当前位置:文档之家› 稳定杆设计计算.pdf

稳定杆设计计算.pdf

稳定杆设计计算.pdf
稳定杆设计计算.pdf

悬架设计指南

设计指南(弹簧、稳定杆) 不管悬架的类型如何演变,从结构功能而言,它都是有弹性元件、减振装置和导向机构三部分组成。 一 弹性元件 弹性元件主要作用是传递车轮或车桥与车架或车身之间的垂直载荷,并依靠其变形来吸收能量,达到缓冲的目的。在现用的弹性元件中主要有三种;(1)钢板弹簧,(2)扭杆弹簧,(3)螺旋弹簧。 钢板弹簧设计 板弹簧具有结构简单,制造、维修方便;除作为弹性元件外,还兼起导向和传递侧向、纵向力和力矩的作用;在车架或车身上两点支承,受力合理;可实现变刚度,应用广泛。 (一) 钢板弹簧布置方案 1.1钢板弹簧在整车上布置 (1) 横置;这种布置方式必须设置附加的导向传力装置,使结构复杂,质量加大,只在少数轻、微车上应用。 (2) 纵置;这种布置方式的钢板弹簧能传递各种力和力矩,结构简单,在汽车上得到广泛应用。 1.2 纵置钢板弹簧布置 (1) 对称式;钢板弹簧中部在车轴(车桥)上的固定中心至钢板弹簧两端卷耳中 心之间的距离相等,多数汽车上采用对称式钢板弹簧。 (2) 非对称式;由于整车布置原因,或者钢板弹簧在汽车上的安装位置不动,又 要改变轴距或通过变化轴荷分配的目的时,采用非对称式钢板弹簧。 (二)钢板弹簧主要参数确定 初始条件:1G ~满载静止时汽车前轴(桥)负荷 2G ~满载静止时汽车后轴(桥)负荷 1U G ~前簧下部分荷重 2U G ~后簧下部分荷重 1W F =(G 1-G 1U )/2 ~前单个钢板弹簧载荷 2W F =(G 2-G 2U )/2 ~后单个钢板弹簧载荷 c f ~悬架的静挠度; d f -悬架的动挠度

1L ~汽车轴距; 1、 满载弧高a f 满载弧高指钢板弹簧装在车轴(车桥)上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差。a f 用来保证汽车具有给定的高度。当a f =0时,钢板弹簧在对称位置上工作。为在车架高度已确定时得到足够的动挠度,常取a f = 10~20mm 。 2、 钢板弹簧长度L 的确定 L —指弹簧伸直后两卷耳中心间的距离 (1)钢板弹簧长度对整车影响 当L 增加时:能显著降低弹簧应力,提高使用寿命; 降低弹簧刚度,改善汽车平顺性; 在垂直刚度C 给定的条件下,明显增加钢板弹簧纵向角刚度; 减少车轮扭转力矩所引起的弹簧变形; 原则上在总布置可能的条件下,尽可能将钢板弹簧取长些。 (2)钢板弹簧长度确定 钢板弹簧一般跟据经验确定; 轿车: L =(0.40~0.55)轴距 货车前悬架: L =(0.26~0.35)轴距 后悬架: L =(0.35~0.45)轴距 3、断面尺寸及片数确定 (1)宽度b 的确定 有关钢板弹簧的刚度、强度等,可按等截面简支梁的计算公式计算,但需引入挠度增大系数δ加以修正。因此,可根据修正后的简支梁公式计算钢板弹簧所需的总惯性矩J 0。对称式钢板弹簧 0J =[(L-ks )3c δ]/48E (1) s -U 形螺栓中心距; k -U 形螺栓加紧后无效长度系数(刚性加紧,k=0.5,挠性加紧,k=0); c -钢板弹簧垂直刚度(N/mm ),c=F W /f c ; δ-挠度增大系数(先确定与主片等长的重叠片数1n ,再估计一个总片数0n ,求得η=n 1/n 0,然后用δ=1.5/[1.04(1+0.5η)]初定δ;

横向稳定杆

横向稳定杆 横向稳定杆是抑制车体在转弯时产生侧倾的重要部件,横向稳定杆的两头与悬挂摇壁向连,当车体发生侧倾时横向稳定杆会顺势产生扭动,同时产生相反方向的回馈力使车体的侧倾得到控制,因此横向稳定杆实际上就是一根轴向扭动的杆状弹簧。 横向稳定杆又称为防倾杆、横行稳定器。在很多人的眼里,横向稳定杆只是一根不起眼的铁杆,其实它对汽车的操控性有不小的影响。一般的量产车都会装上横向稳定杆,目的是用来达成操控与舒适的妥协。横向稳定杆通常固定在左右悬架的下臂。汽车过弯时由于离心力作用而造成车身的侧倾,导致弯内轮和弯外轮的悬架位伸和压缩,使横向稳定杆的杆身扭转,横向稳定杆就是利用杆身被扭转而产生的反弹力来抑制车身的侧倾的。 悬挂系统的正常工作除了需要有好的弹簧和减震器以外还需要好的横向稳定杆辅助才行,因为弹簧和减震器只负责控制一只车轮,而前、后横向稳定杆却负责协调整个悬挂系统。所以横向稳定杆虽然从外观上看只是两条钢梁,但其作用却不容小视。高性能横向稳定杆就是为了配合减震器、弹簧应运而生的,一般高性能横向稳定杆都是经过冷锻的弹力合金钢线材弯制而成,还需要经过特殊的硬化处理。为了获得更稳定的控制车体侧倾能力,高性能横向稳定杆直径会大于原厂一定水平,可按不同的直径配合不同设计特性的减震器及弹簧,以获得完美的悬挂系统性能表现。

如果汽车左右轮分别通过不同路面凸起或坑洞时,也就是左右两轮的水平高度不相同时,会使横向稳定杆扭转而产生防倾阻力抑制车身侧倾。也就是说当左右两边的悬架上下同小动作时横向稳定杆就不会发生作用,只有在左右两边悬架因为路面起伏或转向过弯造成的不同步动作时横向稳定杆才产生作用。横向稳定杆只有在起作用时才会使悬架变硬,不像硬的弹簧会全面的使悬架变硬。如果要完全靠弹簧来减少车身的侧倾那可能需要非常硬的弹簧,更要用阻尼系数很高的减振器来抑制弹簧的弹跳,这样我们就必须要承受很硬的弹簧和减振器所造成的诸如行驶舒适性变差、行经不平路面时循迹性不良的后遗症。但是如果配合适当的横向稳定杆不但可以减少侧倾,更不必牺牲就在的舒适性和循迹性。因此,横向稳定杆和弹簧的合理搭配是达到行驶舒适性的操劳过度控性“双赢”的可行方法。 用在麦弗逊悬架中的横向稳定杆 所以,横向稳定杆和弹簧所提供的防倾阻力是相辅相成的,而且防倾阻力是成对发生的,也就是说车头的防倾阻力是和车尾防倾阻力伴随发生,但是由于车身配重比例以及其他外力的作用会使得前后的防倾阻力并不平衡,这样便会直接影响车身重量的转移和操控的平衡。假如后轮的防倾阻力太大会造成转向的过度,反之如果前轮的防倾阻力太大会造成转向不足。为了改善操控,不仅可利用横向稳定杆来抵制车身侧倾,还可以用来控制车身倾阻力的前后分配比例。横向稳定杆的功能就是保持车身的良好平衡和限制过弯时的车身侧倾以改善轮胎的贴地性。过弯时内轮的悬架伸长而弯外轮的悬架被压缩,这时横向稳定杆就会产生扭

实例悬架系统设计计算报告

编号:悬架系统设计计算报告项目名称:国内某车型 项目代码: 007 编制:日期: 校对:日期: 审核:日期: 批准:日期: 汽车设计有限公司 2011年11月

目次 1概述 ................................................................. 1.1 任务来源 ............................................................. 1.2 悬架系统基本介绍 ...................................................... 1.2.1 前悬架的结构形式..................................................... 1.2.2 后悬架的结构形式..................................................... 1.3 计算的目的............................................................ 2悬架系统设计的输入条件.................................................. 3悬架系统偏频的选取及悬架刚度计算......................................... 4弹簧计算.............................................................. 4.1 弹簧刚度的计算........................................................ 4.2 前螺旋弹簧钢丝直径的计算 ............................................... 5悬架系统静挠度计算..................................................... 6悬架侧倾角刚度计算..................................................... 6.1 前悬架侧倾角刚度计算................................................... 6.2 后悬架侧倾角刚度计算................................................... 6.3 整车侧倾角刚度计算..................................................... 6.4 整车的侧倾力矩........................................................ 6.5 整车的纵倾计算........................................................ 6.5.1 纵倾角的计算........................................................ 7减振器参数的确定....................................................... 7.1 减振器阻尼系数的确定................................................... 8参数列表.............................................................. 参考文献.................................................................

悬架设计计算

前轮距1200mm 后轮距1150mm 前悬架 等效单横臂长度 l=217.7mm 上横臂2 l=328mm 下横臂1 车轮定位参数 主销内倾角β=6 .16deg 主销后倾角λ=2 deg 上横臂两杆夹角为56 deg 每个杆长度为246.6mm 下横臂两杆夹角为45 deg 每个杆长度为355mm 上下横臂间球头销间距离c=250mm 悬架的定位角 纵向平面内上下横臂的布置 上-5 deg 下 5 deg 横向平面内的布置

上横臂与水平轴的夹角为10.8 deg 水平面内的布置横臂轴与纵轴线平行 h=58.87mm 侧倾中心高w 横向稳定器 支杆长度310mm 支杆底点距纵轴线的长度305mm 横向稳定杆长度225mm 支杆底点与横向稳定杆端点间的距离100mm 减震器导向杆长度293.3mm 后悬架 等效单横臂长度 l=271.6mm 上横臂3 l=328mm 下横臂4 上横臂两杆间夹角为60 deg 每根杆的长度313.6mm 下横臂A形杆的夹角为40 deg 每根杆的长度349mm 下横臂另一杆长为333.4mm 它和纵轴线的夹角为79.6 deg 双横臂结构如图示

上下横臂在车轮上连接点间的距离为260mm 双横臂的布置 水平面内上下横臂摆动轴线的布置 摆动轴与纵轴线平行 纵向平面内的布置 上2 deg 下-5 deg 横向平面内的布置

上横臂与水平轴的夹角为11.66 deg h=62.68mm 侧倾中心高wr 减震器导向杆长度为306.8mm 横向稳定器 支杆长度310mm 支杆底点距纵轴线的长度255mm 横向稳定杆长度175mm 支杆底点与横向稳定杆端点间的距离100mm

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

边坡稳定计算

附件四:边坡稳定性计算书 1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ] ---------------------------------------------------------------------- 天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法 基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 1.00m 天然放坡计算结果:

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

并行程序设计开题

并行程序设计开题报告 院系:信息技术科学学院 成员:王亚光2120100319 田金凤1120100119 题目:串匹配算法KPM和矩阵运算的并行算法实现与分析

1.文献综述 1.1消息传递并行程序设计(MPI)介绍 (1)M assage P assing I nterface:是消息传递函数库的标准规范,由MPI论坛开发,支持Fortran和C (2)一种新的库描述,不是一种语言。共有上百个函数调用接口,在Fortran 和C语言中可以直接对这些函数进行调用 (3)MPI是一种标准或规范的代表,而不是特指某一个对它的具体实 (4)MPI是一种消息传递编程模型,并成为这种编程模型的代表和事实上的标准 (5)指用户必须通过显式地发送和接收消息来实现处理机间的数据交换。 (6)在这种并行编程中,每个并行进程均有自己独立的地址空间,相互之间访问不能直接进行,必须通过显式的消息传递来实现。 (7)这种编程方式是大规模并行处理机(MPP)和机群(Cluster)采用的主要编程方式。 (8)并行计算粒度大,特别适合于大规模可扩展并行算法,由于消息传递程序设计要求用户很好地分解问题,组织不同进程间的数据交换,并行计算粒度大,特别适合于大规模可扩展并行算法。 (9)消息传递是当前并行计算领域的一个非常重要的并行程序设计方式。 (10)高可移植性。MPI已在IBM PC机上、MS Windows上、所有主要的Unix 工作站上和所有主流的并行机上得到实现。使用MPI作消息传递的C或Fortran 并行程序可不加改变地运行在IBM PC、MS Windows、Unix工作站、以及各种并行机上。 1.2串匹配算法 以字符序列形式出现而且不能将这些字符分成互相独立的关键字的一种数据称之为字符串(Strings)。字符串十分重要、常用的一种操作是串匹配(String Matching)。串匹配分为字符串精确匹配(Exact String Matching)和字符串近似匹配(Approximate String Matching)两大类。字符串匹配技术在正文编辑、文本压缩、数据加密、数据挖掘、图像处理、模式识别、Internet信息搜索、网络入侵检测、网络远程教学、电子商务、生物信息学、计算音乐等领域具有广泛的应用。而且串匹配是这些应用中最好时的核心问题,好的串匹配算法能显著的提高应用的效率。因此研究并设计快速的串匹配算法具有重要的理论价值和实际意义。 串匹配问题实际上就是一种模式匹配问题,即在给定的文本串中找出与模式串匹配的子串的起始位置。本文对已有的基于分布存储系统上的并行的串匹配算法(KMP)进行了分析和实现,并与串行的算法进行了比较。KMP算法首先是由D.E. Knuth、J.H. Morris以及V.R. Pratt分别设计出来的,所以该算法被命名为KMP算法。KMP串匹配算法的基本思想是:对给出的文本串T[1,n]与模式串P[1,m],假设在模式匹配的进程中,执行T[i]和P[j]的匹配检查。若T[i]=P[j],则继续检查T[i+1]和P[j+1]是否匹配。若T[i]≠P[j],则分成两种情况:若j=1,则模式串右移一位,检查T[i+1]和P[1]是否匹配;若1

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

稳定杆设计计算

7横向稳定杆 为了降低偏频和改善行驶平顺性,乘用车悬架的垂直刚度和侧倾角刚度设计得较低,在转弯时可能产生较大侧倾,影响行驶稳定性。为同时获得较大的静挠度和侧倾角刚度,在汽车中广泛地采用了横向稳定杆,如图8.53所示。另外,在前、后悬架上采用横向稳定 杆,还可以调整前、后悬架的侧倾角刚度之比,获得需要的转向特性。但是当汽车在坑洼不平的路面上行驶时,左、右车轮垂直位移不同,横向稳定杆被扭转,加强了左、右车轮之间的运动联系,对行驶平顺性不利。 图8.53 横向稳定杆的安装示意图 为了缓冲、隔振、降低噪音,横向稳定杆与悬架和车身(车架)的连接处均有橡胶支承(图8.53中A、T、C处)。由于布置上的原因,横向稳定杆通常做成比较复杂的形状,但为简化计算,一般认为横向稳定杆是等臂梯形,同时假定在车身侧倾时力臂的变化可忽略不计。 如图8.54所示,设在车身侧倾时,在横向稳定杆的一个端点作用力 F ,在其另一个端 点作用有大小相等、方向相反的力。下面推导在F作用下横向稳定杆端点的位移f c。

(a)横向稳定杆尺寸示意图(b)车轮位移与横向稳定杆位移图 图8.54 横向稳定杆安装尺寸及位移图 图8.55为横向稳定杆半边的弯矩图。在力F作用下横向稳定杆发生弹性变形, 功与横向稳定杆中总的变形位能相等。 F作的 横向稳定杆变形位能的计算公式如下: (1) I T段的扭转位能。 式中,J p为横向稳定杆的截面极惯性矩; (2) 11段的弯曲位能。 4GJ p G为材料剪切弹性模量; (8-110) I T为横向稳定杆直线段长 度。 式中,J为横向稳定杆的截面惯性矩; (3) I。段的弯曲位能。 I n 2 号8dx 0 2EJ F2|3 U2 =” 6EJ E为材料弹性模 量。 (8-111) U3 1 2EJ l0 号2F (I b l2)X l o 2 dx F2 12EJ (I3 I2) l o (8-112) 其中,x轴的原点在横向稳定杆的对称中心。 (4) I2段的弯曲位能。 2 (x) 1 |2 U4 = dx F (I3 0 2EJ 2EJ 0 F作的功与横向稳定杆中总的变形位能相等,有 2 x) dx F2 6EJ (l3l2)2l33(8-113)

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑边坡工程技术规范》GB50330-2002 3、《建筑施工计算手册》江正荣编著 一、基本参数 边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20 土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12 边坡高度H(m) 11.862 边坡斜面倾角α(°)40 坡顶均布荷载q(kPa) 0.2 二、边坡稳定性计算 计算简图 滑动面参数 滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m) 1 35 5.67 2 35 5.6 3 35 5.67 土条面积计算:

R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/m T1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/m R2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/m T2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/m R3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865 kN/m T3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/m K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1) 第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为: ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφi K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25 满足要求!

稳定杆设计计算

7 横向稳定杆 为了降低偏频和改善行驶平顺性,乘用车悬架的垂直刚度和侧倾角刚度设计得较低,在转弯时可能产生较大侧倾,影响行驶稳定性。为同时获得较大的静挠度和侧倾角刚度,在汽车中广泛地采用了横向稳定杆,如图8.53所示。另外,在前、后悬架上采用横向稳定杆,还可以调整前、后悬架的侧倾角刚度之比,获得需要的转向特性。但是当汽车在坑洼不平的路面上行驶时,左、右车轮垂直位移不同,横向稳定杆被扭转,加强了左、右车轮之间的运动联系,对行驶平顺性不利。 图8.53 横向稳定杆的安装示意图 为了缓冲、隔振、降低噪音,横向稳定杆与悬架和车身(车架)的连接处均有橡胶支承(图8.53中A、T、C处)。由于布置上的原因,横向稳定杆通常做成比较复杂的形状,但为简化计算,一般认为横向稳定杆是等臂梯形,同时假定在车身侧倾时力臂的变化可忽略不计。 如图8.54所示,设在车身侧倾时,在横向稳定杆的一个端点作用力F,在其另一个端点作用有大小相等、方向相反的力。下面推导在F作用下横向稳定杆端点的位移 f。 c

汽车设计 ·228· ·228· (a) 横向稳定杆尺寸示意图 (b) 车轮位移与横向稳定杆位移图 图8.54 横向稳定杆安装尺寸及位移图 图8.55为横向稳定杆半边的弯矩图。在力F 作用下横向稳定杆发生弹性变形,F 作的功与横向稳定杆中总的变形位能相等。 图8.55 横向稳定杆半边弯矩图 横向稳定杆变形位能的计算公式如下: (1) T l 段的扭转位能。 2T 1p =4F l U GJ (8-110) 式中,p J 为横向稳定杆的截面极惯性矩;G 为材料剪切弹性模量;T l 为横向稳定杆直线段长度。 (2) 1l 段的弯曲位能。 23 12 =6F l U EJ (8-111) 式中,J 为横向稳定杆的截面惯性矩;E 为材料弹性模量。 (3) 0l 段的弯曲位能。 00 2 22 2322 2 33200002()()1 =d d ()2212l l F l l x M x F U x x l l l EJ EJ l EJ ???+==?+????? ?? (8-112) 其中,x 轴的原点在横向稳定杆的对称中心。 (4) 2l 段的弯曲位能。 []2 2 22 2234332300()1 =d ()d ()226l l M x F U x F l x x l l l EJ EJ EJ ??=?+=?+-???? (8-113) F 作的功与横向稳定杆中总的变形位能相等,有

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑内侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度(m) 坑壁土的重 度γ(kN/m3) 坑壁土的内 摩擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式:

横向稳定杆

为了降低汽车的固有振动频率以改善行驶平顺性,现代轿车悬架的垂直刚度值都较小,从而使汽车的侧倾角刚度值也很小,结果使汽车转弯时车身侧倾严重,影响了汽车的行驶稳定性。为此,现代汽车大多都装有横向稳定杆来加大悬架的侧倾角刚度以改善汽车的行驶稳定性。横向稳定杆在独立悬架中的典型安装方式如图4-39所示。当左右车轮同向等幅跳动时,横向稳定杆不起作用;当左右车轮有垂向的相对位移时,稳定杆受扭,发挥弹性元件的作用。横向稳定杆带来的好处除了可增加悬架的侧倾角刚度,从而减小汽车转向时车身的侧 倾角外,如前所述,恰当地选择前、后悬架的侧倾角刚度比值,也有助于使汽车获得所需要的不足转向特性。通常,在汽车的前、后悬架中都装有横向稳定杆,或者只在前悬架中安装。若只在后悬架中安装,则会使汽车趋于过多转向。横向稳定杆带来的不利因素有:当汽车在坑洼不平的路面行驶时,左右轮之间有垂向相对位移,由于横向稳定杆的作用,增加了车轮处的垂向刚度,会影响汽车的行驶平顺性。 在有些悬架中,横向稳定杆还兼起部分导向杆系的作用,其余情况下则在设计时应当注意避免与悬架的导向杆系发生运动干涉。为了缓冲隔振和降低噪声,横向稳定杆与车轮及车架的连接处均有橡胶支承。当横向稳定杆用于整体桥非独立悬架时,其侧倾角刚度与车轮处的等效侧倾角刚度相等。当用于独立悬架时(参见图4-39),横向稳定杆的侧倾角刚度C?b与车轮处的等效侧倾角刚度C?w之间的换算关系可如下求出:设汽车左右车轮接地点处分别作用大小相等,方向相反的

垂向力微量dF w,在该二力作用下左右车轮处的垂向位移为df w,相应的稳定杆端部受到的垂向力和位移分别为dF b和df b,由于此时要考察的是稳定杆在车轮处的等效侧倾角刚度,因而不考虑悬架中弹簧的作用力,则必然有dF w与dF b所做的功相等,即 df w×dF w=df b×dF b (4-58) 而作用在稳定杆上的弯矩和转角分别为 dM b=dF b×L (4-59) d?b=2df b/L (4-60) 式中L——横向稳定杆的角刚度C?b为 C?b=dM b/d?b= dF b L2 / 2df b (4-61) 同理可得在车轮的等效角刚度C?w为 C?w= dF w B2 / 2df w (4-62) 式中B——轮距。 将式(4-62)和式(4-58)代入式(4-61)得到 C?b=C?w(f w/f b)2×(L/B)2 (4-63) 由于连接点处橡胶件的变形,稳定杆的侧倾角刚度会减小约15%~30%。 当稳定杆两端受到大小相等、方向相反的垂向力P作用时(参见图4-40),其端点的垂向位移f 可用材料力学的办法求出,具体为 式中E——材料的弹性模量,E=2.06×105Mpa; I ——稳定杆的截面惯性矩,I= d4/64 mm;

OpenMP并行实验报告

并行实验报告 一、积分计算圆周率 1.1 积分计算圆周率的向量优化 1.1.1 串行版本的设计 任务:理解积分求圆周率的方法,将其用C代码实现。 注意:理论上,dx越小,求得的圆周率越准确;在计算机中由于表示的数据是有精度范围的,如果dx太小,积分次数过多,误差积累导致结果不准确。 以下为串行代码: #include #include #define N 10000000 double get_pi(int dt){ double pi=0.0; double delta =1.0/dt; int i; for(i=0; i

{ int dx; double pai; double start,finish; dx=N; start=clock(); pai=get_pi(dx); finish=clock(); printf("%.8lf\n",pai); printf("%.8lfS\n",(double)(finish-start)/CLOCKS_PER_SEC); return 0; } 时间运行如下: 第一次:time=0.02674000S 第二次:time=0.02446500S 第三次:time=0.02402800S 三次平均为:0.02508S 1.1.2 SSE向量优化版本设计 任务:此部分需要给出单精度和双精度两个优化版本。 注意: (1)测试均在划分度为10的7次方下完成。 以下是SSE双精度的代码: #include #include #include

用理正岩土计算边坡稳定性66816讲解学习

用理正岩土计算边坡稳定性66816

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。

还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用) 进入土质边坡稳定性分析程序

相关主题
文本预览
相关文档 最新文档