得出∠CAB的度数是解答本题的关键.5.(4分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.a3÷a2=a5D.(a2)3=a5【分析】A.根据合并同类项的定义即可判断;B.根据同底数幂的乘法,底数不变,指数相加即可判断;C.根据同底数幂的除法,底数不变,指数相减即可判断;D.根据幂的乘方,底数不变,指数相乘即可判断.【解答】解:A.a2+a3≠a5,所以A选项错误;B.a2•a3=a5,所以B选项正确;C.a3÷a2=a,所以C选项错误;D.(a2)3=a6,所以D选项错误;故选:B.【点评】本题考查了同底数幂的乘法和除法、合并同类项、幂的乘方与积的乘方,解决本题的关键是综合掌握以上知识.6.(4分)已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是()A.B.C.D.【分析】根据计算器求锐角的方法即可得结论.【解答】解:∵已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0,∴按下的第一个键是2ndF.故选:D.【点评】本题考查了计算器﹣三角函数,解决本题的关键是熟练利用计算器.7.(4分)如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED【分析】根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.8.(4分)化简+的结果是()A.a+b B.a﹣b C.D.【分析】根据同分母分式相加减的运算法则计算即可.同分母分式相加减,分母不变,分子相加减.【解答】解:原式====a﹣b.故选:B.【点评】本题主要考查了分式的加减,熟记运算法则是解答本题的关键.9.(4分)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则k的值为()A.36 B.48 C.49 D.64【分析】过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,利用勾股定理计算出AB=5,根据角平分线的性质得PE=PC=PD,设P(t,t),利用面积的和差得到×t×(t﹣4)+×5×t+×t×(t﹣3)+×3×4=t×t,求出t得到P点坐标,然后把P点坐标代入y=中求出k的值.【解答】解:过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A(0,4),B(3,0),∴OA=4,OB=3,∴AB==5,∵△OAB的两个锐角对应的外角角平分线相交于点P,∴PE=PC,PD=PC,∴PE=PC=PD,设P(t,t),则PC=t,∵S△PAE+S△PAB+S△PBD+S△OAB=S矩形PEOD,∴×t×(t﹣4)+×5×t+×t×(t﹣3)+×3×4=t×t,解得t=6,∴P(6,6),把P(6,6)代入y=得k=6×6=36.故选:A.【点评】本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了角平分线的性质和三角形面积公式.10.(4分)如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA=2,∠AOB=45°,则点O所经过的最短路径的长是()A.2π+2B.3πC.D.+2【分析】利用弧长公式计算即可.【解答】解:如图,点O的运动路径的长=的长+O1O2+的长=++=,故选:C.【点评】本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.11.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P 运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC 的面积是()A.12 B.24 C.36 D.48【分析】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC===6,△ABC的面积=×AC×BP=8×12=48,故选:D.【点评】本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.12.(4分)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【分析】设EF=x,DF=y,根据三角形重心的性质得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加减消元法消去x、y得到a、b、c的关系.【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故选:A.【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了勾股定理.二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果.13.(4分)计算:+= 2 .【分析】分别根据立方根的定义与算术平方根的定义解答即可.【解答】解:+=﹣2+4=2.故答案为:2【点评】本题主要考查了立方根与算术平方根,熟记立方根与二次根式的性质是解答本题的关键.14.(4分)如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为 1 .【分析】利用平移的性质得到BE=CF,然后利用EC=2BE=2得到BE的长,从而得到CF的长.【解答】解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.15.(4分)已知关于x的一元二次方程x2﹣x+2m=0有两个不相等的实数根,则实数m的取值X围是m<.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值X围.【解答】解:∵方程有两个不相等的实数根,a=1,b=﹣1,c=2m∴△=b2﹣4ac=(﹣1)2﹣4×1×2m>0,解得m<,故答案为m<.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.(4分)如图,矩形纸片ABCD,AB=6cm,BC=8cm,E为边CD上一点.将△BCE沿BE 所在的直线折叠,点C恰好落在AD边上的点F处,过点F作FM⊥BE,垂足为点M,取AF 的中点N,连接MN,则MN= 5 cm.【分析】连接AC,FC,求出AC,利用三角形的中位线定理解决问题即可.【解答】解:连接AC,FC.由翻折的性质可知,BE垂直平分线段CF,∵FM⊥BE,∴F.M,C共线,FM=MC,∵AN=FN,∴MN=AC,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC===10(cm),∴MN=AC=5(cm),故答案为5.【点评】本题考查翻折变换,矩形的性质,三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.17.(4分)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是210 个.【分析】根据理解题意找出题目中所给的等量关系,找出规律,写出货包数量的函数解析式,再根据二次函数最值的求法求出快递货车装载的货包数量最多的站.【解答】解:当一辆快递货车停靠在第x个服务驿站时,快递货车上需要卸下已经通过的(x﹣1)个服务驿站发给该站的货包共(x﹣1)个,还要装上下面行程中要停靠的(n﹣x)个服务驿站的货包共(n﹣x)个.根据题意,完成下表:服务驿站序号在第x服务驿站启程时快递货车货包总数1 n﹣12 (n﹣1)﹣1+(n﹣2)=2(n﹣2)3 2(n﹣2)﹣2+(n﹣3)=3(n﹣3)4 3(n﹣3)﹣3+(n﹣4)=4(n﹣4)5 4(n﹣4)﹣4+(n﹣5)=5(n﹣5)……n 0由上表可得y=x(n﹣x).当n=29时,y=x(29﹣x)=﹣x2+29x=﹣(x﹣14.5)2+210.25,当x=14或15时,y取得最大值210.答:在整个行程中,快递货车装载的货包数量最多是210个.故答案为:210.【点评】本题考查了规律型:数字的变化类,二次函数的性质在实际生活中的应用,二次函数的最值在x=﹣时取得.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(5分)解方程组:【分析】利用加减消元法解答即可.【解答】解:,①+②,得:5x=10,解得x=2,把x=2代入①,得:6+y=8,解得y=4,所以原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(5分)已知:如图,E是▱ABCD的边BC延长线上的一点,且CE=BC.求证:△ABC≌△DCE.【分析】由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出∠B=∠DCE,由SAS即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS).【点评】本题考查了平行四边形的性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的性质和全等三角形的判定方法是解题的关键.20.(8分)某校数学实践小组就近期人们比较关注的五个话题:“A.5G通讯; B.民法典;C.北斗导航;D.数字经济; E.小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有200 人;(2)将上面的最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的a=25 ,话题D所在扇形的圆心角是36 度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“民法典”的人数大约有多少?【分析】(1)根据选择B的人数和所占的百分比,可以求得本次调查的居民人数;(2)根据(1)中的结果和统计图中的数据,可以计算出选择A和C的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据,可以得到a和话题D所在扇形的圆心角的度数;(4)根据题意和统计图中的数据,可以计算出计该小区居民中最关注的话题是“民法典”的人数大约有多少.【解答】解:(1)调查的居民共有:60÷30%=200(人),故答案为:200;(2)选择C的居民有:200×15%=30(人),选择A的有:200﹣60﹣30﹣20﹣40=50(人),补全的条形统计图如右图所示;(3)a%=50÷200×100%=25%,话题D所在扇形的圆心角是:360°×=36°,故答案为:25,36;(4)10000×30%=3000(人),答:该小区居民中最关注的话题是“民法典”的人数大约有3000人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>的解集.【分析】(1)根据OC=3,tan∠ACO=,可求直线与y轴的交点坐标,进而求出点A、B的坐标,确定两个函数的关系式;(2)由S△AOB=S△AOC+S△BOC,进行计算即可;(3)由函数的图象直接可以得出,当x<0时,不等式ax+b>的解集.【解答】解:(1)设直线y1=ax+b与y轴交于点D,在Rt△OCD中,OC=3,tan∠ACO=.∴OD=2,即点D(0,2),把点D(0,2),C(3,0)代入直线y1=ax+b得,b=2,3a+b=0,解得,a=﹣,∴直线的关系式为y1=﹣x+2;把A(m,4),B(6,n)代入y1=﹣x+2得,m=﹣3,n=﹣2,∴A(﹣3,4),B(6,﹣2),∴k=﹣3×4=﹣12,∴反比例函数的关系式为y2=﹣,因此y1=﹣x+2,y2=﹣;(2)由S△AOB=S△AOC+S△BOC,=×3×4+×3×2,=9.(3)由图象可知,当x<0时,不等式ax+b>的解集为x<﹣3.【点评】本题考查一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,线段与坐标的相互转化是解决问题的关键.22.(8分)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B 方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100千米,≈1.4,≈1.7等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,解直角三角形求出CD 的长度和BD的长度,在直角△ACD中,解直角三角形求出AD的长度和AC的长度,再求出AB的长度,进而求出从A地到景区B旅游可以少走多少千米;(2)本题先由题意找出等量关系即原计划的工作时间﹣实际的工作时间=50,然后列出方程可求出结果,最后检验并作答.【解答】解:(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,AB⊥CD,sin30°=,BC=1000千米,∴CD=BC•sin30°=100×=50(千米),BD=BC•cos30°=100×=50(千米),在直角△ACD中,AD=CD=50(千米),AC==50(千米),∴AB=50+50(千米),∴从A地到景区B旅游可以少走:AC+BC﹣AB=50+100﹣(50+50)=50+50﹣50≈35(千米).答:从A地到景区B旅游可以少走35千米;(2)设施工队原计划每天修建x千米,依题意有,﹣=50,解得x==0.54,经检验x=0.54是原分式方程的解.答:施工队原计划每天修建0.54千米.【点评】本题考查了勾股定理的运用以及解一般三角形的知识,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.同时考查了分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系,②列出方程,③解出分式方程,④检验,⑤作答.注意:分式方程的解必须检验.23.(9分)如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A 作AF⊥BC于点F,设⊙O的半径为R,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)求证:AB•AC=2R•h;(3)设∠BAC=2α,求的值(用含α的代数式表示).【分析】(1)连接OD,由角平分线的性质可得∠BAD=∠CAD,可得=,由垂径定理可得OD⊥BC,可证OD⊥MN,可得结论;(2)连接AO并延长交⊙O于H,通过证明△ACF∽△AHB,可得,可得结论;(3)由“HL”可证Rt△DQB≌Rt△DPC,Rt△DQA≌Rt△DPA,可得BQ=CP,AQ=AP,可得AB+AC=2AQ,由锐角三角函数可得AD=,即可求解.【解答】解:(1)如图1,连接OD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,又∵OD是半径,∴OD⊥BC,∵MN∥BC,∴OD⊥MN,∴MN是⊙O的切线;(2)如图2,连接AO并延长交⊙O于H,∵AH是直径,∴∠ABH=90°=∠AFC,又∵∠AHB=∠ACF,∴△ACF∽△AHB,∴,∴AB•AC=AF•AH=2R•h;(3)如图3,过点D作DQ⊥AB于Q,DP⊥AC,交AC延长线于P,连接CD,∵∠BAC=2α,AD平分∠BAC,∴∠BAD=∠CAD=α,∴=,∴BD=CD,∵∠BAD=∠CAD,DQ⊥AB,DP⊥AC,∴DQ=DP,∴Rt△DQB≌Rt△DPC(HL),∴BQ=CP,∵DQ=DP,AD=AD,∴Rt△DQA≌Rt△DPA(HL),∴AQ=AP,∴AB+AC=AQ+BQ+AC=2AQ,∵cos∠BAD=,∴AD=,∴==2co sα.【点评】本题是圆的综合题,考查了圆的有关知识,角平分线的性质,全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造全等三角形或相似三角形是本题的关键.24.(9分)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C 三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x 轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.【分析】(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②即可求解;(2)△ADR的面积是▱OABC的面积的,则×AD×|y R|=×OA×OB,则×6×|y R|=×2×,即可求解;(3)∠PQE=45°,故∠PRE=90°,则△PRE为等腰直角三角形,当直线MD上存在唯一的点Q,则RQ⊥MD,即可求解.【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;(2)由抛物线的表达式得,点M(1,3)、点D(4,0);∵△ADR的面积是▱OABC的面积的,∴×AD×|y R|=×OA×OB,则×6×|y R|=×2×,解得:y R=±④,联立④③并解得,故点R的坐标为(1+,4)或(1,4)或(1,﹣4)或(1﹣,﹣4);(3)作△PEQ的外接圆R,∵∠P QE=45°,故∠PRE=90°,则△PRE为等腰直角三角形,当直线MD上存在唯一的点Q,则RQ⊥MD,点M、D的坐标分别为(1,4)、(4,0),则ME=4,ED=4﹣1=3,则MD=5,过点R作RH⊥ME于点H,设点P(1,2m),则PH=HE=HR=m,则圆R的半径为m,则点R(1+m,m),S△MED=S△MRD+S△MRE+S△DRE,即×EM•ED=×MD×RQ+×ED•y R+×ME•RH,∴4×3=×5×m+×4×m×3×m,解得m=60﹣84,故点P(1,120﹣168).【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、面积的计算等,综合性强,难度较大.。
小学二年级数学期中检测试卷姓名分数一、直接写得数。
(共6分,前六题每题分,后三题每题1分。
)54÷9=5×8=54+6=7÷7=64-8=32÷8=8×5 +16=56 ÷8-0 =40 +60 -81=二、填空。
(共10分,每题分。
)1、36÷4=(),这个算式读作(),其中除数是(),商是()。
2、8+22=30,54-30=24,把这两道算式改写成一道算式应该是()。
3、把9个面包平均分成3份,每份有()个面包。
4、计算54÷9=()时,用到的乘法口诀是()。
5、一个直角三角板中有一个()角,两个()角。
6、风扇转动是()现象,推拉抽屉(tì)是()现象。
7、将下列算式填在合适的()里。
35÷7 42÷6 7×7 72÷8 36÷6 ()> ( ) > ( ) >( ) >( )8、9的3倍是(),8是2的()倍。
三、在○里填上“>”“<”或“=”(6)42÷7 ○ 7 48 -30 ○ 8 36 ÷4 ○ 506 ×9 ○ 45 35÷5 ○78 ×6 ○ 48四、()里最大能填几(6)()×4 <30 7 ×()<64 2 ×()<215×()<47 ( ) ×8 <53 6 ×( ) <38五、我会画。
(共6分)(1)、把下图向右平移6格,再向上移动3格。
(2分)(2)、画一个锐角和一个钝角,并在角的旁边写明是什么角。
(4分)六、下面是4个小朋友手机废旧电池的情况。
(共8分、没空2分。
)六、填空(9)15÷3= 表示把()平均分成()份,每份是()。
表示有()个东西,每()个一份,分成()。
表示()里面有()个()。
2023年人教版初中数学中考第八章 圆(基础)专题训练时间:45分钟 满分:80分一、选择题(每题4分,共32分)1.已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( )A .一定在⊙O 的内部B .一定在⊙O 的外部C .一定在⊙O 上D .不能确定2.如图,△ABC 内接于圆,弦BD 交AC 于点P ,连接AD .下列角中,AB ︵所对的圆周角是( )(第2题)A .∠APBB .∠ABDC .∠ACBD .∠BAC3.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A.π6 B .π C.π3 D.2π34.如图,⊙O 的直径AB =8,弦CD ⊥AB 于点P ,若BP =2,则CD 的长为( )A .2 5B .4 2C .4 3D .8 2(第4题) (第5题) (第6题)5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠ACD=65°,则∠BAD的度数为()A.25°B.30°C.35°D.40°6.如图,在⊙O中,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40°B.50°C.55°D.60°7.如图,以边长为2的等边三角形ABC的顶点A为圆心,一定的长为半径画弧,恰好与BC边相切,分别交边AB,AC于点D,E,则图中阴影部分的面积是()A.3-π4B.23-πC.(6-π)33 D.3-π2 (第7题)(第8题)8.如图,在⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1 C.32D.2二、填空题(每题4分,共16分)9.已知圆的半径是3,则该圆的内接正六边形的边长是________.10.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=________°.(第10题)(第11题)11.如图,P A,PB与⊙O相切于A,B两点,点C在⊙O上,若∠C=70°,则∠P=________°.12.已知圆锥的母线长为5,底面半径为3,则圆锥的侧面展开图的面积为________.三、解答题(共32分)13.(10分)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD 至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.(第13题)14. (10分)如图,⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC交BC的延长线于点D,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若sin ∠CAB=35,⊙O的半径为522,求AB的长.(第14题)15.(12分)如图,在Rt △ABC 中,∠C =90°,BC 与⊙O 相切于点D ,且⊙O 分别交AB ,AC 于点E ,F .(1)求证:AD 平分∠CAB ;(2)当AD =2,∠CAD =30°时,求AD ︵的长.(第15题)答案一、1.B 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.3 10.140 11.40 12.15π三、13.(1)证明:∵四边形ABCD 是⊙O 的内接四边形,∴∠ABC +∠ADC =180°.∵∠ADC +∠ADE =180°,∴∠ADE =∠ABC . ∵AB =AC ,∴∠ABC =∠ACB .∵∠ACB =∠ADB ,∴∠ADB =∠ADE .(2)解:如图,连接CO 并延长交⊙O 于点F ,连接BF , 则∠FBC =90°.由题意得在Rt △BCF 中CF =4,BC =3,(第13题)∴sin F =BC CF =34.∵∠F =∠BAC ,∴sin ∠BAC =sin F =34.14.(1)证明:如图,连接OA .∵∠ABC =45°, ∴∠AOC =2∠ABC =90°.∵AD ∥OC ,∴∠DAO +∠AOC =180°,∴∠DAO =90°,即OA ⊥AD .又∵OA 是⊙O 的半径,∴AD 是⊙O 的切线.(2)解:如图,过点C 作CE ⊥AB 于点E .由(1)知∠AOC =90°.∵AO =OC =522,∵CE ⊥AB ,∴∠AEC =∠CEB =90°,∴sin ∠CAB =CE AC =35, ∴CE =3,∴AE =AC 2-CE 2=4.∵∠CEB =90°,∠ABC =45°,∴∠BCE =45°, ∴CE =BE =3,∴AB =AE +BE =7.(第14题)15.(1)证明:如图,连接OD .∵BC 与⊙O 相切于点D ,∴OD ⊥BC ,即∠ODB =90°.∵∠C =90°,∴OD ∥AC ,∴∠ODA =∠CAD .∵OD =OA ,∴∠OAD =∠ODA ,∴∠CAD =∠OAD ,∴AD 平分∠CAB .(2)解:如图,连接DE .∵AE 为⊙O 的直径,∴∠ADE =90°.∵∠CAD =30°,∠OAD =∠ODA =∠CAD , ∴∠OAD =∠ODA =30°,∴∠AOD =120°. 在Rt △ADE 中,AE =AD cos ∠EAD =232=43 3,∴⊙O 的半径为23 3, ∴AD ︵的长=120π×23 3180=49 3π.。
人教版九年级中考数学考点复习 二元一次方程组 专题练习一.选择题(本大题共10道小题)1. 下列方程中,是二元一次方程的是( )A.xy =2B.3x =4yC.x 2D.x 2+2y =4 2. 下列方程中,①x+y=6;②x(y+1)=6;③3x+y=z+1;④mn+m=7,是二元一次方程的有( )A.1个B.2个C.3个D.43. 如果3x 3m-2n -4y n-m +12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( )A.m =2,n =3B.m =2,n =1C.m =-1,n =2D.m =3,n =4 4. 方程组的解是( ) A. B. C. D.5. 用加减消元法解二元一次方程组时,下列方法中无法消元的是( ) A.①×2﹣② B.②×(﹣3)﹣① C.①×(﹣2)+② D.①﹣②×36. 如图,在数轴上,点A 、B 分别表示数a 、b,且a+b=2.若AB=4,则点A 表示的数为( )A.-1B.-2C.2D.17. 若方程组⎩⎪⎨⎪⎧3x -y =4k -5①2x +6y =k ② 的解中x +y =16,则k 等于( ) A.15 B.18 C.16 D.178. 方程组⎩⎨⎧2x +y =□x +y =3 的解为⎩⎨⎧x =4y =□,则被遮盖的两个数分别为( ) A.9,-1 B.9,1 C.7,-1 D.5,19. 同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( )A.120kmB.140kmC.160kmD.180km10. 《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为( )A. ⎩⎪⎨⎪⎧x -12y =50,y -23x =50B.⎩⎪⎨⎪⎧x +12y =50,y +23x =50C.⎩⎪⎨⎪⎧2x +y =50,x +23y =50D.⎩⎪⎨⎪⎧2x -y =50,x -23y =50 二、填空题(本大题共6道小题)11. 已知x 、y 满足方程组,则x+y 的值为______.12. 写出二元一次方程3x-y=4的一组解 (写出一组即可)13. 关于x 、y 二元一次方程组2352x y x y k +=⎧⎨-=⎩的解满足6x+y=21,则k 的值为______.14. 已知二元一次方程x +3y =14,请写出该方程的一组整数解 .15. 某企业有A,B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为(4a+1)小时;在一天内,B 生产线共加工b 吨原材料,加工时间为(2b+3)小时.第一天,该企业将8吨原材料分配到A,B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为 _____.第二天开工前,该企业按第一天的分配结果分配了8吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则mn 的值为 _____.16. 我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是 尺.三、解答题(本大题共6道小题)17. 列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?18. 某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,总费用为5700元,这所学校购买了多少个B 型号篮球?19. 某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?20. 某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?21. 2020年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村子的公路,现有甲、乙两个工程队.若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.(1)求甲、乙两队单独完成此项工程各需多少天?(2)求甲、乙两队单独完成此项工程各需多少万元?22.我校组织了国学经典知识竞赛,学校购买了若干副乒乓球拍和羽毛球拍对表现优异的班级进行奖励.若购买2副乒乓球拍和1副羽毛球拍共需280元;若购买3副乒乓球拍和2副羽毛球拍共需480元.求1副乒乓球拍和1副羽毛球拍各是多少元.。
人教版九年级数学中考一元一次方程及其应用专项练习专题知识回顾知识点1:一元一次方程的概念1.一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。
2.方程的解:判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等.知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
2.解一元一次方程的一般步骤:(1)去分母在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。
(2)去括号一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。
(3)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。
(4)合并同类项把方程化成ax =b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。
(5)系数化为1在方程两边都除以未知数的系数a ,得到方程的解x =b/a ,依据等式基本性质2,计算要仔细,分子分母勿颠倒。
要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a≠0时,方程有唯一解x =b/a ; ②a=0,b=0时,方程有无数个解; ③a=0,b≠0时,方程无解。
知识点3:列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。
专题2 纪念抗战胜利70周年热点新题预测一、选择题1. 2015年9月3日,我国在天安门广场隆重举行抗日战争暨世界反法西斯战争胜利70周年纪念活动。
此次活动得到了国际社会的广泛响应和积极支持,这表明()①和平与发展是当今世界的两大主题②中国是主宰世界和平与发展的大国③一个和平、合作、负责任的大国形象已被国际社会所公认④正义是人类良知的声音A. ①②③B. ②③④C. ①②④D. ①③④2. 在发表重要讲话时强调,世界各国应该共同维护以联合国宪章宗旨和原则为核心的国际秩序和国际体系,积极构建以合作共赢为核心的新型国际关系,共同推进世界和平与发展的崇高事业。
这是因为()①和平与发展是当今时代的主题②中国人民向往和平,反对战争③中国是一个负责任的大国④世界的发展主要依赖于中国的发展A. ①②④B. ②③④C. ①②③D. ①③④3. 2015年9月3日晚,人民大会堂万人礼堂金碧辉煌,流光溢彩。
向中外观众了展示了主题为“胜利与和平”的纪念中国人民抗日战争暨世界反法西斯战争胜利70周年文艺晚会。
这有利于()①激发爱国热情,振奋民族精神②传承中华民族的一切传统文化③增强民族自尊心、自信心和自豪感④促进社会主义精神文明建设A.①②③ B.①③④C.②③④ D.①②③④4. 在中国人民抗日战争的进程中,形成了伟大的抗战精神,它是中国人民弥足珍贵的精神财富。
因为伟大的抗战精神()A. 是中华民族精神发展的不竭动力B. 使中华民族精神的内涵更加丰富C. 与我们当今的时代精神内容相同D. 是社会主义现代化建设的物质保障5. 主席在纪念中国人民抗日战争暨世界反法西斯战争胜利70周年大会上发表重要讲话,集中体现了“五个大国”思想内涵,即大国领袖、大国道路、大国思维、大国胸怀、大国意志。
这充分表明()A. 中国积极主动承担国际责任B. 中国已成为世界上最强大的国家C. 我国在国际舞台上占主导地位D. 中国是维护世界和平的决定力量6. 大阅兵不是简单的庆祝仪式,而是对历史的纪念与沉思,对未来的展望与宣示。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版九年级数学中考真题分类(解答题)专练:圆的综合(一)1.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.2.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6,CD=4,且CE=2AE,求EF的长.3.(2020•乐山)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.4.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.5.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.6.(2020•甘孜州)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:∠CAD=∠CAB;(2)若=,AC=2,求CD的长.7.(2020•金华)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.8.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,=,求CD的长.9.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.10.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.参考答案1.(1)证明:连接OD,∵==,∴∠BOD=180°=60°,∵=,∴∠EAD=∠DAB=BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=AB=3,∴AD==3.2.(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴=,∴AC=9,∴AB==3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴==,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴=,∴=,∴FH=,∴EF=﹣2.3.证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.4.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.5.(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.6.(1)证明:如图1,连接OC,,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,即∠CAD=∠CAB.(2)解:如图2,连接BC,∵=,∴设AD=2x,AB=3x,∵AB是⊙O的直径,∴∠ACB=∠ADC=90°,∴∠ACB=90°,∵AD⊥DC,∴∠ADC=90°,∵∠DAC=∠CAB,∴△ACD∽△ABC,∴=,∴=,解得,x1=2,x2=﹣2(舍去),∴AD=4,∴CD==2.7.解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.8.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tan A==tan∠BCE==,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴==,∵AD=8,∴CD=4.9.(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.10.解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.。
人教版九年数学中考规律专题练习学习数学很重要的一个目的,就是要善于捕捉事物的规律,用数学形式和数学方法表示出来.规律与猜想类试题选材一般来源于学生熟悉的生活,有一定的趣味性,呈现形式多样,便于学生观察,侧重考查学生观察和归纳能力,让学生从不同角度,利用不同方法探索并发现数学规律,同时利用发现的规律,让学生学会自我验证,真正考查了学生的数学思考能力.类型之一数式的变化规律例1 (2014·安徽)观察下列关于自然数的等式:32-4×12=552-4×22=972-4×32=13……根据上述规律解决下列问题:(1)完成第四个等式:92-4×( )2=( );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【思路点拨】(1)从等式的结构看,等于号的左边第一项的底数依次增大2,第二项的底数依次增大1,等于号的右边依次增大4.依次规律就可写出第四个等式;(2)先根据分析的规律用含n的等式表示出第n个等式,然后将等号的一边经过整理与另一边相同.【解答】(1)4,17.(2)(2n+1)2-4×n2=4n+1.验证:∵左边=4n2+4n+1-4n2=4n+1=右边,∴等式成立.方法归纳:探究等式变化规律的题目,关键把握两点:一是找出等式中“变”与“不变”的部分;二是分析出“变”的规律即等式的个数之间存在的规律.1.(2014·东营)将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2 014对应的有序数对为.2.(2014·菏泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n行(n是整数,且n≥3)从左至右数第n-2个数是(用含n的代数式表示).3.(2014·滨州)计算下列各式的值:2919+;299199+;2999 1 999+;29 99919 999+.观察所得结果,总结存在的规律,运用得到的规律可得22 01492 01499991999⋯+⋯个个= .4.(2014·巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n (n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如,(a+b)2=a 2+2ab+b 2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a 3+3a 2b+3ab 2+b 3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a-b)4的展开式为 .5.(2014·黄石)观察下列等式:第一个等式:a 1=23122⨯⨯=112⨯-2122⨯第二个等式:a 2=34232⨯⨯=2122⨯-3132⨯ 第三个等式:a 3=45342⨯⨯=3132⨯-4142⨯ 第四个等式:a 4=56452⨯⨯=14142⨯-5152⨯按上述规律,回答以下问题:用含n 的代数式表示第n 个等式:a n = = ;式子a 1+a 2+a 3+…+a 20= .6.(2014·烟台)将一组数3,6,3,23,15,…,310,按下面的方法进行排列:若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( ) A.(5,2) B.(5,3) C.(6,2) D.(6,5)类型之二 图形的变化规律例2 (2014·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接. (1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若有餐的人数有90人,则这样的餐桌需要多少张?【思路点拨】由拼图可知,每多拼一张餐桌,可坐的人数就增多4人,依次规律可探究出餐桌的个数与可坐人数之间的关系.从而就可解决问题.【解答】(1)根据图中的规律我们可以发现,每多拼接一张餐桌,可坐的人数就增多4人.即:拼接x张餐桌可以就餐的人数为:6+4(x-1)=4x+2(人).所以,拼4张可以坐4×4+2=18(人),拼8张可以坐4×8+2=34(人).(2)由题意可知4x+2=90.解得x=22.答:这样的餐桌需要拼接22张.方法归纳:当图形在变换时,图形的个数与对应的另一个变换的量的关系很难直接观察出规律时,可以通过建立这两个变量之间的函数关系,利用已知的几对对应值求出函数关系式,然后去论证.1.(2014·重庆A卷)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A.20B.27C.35D.402.(2014·武汉)观察下列一组图形中点的个数,其中第1个图片共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是( )A.31B.46C.51D.663.(2014·重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,……,依此规律,第五个图形中三角形的个数是( )A.22B.24C.26D.284.(2014·宜宾)如图,将n个边长都为2的正方形按照如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A.nB.n-1C.(14)n-1 D.14n5.(2014·鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是( )①四边形A 4B 4C 4D 4是菱形;②四边形A 3B 3C 3D 3是矩形;③四边形A 7B 7C 7D 7周长为8a b+;④四边形A n B n C n D n 面积为·2na b . A.①②③ B.②③④ C.①③④ D.①②③④6.(2014·内江)如图,已知A 1、A 2、……、A n 、A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=……=A n A n +1=1,分别过点A 1、A 2、……、A n 、A n +1作x 轴的垂线交直线y =2x 于点B 1、B 2、……、B n 、B n +1,连接A 1B 2、B 1A 2、A 2B 3、B 2A 3、……、A n B n +1、B n A n +1,依次相交于点P 1、P 2、P 3、……、P n ,△A 1B 1P 1、△A 2B 2P 2、……、△A n B n P n 的面积依次为S 1、S 2、……、S n ,则S n 为( )A.121n n ++ B.231n n - C.221n n - D.22+1n n7.(2014·内江)如图所示,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第 2 014个图形是 .△△□□□△○○□□□△○○□□□△○○□……8.(2014·娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n 为正整数)个图案由 个▲组成.9.(2014·盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1,S 2,S 3,…,S n ,则S n 的值为 .(用含n 的代数式表示,n 为正整数)类型之三 点的坐标的变化规律例3 (2014·泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(53,0),B(0,4),则点B2 014的横坐标为.【思路点拨】先根据勾股定理求出AB的长度,再根据第4个图形与第1个图形的位置相同,可知每三个三角形为一个循环依次循环,然后求出每个循环组中B点坐标的变化规律即可.【解答】由题意可得:∵AO=53,BO=4,∴AB=133,∴OA+AB1+B1C2=53+133+4=6+4=10,∴B2的横坐标为10,B4的横坐标为2×10=20,∴点B2 014的横坐标为:20142×10=10 070.故答案为:10 070.方法归纳:由于图形在坐标系中的运动而导致的点的坐标的变化情况,先应该分析图形的运动规律,然后结合点在图形中的位置找出点的坐标的变化规律.1.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……,都是斜边在x轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2 014的坐标为.2.(2013·湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A22的坐标是.3.(2014·孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.4.(2014·德州)如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…A n ,….将抛物线y =x 2沿直线l :y =x 向上平移,得一系列抛物线,且满足下列条件: ①抛物线的顶点M 1,M 2,M 3,…M n ,…都在直线l :y =x 上; ②抛物线依次经过点A 1,A 2,A 3,…A n ,…. 则顶点M 2 014的坐标为 .参考答案类型之一 数式的变化规律1.(45,12) 22n - 3.102 0142919+1299199+229 99 1 999+3,29 99919 999+4,2201492014999...9199...9+个个=102 014.故答案为102 014.4.a 4-4a 3b+6a 2b 2-4ab 3+b 45.()1212n n n n +++;1·2n n -()1112n n ++;12-211212⨯ 6.C类型之二 图形的变化规律1.B2.B3.C提示:每一次操作三角形个数增加6个. 4.B提示:每两个之间重叠部分的面积都等于正方形面积的14,正方形的面积为4,所以重叠部分的面积为1,n 个正方形有(n-1)个重叠部分,故重叠部分的面积之和为(n-1). 5.A 6.D提示:A n B n当底,利用函数y=2x即可求得,利用黑白三角形相似如△A1B1P1∽△B2A2P1等求得P n到A n B n的距离,从而得△A n B n P n的面积.7.正方形8.3n+19.24n-5提示:根据A点的坐标为(8,4)即可得出正方形的边长依次为20、21、22、23、…,第n个正方形的边长为2n-1计算,第n个阴影部分是在第2n-1和2n个正方形中,与求S2的方法一样,第n个阴影部分的面积是第2n-1个正方形面积的一半,∴S n=12×(22n-1-1)2=24n-5.类型之三点的坐标的变化规律1.(1,-1 007)2.(0,3-1) (-8,-8)提示:由于22÷3=7……1,而A1的坐标为(-1,-1);A4的坐标为(-2,-2);A7的坐标为(-3,-3);……;A22的坐标为(-8,-8).3.(63,32)提示:A1(0,1),B1(1,1);A2(1,2)B2(3,2),A3(3,4),B3(7,4);依次类推A n(2n-1,2n-1),所以B6(63,32).4.(4 027,4 027)提示:M1(a1,a1)是抛物线y1=(x-a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x-a1)2+a1相交于A1,得x2=(x-a1)2+a1,即2a1x=a21+a1,x=12(a1+1).∵x为整数点,∴a1=1,M1(1,1);同理M2(3,3),M3(5,5),……,∴M2 014(2 014×2-1,2014×2-1),即M2014(4 027,4 027).。
不等式(组)1. (2018·某某江汉·3分)若关于x的一元一次不等式组的解集是x >3,则m的取值X围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.2.(2018·某某省某某·3分)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值X 围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1.2.3,则3≤a<4.故答案为:3≤a<4.3.(2018·某某省某某市)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为.故选B.4. (2018•呼和浩特•3分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值X围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,∴m<,∴m≤﹣4故选:D.5.(2018·某某某某·3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.1.(2018·某某省某某市)(3.00分)不等式组的解集是﹣2≤x<2 .【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.(2018·某某省某某市)不等式组的解集是0<x≤8.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.3. (2018•呼和浩特•3分)若不等式组的解集中的任意x,都能使不等式x ﹣5>0成立,则a的取值X围是.解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴﹣2a≥5或﹣a+2≥5,解得:a≤﹣2.5或a≤﹣6,经检验a≤﹣2.5不符合,故答案为:a≤﹣6.1. (2018·某某贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧X,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.2. (2018·某某某某·8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1.2.3,原式=•[﹣]=•=,∵x≠±3.1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.3.(2018·某某荆州·5分)求不等式组的整数解.【解答】解:解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1.0.4.(2018·某某省某某)某某市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么X围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的X围.5.(2018·某某省某某·8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.6.(2018·某某省·8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A.B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)3 2 120A商品200B商品设生产A种商品x千克,生产A.B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值X围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.7.(2018·某某省某某·8分)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.8.(2018·某某省某某市) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建6个足球场.9.(2018·某某省某某市)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.10.(2018·某某省某某市)(12.00分)为落实“美丽某某”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.11. (2018•某某•9分)解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.12. (2018•某某•3分)已知点P(1﹣a,2a+6)在第四象限,则a的取值X围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.【点评】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(2018·某某某某·9分)解不等式组:解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.14. (2018·某某某某·10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于=(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值X围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为,解得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,word综合起来可知汽车总数为8辆,故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.15.(2018·某某某某·8分)解方程组和不等式组:(2)【分析】(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.16.(2018·某某某某·5分)(2)解不等式组:【解答】解:(2)解不等式2x﹣4>0,得:x>2,解不等式x+1≤4(x﹣2),得:x≥3,则不等式组的解集为x≥3.11 / 11。
2020年某某省东营市中考数学试卷一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣6的倒数是()A.﹣6 B.6 C.D.【分析】根据倒数的定义,a的倒数是(a≠0),据此即可求解.【解答】解:﹣6的倒数是:﹣.故选:C.【点评】本题考查了倒数的定义,理解定义是关键.2.(3分)下列运算正确的是()A.(x3)2=x5B.(x﹣y)2=x2+y2C.﹣x2y3•2xy2=﹣2x3y5D.﹣(3x+y)=﹣3x+y【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x6,不符合题意;B、原式=x2﹣2xy+y2,不符合题意;C、原式=﹣2x3y5,符合题意;D、原式=﹣3x﹣y,不符合题意.故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A.﹣2 B.2 C.±2D.4【分析】根据科学计算器的使用及算术平方根的定义求解可得.【解答】解:表示“=”即4的算术平方根,∴计算器面板显示的结果为2,故选:B.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握科学计算器的基本功能的使用.4.(3分)如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于()A.159°B.161°C.169°D.138°【分析】直接利用对顶角、邻补角的定义以及角平分线的定义得出∠BOM=∠DOM,进而得出答案.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠B OD=42°,∴∠AOD=180°﹣42°=138°,∵射线OM平分∠BOD,∴∠BOM=∠DOM=21°,∴∠AOM=138°+21°=159°.故选:A.【点评】此题主要考查了对顶角、邻补角以及角平分线的定义,正确得出∠BOM=∠DOM 是解题关键.5.(3分)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为()A.B.C.D.【分析】找出随机闭合开关K1、K2、K3中的两个的情况数以及能让两盏灯泡L1、L2同时发光的情况数,即可求出所求概率.【解答】解:画树状图,如图所示:随机闭合开关K1、K2、K3中的两个有六种情况:闭合K1K2,闭合K1K3,闭合K2K1,闭合K2K3,闭合K3K1,闭合K3K2,能让两盏灯泡L1、L2同时发光的有两种情况:闭合K2K3,闭合K3K2,则P(能让两盏灯泡L1、L2同时发光)==.故选:D.【点评】此题考查了列表法与树状图法,弄清题中的电路图是解本题的关键.6.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是()A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c满足的关系综合进行判断即可.【解答】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b =0,b>0,抛物线与y轴交于正半轴,于是c>0,∴abc<0,因此选项A不符合题意;由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,因此选项B符合题意;当x=4时,y=16a+4b+c<0,因此选项C不符合题意;当x>1时,y随x的增大而减小,因此选项D不符合题意;故选:B.【点评】本题考查二次函数的图象和性质,理解抛物线的位置与系数a、b、c之间的关系是正确解答的关键.7.(3分)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2 D.1【分析】根据扇形的面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径)即可求出圆锥的底面半径.【解答】解:根据圆锥侧面展开图是扇形,扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得3πr=3π,∴r=1.所以圆锥的底面半径为1.故选:D.【点评】本题考查了圆锥的计算、扇形面积的计算,解决本题的关键是掌握扇形面积公式.8.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里【分析】设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x 里,x里,x里,根据六天共走了378里,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,依题意,得:4x+2x+x+x+x+x=378,解得:x=48.故选:B.【点评】本题考查了一元一次方程的应用以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P 运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC 的边AB的长度为()A.12 B.8 C.10 D.13【分析】根据图2中的曲线可得,当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,可得CP=12,根据勾股定理可得AP=5,再根据等腰三角形三线合一可得AB的长.【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,得CP=12,所以根据勾股定理,得此时AP==5.所以AB=2AP=10.故选:C.【点评】本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.10.(3分)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【解答】解:∵四边形ABCD是正方形∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME(SAS),故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;连接OM,ON,∵OA垂直平分线段PM.OB垂直平分线段PN,∴OM=OP,ON=OP,∴OM=OP=ON,∴点O是△PMN的外接圆的圆心,∵∠MPN=90°,∴MN是直径,∴M,O,N共线,故⑤正确.故选:B.【点评】本题考查正方形的性质、矩形的判定、勾股定理等知识,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.2×10﹣8.【分析】由原数左边起第一个不为零的数字前面的0的个数所决定10的负指数,把较小的数表示成科学记数法即可.【解答】解:0.00000002=2×10﹣8,则0.00000002用科学记数法表示为2×10﹣8.故答案为:2×10﹣8.【点评】此题考查了科学记数法﹣表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)因式分解:12a2﹣3b2=3(2a+b)(2a﹣b).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=3(4a2﹣b2)=3(2a+b)(2a﹣b).故答案为:3(2a+b)(2a﹣b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3分)东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)13 14 15 人数 4 7 4 则该校女子游泳队队员的平均年龄是14 岁.【分析】直接利用加权平均数的定义列式计算可得.【解答】解:该校女子游泳队队员的平均年龄是=14(岁),故答案为:14.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.(3分)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k <0(填“>”或“<”).【分析】设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入代入,得到k和b值,即可得到结论.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,,解得:k=﹣2,b=1,∴k<0,故答案为:<.【点评】本题考查了一次函数图象与系数的关系,利用待定系数法正确的求出k,b的值是解题的关键.(4分)如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值X围是m≤9.15.【分析】根据一元二次方程有实数根,得到根的判别式大于等于0,求出m的X围即可.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有实数根,∴△=36﹣4m≥0,解得:m≤9,则m的取值X围是m≤9.故答案为:m≤9.【点评】此题考查了根的判别式,弄清一元二次方程解的情况与根的判别式的关系是解本题的关键.16.(4分)如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA =3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2=18 .【分析】利用相似三角形的性质求出△PAD的面积即可解决问题.【解答】解:∵PA=3PE,PD=3PF,∴==,∴EF∥AD,∴△PEF∽△PAD,∴=()2,∵S△PEF=2,∴S△PAD=18,∵四边形ABCD是平行四边形,∴S△PAD=S平行四边形ABCD,∴S1+S2=S△PAD=18,故答案为18.【点评】本题考查相似三角形的判定和性质,平行四边形的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(4分)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为2.【分析】连接OP、OQ,作OP′⊥AB于P′,根据切线的性质得到OQ⊥PQ,根据勾股定理得到PQ=,根据垂线段最短得到当OP⊥AB时,OP最小,根据直角三角形的性质、勾股定理计算即可.【解答】解:连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ==,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,∴OA==6,在Rt△AOP′中,∠A=30°,∴OP′=OA=3,∴线段PQ长度的最小值==2,故答案为:2.【点评】本题考查的是切线的性质、勾股定理、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.18.(4分)如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为a n,若a1=2,则a2020= 2 .【分析】根据反比例函数与一次函数图象上点的坐标特征分别求出A1、B1、A2、B2、A3、B3…,从而得到每3次变化为一个循环组依次循环,用2020除以3,根据商的情况确定出a2020即可.【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,B2的横坐标和A2的横坐标相同为a2═﹣,A3的纵坐标和B2的纵坐标相同为y3=﹣=,B3的横坐标和A3的横坐标相同为a3=﹣,A4的纵坐标和B3的纵坐标相同为y4=﹣=3,B4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673…1,∴a2020=a1=2,故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,依次求出各点的坐标,观察出每3次变化为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.【分析】(1)先计算2cos60°、()﹣2,再化简和﹣|3+2|,最后加减求出值;(2)按分式的混合运算法则,先化简分式,再代入求值.【解答】解:(1)原式=3+(2×)2020﹣22﹣(3+2)=3+1﹣4﹣3﹣2=﹣6;(2)原式=•=•=x﹣y.当x=+1,y=时,原式=+1﹣=1.【点评】本题考查了二次根式的化简、特殊角的三角函数值、负整数指数幂、绝对值的化简及分式的混合运算.题目综合性较强,是中考热点.熟记特殊角的三角函数值和负整数指数幂的意义是求(1)的关键,掌握分式的混合运算法则,化简分式是解决(2)的关键.20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【分析】(1)根据勾股定理的逆定理得到∠AEM=90°,由于MN∥BC,根据平行线的性质得∠ABC=90°,然后根据切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4﹣r)2,解方程即可得到⊙O的半径,即可得出答案.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和勾股定理的逆定理.21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?【分析】过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,在直角三角形ACD中,求出CD的长,在直角三角形BCD中,利用锐角三角函数定义求出BC的长,进而求出所求时间即可.【解答】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC=60海里,∴∠CDA=∠CDB=90°,∵在Rt△ACD中,∠CAD=∠MAB﹣∠MAC=90°﹣60°=30°,∴CD=AC=30(海里),在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD﹣∠NBC=90°﹣45°=45°,∴BC=CD=60(海里),∴60÷50=1.2(小时),∴从B处到达C岛处需要1.2小时.【点评】此题考查了解直角三角形的应用﹣方向角,熟练掌握锐角三角函数定义是解本题的关键.22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好44较好68 0.34一般48 0.24不好40 0.20请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无某某,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.【分析】(1)结合扇形统计图与表格确定出调查学生总数即可;(2)分别求出所缺的数据,填写表格即可;(3)根据题意列出算式,计算即可求出值;(4)列表确定出所有等可能的情况数,找出两次抽到的作业本都是“非常好”的情况数,即可求出所求概率.【解答】解:(1)根据题意得:40÷=200(名),则本次抽样共调查了200名学生;(2)填表如下:作业情况频数频率非常好44较好68一般48不好40故答案为:44;48;0.34;0.24;0.20;(3)根据题意得:1800×(0.22+0.34)=1008(名),则该校学生作业情况“非常好”和“较好”的学生一共约1008名;(4)列表如下:A1A2 B C A1﹣﹣﹣(A1,A2)(A1,B)(A1,C)A2(A2,A1)﹣﹣﹣(A2,B)(A2,C)B (B,A1)(B,A2)﹣﹣﹣(B,C)C (C,A1)(C,A2)(C,B)﹣﹣﹣由列表可以看出,一共有12种结果,且它们出现的可能性相等,其中两次抽到的作业本都是“非常好”的有2种,则P(两次抽到的作业本都是“非常好”)==.【点评】此题考查了列表法与树状图法,用样本估计总体,理解频数(率)分布表,弄清题中的数据是解本题的关键.23.(8分)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:甲乙型号价格(元/只)项目成本12 4售价18 6 (1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【分析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w 万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值X围,找出w 与a的函数关系式,由一次函数的性质可求解.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w 万元,由题意可得:12a+4(20﹣a)≤216,∴a≤17,∵w=(18﹣12)a+(6﹣4)(20﹣a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.24.(10分)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.【分析】(1)将点C的坐标代入函数解析式求得a值即可;将所求得的抛物线解析式转化为两点式,易得点A、B的坐标;(2)由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,根据平行线截线段成比例将求的最大值转化为求的最大值,所以利用一次函数图象上点的坐标特征、二次函数图象上点的坐标特征,两点间的距离公式以及配方法解题即可.【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.解得a=﹣.则该抛物线解析式为y=﹣x2+x+2.由于y=﹣x2+x+2=﹣(x+1)(x﹣4).故A(﹣1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2﹣1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=﹣x+2.设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.∴=﹣(t﹣2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).【点评】本题考查了二次函数综合题型,需要综合运用一次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,二次函数最值的求法,待定系数法确定函数关系式以及平行线截线段成比例等知识点,综合性较强,难度不是很大.25.(12分)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP ,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【分析】(1)先证明由AB=AC,AD=AE,得BD=CE,再由三角形的中位线定理得NM与NP的数量关系,由平行线性质得∠MNP的大小;(2)先证明△ABD≌△ACE得BD=CE,再由三角形的中位线定理得NM=NP,由平行线性质得∠MNP=60°,再根据等边三角形的判定定理得结论;(3)由BD≤AB+AD,得MN≤2,再由等边三角形的面积公式得△MNP的面积关于MN的函数关系式,再由函数性质求得最大值便可.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=BD,PN=CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CA E,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=BD,PN=CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积==,∴△MNP的面积的最大值为.【点评】本题是三角形的一个综合题,主要考查了等边三角形的判定,三角形的中位线定理,全等三角形的性质与判定,旋转的性质,关键证明三角形全等和运用三角形中位线定理使已知与未知联系起来.。
第 1 页 共 8 页
人教版中考数学试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,点P在平面直角坐标系中按图中箭头所示的方向运动,每次运动一个单位,△A3A4A5和△A8A9A10
都是等边三角形.第一次从(0,1)运动到点A1(0,2),第二次接着运动到点A2(1,2),第三次运动到点A3(1,
1),…,经过2019次运动,动点P所在位置A2019的坐标是( )
A.(807,)
B.(,2﹣)
C.(,)
D.(807,2﹣)
2 . 如图,AP为⊙O的切线,P为切点,若∠A=20°,C,D为圆周上两点,且∠PDC=60°,则∠OBC等于( )
A.55° B.65° C.70° D.75°
3 . -2的绝对值是( )
A.-2 B.2
C. D.
4 . 一个立体图形的三视图如图所示,则该立体图形是( )
第 2 页 共 8 页
A.圆柱 B.圆锥 C.长方体 D.球
5 . 如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为( )
A.2 B.2 C.2+4 D.2+4
6 . 某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )
A.180元 B.200元 C.225元 D.259.2元
7 . 把不等式x<﹣1的解集在数轴上表示出来,则正确的是( )
A. B.
C. D.
8 . 抛物线y=3(x+2)2﹣(m2+1)(m为常数)的顶点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9 . 在端午佳节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子,下面的
调查数据中最值得关注的是( )
A.平均数 B.中位数 C.众数 D.方差
二、填空题
10 . 如图,直线、相交于点,平分,,则
第 3 页 共 8 页
______°.
11 . 如图,矩形ABCD中,点E为AD的中点,连结BE,将△ABE沿BE翻折,点A恰好落在AC上的点A处,
若AB=2,则AC的长度为_____.
12 . 端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,
若小明从中任取1个,是火腿粽子的概率是 .
13 . 在△ABC中,∠C=90°,AC=BC,将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,连结C′B、
BB′.若AC=2,则BC′=___________.
14 . 火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,
则隧道长度为________米.
15 . 在函数y=中,自变量x的取值范围是_____.
如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O
逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.
第 4 页 共 8 页
16 . 请判断线段CD与OM的位置关系,其位置关系
是 ;
17 . 试用含m和α的代数式表示线段CM的长: ;α的取值范围
是 .
三、解答题
18 . 如图,中,,.、是边、边上的动点,从出发
向运动,同时以相同的速度从出发向运动,运动到停止.为中点.
试探究的形状,并说明理由.
在运动过程中,四边形可能成为正方形吗?如能求正方形的边长.
当为多少时,的面积最大?最大面积是多少?
19 . 甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)
与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h.
(1)求甲车的速度;
(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚
第 5 页 共 8 页
38分钟到达终点,求a的值.
20 . 如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1
A.
(1)画出△A1B1C,;
(2)求在旋转过程中,CA所扫过的面积.
21 . 先化简,再求值:,其中x=2+.
22 . 2014年11月,某市某中学结合语文阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的
一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信
息,解答下列问题:
(1)在这次抽样调查中,一共调查了多少名学生?
第 6 页 共 8 页
(2)请把折线统计图(图①)补充完整;
(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;
(4)如果这所中学共有学生3600名,那么请你估计最喜爱科普类书籍的学生人数.
23 . 已知,如图,点M在x轴上,以点M为圆心,2.5长为半径的圆交y轴于A、B两点,交x轴于C(x1,0)、
D(x2,0)两点,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的两根.
(1)求点C、D及点M的坐标;
(2)若直线y=kx+b切⊙M于点A,交x轴于P,求PA的长;
(3)⊙M上是否存在这样的点Q,使点Q、A、C三点构成的三角形与△AOC相似?若存在,请求出点的坐标,
并求出过A、C、Q三点的抛物线的解析式;若不存在,请说明理由.
第 7 页 共 8 页
参考答案
一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
二、填空题
1、
2、
3、
4、
5、
6、
第 8 页 共 8 页
7、
三、解答题
1、
2、
3、
4、
5、
6、