当前位置:文档之家› 横向稳定杆的参数计算与设计报告

横向稳定杆的参数计算与设计报告

横向稳定杆的参数计算与设计报告
横向稳定杆的参数计算与设计报告

悬架设计指南

设计指南(弹簧、稳定杆) 不管悬架的类型如何演变,从结构功能而言,它都是有弹性元件、减振装置和导向机构三部分组成。 一 弹性元件 弹性元件主要作用是传递车轮或车桥与车架或车身之间的垂直载荷,并依靠其变形来吸收能量,达到缓冲的目的。在现用的弹性元件中主要有三种;(1)钢板弹簧,(2)扭杆弹簧,(3)螺旋弹簧。 钢板弹簧设计 板弹簧具有结构简单,制造、维修方便;除作为弹性元件外,还兼起导向和传递侧向、纵向力和力矩的作用;在车架或车身上两点支承,受力合理;可实现变刚度,应用广泛。 (一) 钢板弹簧布置方案 1.1钢板弹簧在整车上布置 (1) 横置;这种布置方式必须设置附加的导向传力装置,使结构复杂,质量加大,只在少数轻、微车上应用。 (2) 纵置;这种布置方式的钢板弹簧能传递各种力和力矩,结构简单,在汽车上得到广泛应用。 1.2 纵置钢板弹簧布置 (1) 对称式;钢板弹簧中部在车轴(车桥)上的固定中心至钢板弹簧两端卷耳中 心之间的距离相等,多数汽车上采用对称式钢板弹簧。 (2) 非对称式;由于整车布置原因,或者钢板弹簧在汽车上的安装位置不动,又 要改变轴距或通过变化轴荷分配的目的时,采用非对称式钢板弹簧。 (二)钢板弹簧主要参数确定 初始条件:1G ~满载静止时汽车前轴(桥)负荷 2G ~满载静止时汽车后轴(桥)负荷 1U G ~前簧下部分荷重 2U G ~后簧下部分荷重 1W F =(G 1-G 1U )/2 ~前单个钢板弹簧载荷 2W F =(G 2-G 2U )/2 ~后单个钢板弹簧载荷 c f ~悬架的静挠度; d f -悬架的动挠度

1L ~汽车轴距; 1、 满载弧高a f 满载弧高指钢板弹簧装在车轴(车桥)上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差。a f 用来保证汽车具有给定的高度。当a f =0时,钢板弹簧在对称位置上工作。为在车架高度已确定时得到足够的动挠度,常取a f = 10~20mm 。 2、 钢板弹簧长度L 的确定 L —指弹簧伸直后两卷耳中心间的距离 (1)钢板弹簧长度对整车影响 当L 增加时:能显著降低弹簧应力,提高使用寿命; 降低弹簧刚度,改善汽车平顺性; 在垂直刚度C 给定的条件下,明显增加钢板弹簧纵向角刚度; 减少车轮扭转力矩所引起的弹簧变形; 原则上在总布置可能的条件下,尽可能将钢板弹簧取长些。 (2)钢板弹簧长度确定 钢板弹簧一般跟据经验确定; 轿车: L =(0.40~0.55)轴距 货车前悬架: L =(0.26~0.35)轴距 后悬架: L =(0.35~0.45)轴距 3、断面尺寸及片数确定 (1)宽度b 的确定 有关钢板弹簧的刚度、强度等,可按等截面简支梁的计算公式计算,但需引入挠度增大系数δ加以修正。因此,可根据修正后的简支梁公式计算钢板弹簧所需的总惯性矩J 0。对称式钢板弹簧 0J =[(L-ks )3c δ]/48E (1) s -U 形螺栓中心距; k -U 形螺栓加紧后无效长度系数(刚性加紧,k=0.5,挠性加紧,k=0); c -钢板弹簧垂直刚度(N/mm ),c=F W /f c ; δ-挠度增大系数(先确定与主片等长的重叠片数1n ,再估计一个总片数0n ,求得η=n 1/n 0,然后用δ=1.5/[1.04(1+0.5η)]初定δ;

实例悬架系统设计计算报告

编号:悬架系统设计计算报告项目名称:国内某车型 项目代码: 007 编制:日期: 校对:日期: 审核:日期: 批准:日期: 汽车设计有限公司 2011年11月

目次 1概述 ................................................................. 1.1 任务来源 ............................................................. 1.2 悬架系统基本介绍 ...................................................... 1.2.1 前悬架的结构形式..................................................... 1.2.2 后悬架的结构形式..................................................... 1.3 计算的目的............................................................ 2悬架系统设计的输入条件.................................................. 3悬架系统偏频的选取及悬架刚度计算......................................... 4弹簧计算.............................................................. 4.1 弹簧刚度的计算........................................................ 4.2 前螺旋弹簧钢丝直径的计算 ............................................... 5悬架系统静挠度计算..................................................... 6悬架侧倾角刚度计算..................................................... 6.1 前悬架侧倾角刚度计算................................................... 6.2 后悬架侧倾角刚度计算................................................... 6.3 整车侧倾角刚度计算..................................................... 6.4 整车的侧倾力矩........................................................ 6.5 整车的纵倾计算........................................................ 6.5.1 纵倾角的计算........................................................ 7减振器参数的确定....................................................... 7.1 减振器阻尼系数的确定................................................... 8参数列表.............................................................. 参考文献.................................................................

横向稳定杆

横向稳定杆 横向稳定杆是抑制车体在转弯时产生侧倾的重要部件,横向稳定杆的两头与悬挂摇壁向连,当车体发生侧倾时横向稳定杆会顺势产生扭动,同时产生相反方向的回馈力使车体的侧倾得到控制,因此横向稳定杆实际上就是一根轴向扭动的杆状弹簧。 横向稳定杆又称为防倾杆、横行稳定器。在很多人的眼里,横向稳定杆只是一根不起眼的铁杆,其实它对汽车的操控性有不小的影响。一般的量产车都会装上横向稳定杆,目的是用来达成操控与舒适的妥协。横向稳定杆通常固定在左右悬架的下臂。汽车过弯时由于离心力作用而造成车身的侧倾,导致弯内轮和弯外轮的悬架位伸和压缩,使横向稳定杆的杆身扭转,横向稳定杆就是利用杆身被扭转而产生的反弹力来抑制车身的侧倾的。 悬挂系统的正常工作除了需要有好的弹簧和减震器以外还需要好的横向稳定杆辅助才行,因为弹簧和减震器只负责控制一只车轮,而前、后横向稳定杆却负责协调整个悬挂系统。所以横向稳定杆虽然从外观上看只是两条钢梁,但其作用却不容小视。高性能横向稳定杆就是为了配合减震器、弹簧应运而生的,一般高性能横向稳定杆都是经过冷锻的弹力合金钢线材弯制而成,还需要经过特殊的硬化处理。为了获得更稳定的控制车体侧倾能力,高性能横向稳定杆直径会大于原厂一定水平,可按不同的直径配合不同设计特性的减震器及弹簧,以获得完美的悬挂系统性能表现。

如果汽车左右轮分别通过不同路面凸起或坑洞时,也就是左右两轮的水平高度不相同时,会使横向稳定杆扭转而产生防倾阻力抑制车身侧倾。也就是说当左右两边的悬架上下同小动作时横向稳定杆就不会发生作用,只有在左右两边悬架因为路面起伏或转向过弯造成的不同步动作时横向稳定杆才产生作用。横向稳定杆只有在起作用时才会使悬架变硬,不像硬的弹簧会全面的使悬架变硬。如果要完全靠弹簧来减少车身的侧倾那可能需要非常硬的弹簧,更要用阻尼系数很高的减振器来抑制弹簧的弹跳,这样我们就必须要承受很硬的弹簧和减振器所造成的诸如行驶舒适性变差、行经不平路面时循迹性不良的后遗症。但是如果配合适当的横向稳定杆不但可以减少侧倾,更不必牺牲就在的舒适性和循迹性。因此,横向稳定杆和弹簧的合理搭配是达到行驶舒适性的操劳过度控性“双赢”的可行方法。 用在麦弗逊悬架中的横向稳定杆 所以,横向稳定杆和弹簧所提供的防倾阻力是相辅相成的,而且防倾阻力是成对发生的,也就是说车头的防倾阻力是和车尾防倾阻力伴随发生,但是由于车身配重比例以及其他外力的作用会使得前后的防倾阻力并不平衡,这样便会直接影响车身重量的转移和操控的平衡。假如后轮的防倾阻力太大会造成转向的过度,反之如果前轮的防倾阻力太大会造成转向不足。为了改善操控,不仅可利用横向稳定杆来抵制车身侧倾,还可以用来控制车身倾阻力的前后分配比例。横向稳定杆的功能就是保持车身的良好平衡和限制过弯时的车身侧倾以改善轮胎的贴地性。过弯时内轮的悬架伸长而弯外轮的悬架被压缩,这时横向稳定杆就会产生扭

悬架设计计算

前轮距1200mm 后轮距1150mm 前悬架 等效单横臂长度 l=217.7mm 上横臂2 l=328mm 下横臂1 车轮定位参数 主销内倾角β=6 .16deg 主销后倾角λ=2 deg 上横臂两杆夹角为56 deg 每个杆长度为246.6mm 下横臂两杆夹角为45 deg 每个杆长度为355mm 上下横臂间球头销间距离c=250mm 悬架的定位角 纵向平面内上下横臂的布置 上-5 deg 下 5 deg 横向平面内的布置

上横臂与水平轴的夹角为10.8 deg 水平面内的布置横臂轴与纵轴线平行 h=58.87mm 侧倾中心高w 横向稳定器 支杆长度310mm 支杆底点距纵轴线的长度305mm 横向稳定杆长度225mm 支杆底点与横向稳定杆端点间的距离100mm 减震器导向杆长度293.3mm 后悬架 等效单横臂长度 l=271.6mm 上横臂3 l=328mm 下横臂4 上横臂两杆间夹角为60 deg 每根杆的长度313.6mm 下横臂A形杆的夹角为40 deg 每根杆的长度349mm 下横臂另一杆长为333.4mm 它和纵轴线的夹角为79.6 deg 双横臂结构如图示

上下横臂在车轮上连接点间的距离为260mm 双横臂的布置 水平面内上下横臂摆动轴线的布置 摆动轴与纵轴线平行 纵向平面内的布置 上2 deg 下-5 deg 横向平面内的布置

上横臂与水平轴的夹角为11.66 deg h=62.68mm 侧倾中心高wr 减震器导向杆长度为306.8mm 横向稳定器 支杆长度310mm 支杆底点距纵轴线的长度255mm 横向稳定杆长度175mm 支杆底点与横向稳定杆端点间的距离100mm

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

汽车横向稳定杆关键生产工艺

汽车横向稳定杆关键生产工艺 汽车横向稳定杆用来提高汽车悬架侧倾角刚度.减少车身倾角. 使汽车在路况不平或转弯时能够行驶平稳.与扭杆弹簧不同之处是有4点固定安装在悬架上.其中两端头通过侧臂端部的橡胶垫或球头连杆与悬架导向臂连接,杆的中部用橡胶衬套与车身相连.车辆在行驶中,如果左,右车轮同时上下跳动.那么横向稳定杆起不了作用: 当左,右车轮垂直方向产生相对位移时,横向稳定杆中间部分受扭转侧臂受弯,起到增加悬架刚度作用.目前进口轿车,国产轿车前后悬架全部装配了横向稳定杆, 多功能运动车等基本都装配有前稳定杆或前,后两种横向稳定杆.轻卡,重卡也越来越多地装配了横向稳定杆.装有横向稳定杆的车辆行驶较稳定,舒适翻车几率大大降低,据统计在路况差,急转弯时装有横向稳定杆的车辆翻车概率降低60%-80% 汽车横向稳定杆常用原料一般为弹簧圆钢(为减轻质量,有的横 向稳定杆采用空心圆管制成,管壁厚与外径之比多为0.125左右.此时,比实 心杆外径增加了11.8%,但 4结束语 定位基准的选择不是固定的 ?南昌长力钢铁股份有限公司冀永相质量可以减 轻约50%)通常情况下不用剥皮,国内生产材质主要为 6OSi2Mn,50CrVA.日本几家 汽车公司一般采用Sup9系列. 原材料经过外观质量检查后合格的材料按钢号分类库存或投入现场进行加工制造.关键生产工艺主要有端部成形,整体成形,淬火, 回火,喷丸强化,下料. 1端部成形 因安装需要.汽车横向稳定杆两端一般要加工成扁头状,圆筒状. 其中.扁头状应用最普遍. 这也就是汽车横向稳定杆的端部成形加工一般采用端部加热装置(以往采用燃气,煤油,现在多采用中频加热)把材料加热到 950-1000.c,在专用热

稳定杆设计计算

7 横向稳定杆 为了降低偏频和改善行驶平顺性,乘用车悬架的垂直刚度和侧倾角刚度设计得较低,在转弯时可能产生较大侧倾,影响行驶稳定性。为同时获得较大的静挠度和侧倾角刚度,在汽车中广泛地采用了横向稳定杆,如图8.53所示。另外,在前、后悬架上采用横向稳定杆,还可以调整前、后悬架的侧倾角刚度之比,获得需要的转向特性。但是当汽车在坑洼不平的路面上行驶时,左、右车轮垂直位移不同,横向稳定杆被扭转,加强了左、右车轮之间的运动联系,对行驶平顺性不利。 图8.53 横向稳定杆的安装示意图 为了缓冲、隔振、降低噪音,横向稳定杆与悬架和车身(车架)的连接处均有橡胶支承(图8.53中A、T、C处)。由于布置上的原因,横向稳定杆通常做成比较复杂的形状,但为简化计算,一般认为横向稳定杆是等臂梯形,同时假定在车身侧倾时力臂的变化可忽略不计。 如图8.54所示,设在车身侧倾时,在横向稳定杆的一个端点作用力F,在其另一个端点作用有大小相等、方向相反的力。下面推导在F作用下横向稳定杆端点的位移 f。 c

汽车设计 ·228· ·228· (a) 横向稳定杆尺寸示意图 (b) 车轮位移与横向稳定杆位移图 图8.54 横向稳定杆安装尺寸及位移图 图8.55为横向稳定杆半边的弯矩图。在力F 作用下横向稳定杆发生弹性变形,F 作的功与横向稳定杆中总的变形位能相等。 图8.55 横向稳定杆半边弯矩图 横向稳定杆变形位能的计算公式如下: (1) T l 段的扭转位能。 2T 1p =4F l U GJ (8-110) 式中,p J 为横向稳定杆的截面极惯性矩;G 为材料剪切弹性模量;T l 为横向稳定杆直线段长度。 (2) 1l 段的弯曲位能。 23 12 =6F l U EJ (8-111) 式中,J 为横向稳定杆的截面惯性矩;E 为材料弹性模量。 (3) 0l 段的弯曲位能。 00 2 22 2322 2 33200002()()1 =d d ()2212l l F l l x M x F U x x l l l EJ EJ l EJ ???+==?+????? ?? (8-112) 其中,x 轴的原点在横向稳定杆的对称中心。 (4) 2l 段的弯曲位能。 []2 2 22 2234332300()1 =d ()d ()226l l M x F U x F l x x l l l EJ EJ EJ ??=?+=?+-???? (8-113) F 作的功与横向稳定杆中总的变形位能相等,有

横向稳定杆

为了降低汽车的固有振动频率以改善行驶平顺性,现代轿车悬架的垂直刚度值都较小,从而使汽车的侧倾角刚度值也很小,结果使汽车转弯时车身侧倾严重,影响了汽车的行驶稳定性。为此,现代汽车大多都装有横向稳定杆来加大悬架的侧倾角刚度以改善汽车的行驶稳定性。横向稳定杆在独立悬架中的典型安装方式如图4-39所示。当左右车轮同向等幅跳动时,横向稳定杆不起作用;当左右车轮有垂向的相对位移时,稳定杆受扭,发挥弹性元件的作用。横向稳定杆带来的好处除了可增加悬架的侧倾角刚度,从而减小汽车转向时车身的侧 倾角外,如前所述,恰当地选择前、后悬架的侧倾角刚度比值,也有助于使汽车获得所需要的不足转向特性。通常,在汽车的前、后悬架中都装有横向稳定杆,或者只在前悬架中安装。若只在后悬架中安装,则会使汽车趋于过多转向。横向稳定杆带来的不利因素有:当汽车在坑洼不平的路面行驶时,左右轮之间有垂向相对位移,由于横向稳定杆的作用,增加了车轮处的垂向刚度,会影响汽车的行驶平顺性。 在有些悬架中,横向稳定杆还兼起部分导向杆系的作用,其余情况下则在设计时应当注意避免与悬架的导向杆系发生运动干涉。为了缓冲隔振和降低噪声,横向稳定杆与车轮及车架的连接处均有橡胶支承。当横向稳定杆用于整体桥非独立悬架时,其侧倾角刚度与车轮处的等效侧倾角刚度相等。当用于独立悬架时(参见图4-39),横向稳定杆的侧倾角刚度C?b与车轮处的等效侧倾角刚度C?w之间的换算关系可如下求出:设汽车左右车轮接地点处分别作用大小相等,方向相反的

垂向力微量dF w,在该二力作用下左右车轮处的垂向位移为df w,相应的稳定杆端部受到的垂向力和位移分别为dF b和df b,由于此时要考察的是稳定杆在车轮处的等效侧倾角刚度,因而不考虑悬架中弹簧的作用力,则必然有dF w与dF b所做的功相等,即 df w×dF w=df b×dF b (4-58) 而作用在稳定杆上的弯矩和转角分别为 dM b=dF b×L (4-59) d?b=2df b/L (4-60) 式中L——横向稳定杆的角刚度C?b为 C?b=dM b/d?b= dF b L2 / 2df b (4-61) 同理可得在车轮的等效角刚度C?w为 C?w= dF w B2 / 2df w (4-62) 式中B——轮距。 将式(4-62)和式(4-58)代入式(4-61)得到 C?b=C?w(f w/f b)2×(L/B)2 (4-63) 由于连接点处橡胶件的变形,稳定杆的侧倾角刚度会减小约15%~30%。 当稳定杆两端受到大小相等、方向相反的垂向力P作用时(参见图4-40),其端点的垂向位移f 可用材料力学的办法求出,具体为 式中E——材料的弹性模量,E=2.06×105Mpa; I ——稳定杆的截面惯性矩,I= d4/64 mm;

稳定杆设计计算

7横向稳定杆 为了降低偏频和改善行驶平顺性,乘用车悬架的垂直刚度和侧倾角刚度设计得较低,在转弯时可能产生较大侧倾,影响行驶稳定性。为同时获得较大的静挠度和侧倾角刚度,在汽车中广泛地采用了横向稳定杆,如图8.53所示。另外,在前、后悬架上采用横向稳定 杆,还可以调整前、后悬架的侧倾角刚度之比,获得需要的转向特性。但是当汽车在坑洼不平的路面上行驶时,左、右车轮垂直位移不同,横向稳定杆被扭转,加强了左、右车轮之间的运动联系,对行驶平顺性不利。 图8.53 横向稳定杆的安装示意图 为了缓冲、隔振、降低噪音,横向稳定杆与悬架和车身(车架)的连接处均有橡胶支承(图8.53中A、T、C处)。由于布置上的原因,横向稳定杆通常做成比较复杂的形状,但为简化计算,一般认为横向稳定杆是等臂梯形,同时假定在车身侧倾时力臂的变化可忽略不计。 如图8.54所示,设在车身侧倾时,在横向稳定杆的一个端点作用力 F ,在其另一个端 点作用有大小相等、方向相反的力。下面推导在F作用下横向稳定杆端点的位移f c。

(a)横向稳定杆尺寸示意图(b)车轮位移与横向稳定杆位移图 图8.54 横向稳定杆安装尺寸及位移图 图8.55为横向稳定杆半边的弯矩图。在力F作用下横向稳定杆发生弹性变形, 功与横向稳定杆中总的变形位能相等。 F作的 横向稳定杆变形位能的计算公式如下: (1) I T段的扭转位能。 式中,J p为横向稳定杆的截面极惯性矩; (2) 11段的弯曲位能。 4GJ p G为材料剪切弹性模量; (8-110) I T为横向稳定杆直线段长 度。 式中,J为横向稳定杆的截面惯性矩; (3) I。段的弯曲位能。 I n 2 号8dx 0 2EJ F2|3 U2 =” 6EJ E为材料弹性模 量。 (8-111) U3 1 2EJ l0 号2F (I b l2)X l o 2 dx F2 12EJ (I3 I2) l o (8-112) 其中,x轴的原点在横向稳定杆的对称中心。 (4) I2段的弯曲位能。 2 (x) 1 |2 U4 = dx F (I3 0 2EJ 2EJ 0 F作的功与横向稳定杆中总的变形位能相等,有 2 x) dx F2 6EJ (l3l2)2l33(8-113)

(完整word版)双横臂悬架设计

5.7 双横臂式悬架设计 5.7.1双横臂悬架的结构与力学模型简化 图5.7.1 某货车的双横臂前悬架 图5.7.1 采用前置转向梯形的货车的前悬架。一根横梁用作副车架,通过螺栓连接在车架下方。弹簧、限位块、减振器和两对横臂支承在横梁这一“受力中心”上。只有横向稳定杆、转向器、转向直拉杆和下横臂的拉杆固定在车架纵梁上。拉杆前部支承着一个具有纵向弹性的橡胶支座。该支座缓和带束轮胎的纵向刚度。 双横臂式悬架的主要优点在于其运动规律的可设计性。根据横臂的相互位置,即角度α和β的大小,可定出侧倾中心和纵倾中心的高度,改变横臂长度,还会影响上下跳动的车轮的角运 动,即车轮的外倾角变化和(在极限情况下)与此相关的轮距变化。当双横臂较短时,车轮上跳导致外倾角沿负值方向变化而车轮下落时导致外倾角沿正值方向变化,因此车身侧倾时的外倾变化规律正好与此相反。纵倾中心O,对于前悬架来说,处在车轮后方;而对于后悬架来说,则在车轮前方。如果O h置于车轮中心上方,不仅可以获得良好的抗转动纵倾性,而且还会减小驱动桥的启动下沉量。这也是双横臂式悬架愈来愈多地在较高级的轿车中用于后驱动桥的原因。

图5.7.2 弯长臂式汽车的前轮转向节 图5.7.2 Daimler_Benz 260 SE/560 SEC型车的前轮转向节。它的有效距离C较大。上横臂6上带有导向球铰链的壳体。下承载铰链7压入车轮转向节5中。图中可清楚的看到可通风的制动盘34,他正对直径较大的轮毂9自里向外伸出。深槽轮辋43的底部不对称,从而为制 动钳(图中未画出)留出了位置。 图5.7.3 双横臂式前悬架 图5.7.3 Daimler_Benz 牌 260 SE/560 SEC型车的前悬架。为了使得主销偏移距r s=0mm时, 可通风的制动盘具有较大的直径,该悬架的下承载铰链必须大致位于车轮中心处。拉伸和压缩行 程限位块布置在充气的单筒式减振器中。先后伸出的支撑杆支撑着一根附S的隔音横梁。它的橡 胶支座在图的左下方特别标出。

横向稳定杆刚度计算

稳定杆刚度和应力计算公式 1、横向稳定杆刚度计算:大小相等A′处的载荷Pd,作用在两端点A,图示为圆形实心断面,直径为) 方向相反,载荷作用点处变形为f(不考虑横向稳定杆的橡胶衬套变形刚度K为:?1f232llll???2 sinR(??sin2?l)?[1R=2=002K p 02GI2EI3EI2t2l????2??sin?sin22[)]??(()1R1R0 22GI22t?????223]2?21lR(?cossin))?R?(sin1024 mm/N);()l?l?l?R(121,(mm)式中;201l2l2?arctanφrad;, 22l?l?l22 l14?d?l4 mm,——圆截面惯性矩,I=64 3?d?3,II=mm ——圆截面极惯性矩,32tt G=G2N/mm75460,——剪切弹性模数, 模向稳定杆倾角刚度K为:R2Kl K (N.mm/rad)0?R 22、横向稳定杆应力计算: 车身侧倾角为时,稳定杆两端部载荷P为:?1 / 2 ?K)P?(N R l0???处,′段的θ=在最大弯曲应力BC,B′C?R?arctan?l0P222?Rl??2(N/mm) 0Zt3?d ——扭转断面系数:Zt=式中:Zt3):mm(,单位 16)Rlll?2R(P222???120)/mm(单位:.,在?0处的CC'点处N?l?R?最大剪应力0Z22l?l t21′段,可近似用下式计算:B′C、最大主应力?BC发生在max P2(N/mm)22?)2R(??l?R0max Z t

(范文素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注) 2 / 2

悬架刚度

5.1.1悬架的弹性特性和工作行程 对于大多数汽车而言,其悬挂质量分配系数:ε = ρ2/ab =0.8~1.2,因而可以近似地认为 e =1,即前后桥上方车身部分的集中质量的垂向振动是相互独立的,并用偏频21,n n 表示各自的自由振动频率,偏频越小,则汽车的平顺性越好。一般对于采用钢制弹簧的轿车,1n 约为1~1.3Hz(60 — 80次/ min ), 2n 约为1.17 ~1.5Hz ,非常接近人体步行时的自然频率。载货汽车的偏频略高于轿车,前悬架约为1.3Hz ,后悬架则可能超过1.5Hz 。为了减小汽车的角振动,一般汽车前、后悬架偏频之比约为1n /2n = 0.85~0.95。具体的偏频选取可参考表5-1: 表5-1 汽车悬架的偏频、静挠度和动挠度 由上表选取货车满载时前后悬架的偏频分别为: 1n =1.4Hz ,2n = 1.5Hz 所以1n /2n =1.4 / 1.5 = 0.93,满足要求。 当ε=1时,汽车前、后桥上方车身部分的垂向振动频率21,n n 与其相应的悬架 刚度1s C 和2s C ,以及悬挂质量1s m 和2s m 之间有如下关系: 12n n ? = =?? = = ………………………………………………5-1 式中: g ——重力加速度,g =98102/s mm ; 1s C ,2s C ——前、后悬架刚度,N / m ; 1s G ,2s G ——前、后悬架簧载重力,N . 为了求出前后悬架的垂直刚度,必须先求出前后悬架的簧载质量m s 1 和m s 2 。而

m s 1 和m s 2 可以通过满载时前后轮的轴荷减去前后非簧载质量得到。即: )m -m (21 m 21后轮非簧载质量荷前轴= s 2s m =) (后轮非簧载质量后轴轴荷m -m 2 1 ………………………………………………………5-2 为了获得良好的平顺性和操纵性,非簧载质量应尽量小些。根据同类车型类比,取前悬架的非簧载质量为50kg ,后悬架的非簧载质量为100kg 。 (由宝马一系120i 基本参数知: 在满载时:m 前轮轴荷=m 后轮轴荷=2 1 ?1375=687kg) 将数据代入上式,得出: 1s m = 21 ?(687-50)=318kg 2s m =2 1 ?(687-100)=294kg 将计算所得的 m s 1 和m s 2 代入式5-1,得到: 前、后悬架的刚度分别为: 1s C =24606N/m 2s C =26115N/m 由于悬架的静挠度s s c c g m f /=因而式5-1又可表示为: 12n n ?≈ ???≈ ………………………………………………………………5-3 式中:1c f ,2c f 的单位为mm. 所以 由式5-3求出前、后悬架的静挠度分别为:1c f =126.9mm ≈1.27m 2c f =110.5mm ≈1.11m 悬架的动挠度d f 是指从满载静平衡位置开始悬架压缩到结构允许的最大变

实例-悬架系统设计计算报告分解

编号:悬架系统设计计算报告 项目名称:国内某车型 项目代码: 007 编制:日期: 校对:日期: 审核:日期: 批准:日期: 汽车设计有限公司 2011年11月

悬架系统计算报告 目次 1概述 (2) 1.1 任务来源 (2) 1.2 悬架系统基本介绍 (2) 1.2.1 前悬架的结构形式 (2) 1.2.2 后悬架的结构形式 (2) 1.3 计算的目的 (3) 2悬架系统设计的输入条件 (3) 3悬架系统偏频的选取及悬架刚度计算 (3) 4弹簧计算 (5) 4.1 弹簧刚度的计算 (5) 4.2 前螺旋弹簧钢丝直径的计算 (8) 5悬架系统静挠度计算 (9) 6悬架侧倾角刚度计算 (9) 6.1 前悬架侧倾角刚度计算 (9) 6.2 后悬架侧倾角刚度计算 (11) 6.3 整车侧倾角刚度计算 (12) 6.4 整车的侧倾力矩 (13) 6.5 整车的纵倾计算 (15) 6.5.1 纵倾角的计算 (15) 7减振器参数的确定 (16) 7.1 减振器阻尼系数的确定 (16) 8参数列表 (18) 参考文献 (21)

悬架系统设计计算报告 1概述 1.1任务来源 根据《新车设计开发项目协议书-007项目设计开发》的规定,悬架系统参考样车进行逆向设计。 1.2 悬架系统基本介绍 该款车前悬架采用麦弗逊式独立悬架,后悬架采用整体式驱动桥钢板弹簧非独立悬架。 1.2.1 前悬架的结构形式 图1 前悬架结构形式 1.2.2 后悬架的结构形式

图2 后悬架结构形式 1.3 计算的目的 通过计算,求得反映其悬架系统性能的基本特征量,为零部件开发提供参考。计算内容主要包括悬架刚度、偏频、静挠度、动挠度、侧倾刚度和减振器阻尼等。 2悬架系统设计的输入条件 表1 悬架参数列表 CA07 标杆车 质心高(mm) 空载695 695 半载743 743 满载750 750 前轮距(mm)1415 1386 后轮距(mm)1430 1408 轴距(mm)2650 2700 空载质量(kg)1194 1180 满载质量(kg)1864 1850 前轴荷(kg)空载550 560 半载628 642 满载669 682 后轴荷(kg)空载644 620 半载906 878 满载1195 1181 前悬架非簧载质量(kg)80 80 后悬架非簧载质量(kg)120 120 3悬架系统偏频的选取及悬架刚度计算 前后悬架固有频率的匹配应合理,对乘用车,要求前悬架固有频率略低于后悬架的固有频率,还要不允许悬架撞击车架(或车身)。 由标杆车试验数据得出(表2): 表2 标杆车悬架刚度试验表

(整理)压杆稳定计算.

第16 章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F 由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F 达到屈服强度载荷F s (或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a 所示的同样粗细而比较长的杆件(图16-1b),当压力F 比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F 逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图 16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的 稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的 O 点处于平衡状态,如图 16-5a 所示。先用外加干 扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。 因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的 O 点处于平衡状态,如图 16-5c 所示。当用外加干 扰力使其偏离原有的平衡位置后, 小球将继续下滚, 不再回到原来的平衡位置。 因此, 小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的 O 点处于平衡状态,如图 16-5b 所示,当用外加干 扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置 O 1 再次处于平 衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡 状态为随遇平衡。 图 16-5 图 16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏 离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于 图 16-3

乘用车总体设计计算参数

汽车总体设计、计算参数 一、外形尺寸参数 1、轴距L 2、前后轮距B1与B2 3、汽车的外廓尺寸 总长、总宽、总高 GB 1589-79 4、汽车的前悬L F和后悬L R 由总布置最后确定(保证足够的接近角和离去角) (前悬处要布置发动机、水箱、弹簧前支架、保险杠、转向器等) 二、质量参数 1、汽车的装载量m G 轿车是指载客量,即座位数。 2、汽车的整备质量m0 总体设计初,可对同类型同级别且结构相似的样车及部件的质量进行测定分析,并以此为基础初步估算出新设计车个部件的质量及整车整备质量。 3、汽车的总质量m a 整备质量、载客量、行李质量m B、附加设备m F (每人按65kg计,行李质量(轿车)每人5~10kg) 4、轴荷分配 它对汽车的牵引性、通过性、制动性、操纵性和稳定性等主要使用性能以及轮胎的使用寿命都有很大影响。 轴荷分配对前后轮胎的磨损有直接影响。 三、主要性能参数 1、汽车动力性参数 汽车的动力性参数主要有直接档和I档最大动力因数、最高车速、加速时间、汽车的比功率和比转矩等。 1)直接档最大动力因数D0 max 2)I档最大动力因数D I max D I max直接影响汽车的最大爬坡能力和通过困难路段的能力以及起步并连续换档时的加速能力。它主要取决于所要求的最大爬坡度和附着条件。

3)最高车速V a max 以汽车行驶的功率平衡来确定。 GB/T 12544-90 汽车最高车速试验方法 4)汽车的比功率和比转矩 这两个参数分别表示发动机最大功率和最大转矩与汽车总质量之比。 5)加速时间 “0—100km/h”或“0—80km/h”的换档加速时间。 GB/T 12543-90汽车加速性能试验方法 表二动力性计算需要的数据

压杆稳定性计算

第16章压杆稳定 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5

稳定杆制造工艺学相关知识

稳定杆制造工艺学相关知识 第一章绪论 为降低汽车的固有振动频率,改善行驶平顺性,现代汽车悬架的垂直刚度设计得较低,这就使汽车的侧倾角刚度值也较低,结果,当汽车在转弯时,产生很大的车身侧倾角,影响行驶稳定性,为克服这一缺点,常在悬架中采用横向稳定杆来提高悬架的侧倾角刚度,或是调整前、后悬架侧倾角刚度的比值,以保证汽车具有良好的行驶稳定性。 稳定杆主要是由稳定杆杆体与衬套组成。 1)稳定杆杆体设计主要是为避免与悬架的导向杆系发生运动干涉,同时起到稳定悬架作用,其装车后等效可看作为n形; 2)稳定杆衬套,主要是在横向稳定杆与车轮及车架的连接处,为了缓冲隔振和降低噪声。 第二章稳定杆材料 1)稳定杆所用材料为热轧弹簧钢,通常按照GB1222《弹簧钢》标准选用。材料必须符合WI8241 《原材料检验标准》,或使用经用户认可的其它牌号的材料。 2)若顾客对材质无明确要求,可按照下列原则选用(推荐): a)重卡稳定杆承载较大,优先选用淬透性好、承载能力高的50CrVA材料; b)空心稳定杆选用35CrMo材料; c)其它类型的产品可选用60Si2MnA材料。 3)原材料的单边脱碳层深度不得超过材料直径的2.5%。 4)稳定杆原材料必须有供应厂商的质量保证书。 第三章稳定杆制造工艺 产品的工艺过程:(例)

第一节原材料检验 购进材料后,我们首先要核对材料规格和数量以及随货的质量保证书,并由公司质量部对其进行来料检验,检验合格后方可办理入库手续。检验项目有尺寸检验、化学元素分析、物理性能(主要是硬度)和金相分析。 第二节下料 根据对图纸的放样结果,用锯床将原材料按规定长度切割成一段一段的坯料。下料断口倾角过大,导致端部成型不饱满,无法满足顾客疲劳寿命要求。 第三节弯制成型 此工序在所有制作工序中最为重要,也可以说是汽车横向稳定杆制作的技术核心部分。稳定杆杆体的弯曲形状都在该工序完成,三维数控弯管机为其主要设备。杆体的加热时间依据杆体直径(实心或空心)、线圈内径、线圈的输出功率等进行调整。弯管机弯制程序由技术人员给出。 第四节热处理 稳定杆热处理主要分为淬火处理和回火处理。 淬火是汽车横向稳定杆重要的热处理工艺,介质温度、介质中冷却时间都得严格控制,不得有过烧、扭曲,严重氧化、脱碳等缺陷。淬火的目的是使横向稳定杆获得所需要的马氏体组织,提高工件的硬度、强度和耐磨性,为回火热处理做好组织准备。汽车横向稳定杆一般采用专用淬火油进行淬火,50CrVA材料稳定杆,用室式气体加热炉加热,采用的淬火温度为890±10℃,保温时间依据杆体的直径不同而不同,而介质中冷却时间一般采用≥15min。除此之外,介质温度控制可分为:油介质温度控制≤70℃,PEG水溶剂介质温度控制≤50℃,油中杂质含量和水溶剂浓度将会严重影响淬火质量。汽车横向稳定杆是长物件,其淬火作业除遵守以上要求外,还应特别注意其整体加热和冷却中变形问题,故有淬火中热修与回火后修整。淬火结束后,测量其淬火硬度应≥50HRC,方可进行回火热处理。 回火是指稳定杆经淬火后48小时内,再加热到某一温度,保温一定时间,然后冷却到室温的热处理工艺。汽车横向稳定杆一般采用中温回火,这不仅消除了淬火时所产生的应力,还可以获得高的屈服强度、硬度、弹性极限和较高的韧性。如本公司50CrVA材料的稳定杆所采用回火温度480±10℃,回火时间90min,回火后得到的硬度值为42—48HRC和均匀细致的屈氏体组织,屈服强度、弹性极限和韧性也较为理想。回火时温度要均匀,保温时间要充足。 第五节修整 修整是将回火后形状尺寸稍有超差的横向稳定杆半成品通过人工修整为合格产品,由于产生塑性变形量很小,经检测能达到产品要求的疲劳寿命。该工序提高了产品的合格率,在很大程度上降低了生产成本,因此在生产中是不可缺少的。 第六节端部热成型 因安装需要,汽车横向稳定杆两端一般要加工为扁头状、圆头状。汽车横向稳定杆的端部热成型加工,采用中频炉加热,把材料加热到950—1000℃,在摩擦压力机及四工位机上成型。然后待端部冷却至室温,进行钻孔。此工序要严格控制工装模具定位与磨损情况。 第七节喷丸 喷丸是提高汽车横向稳定杆疲劳强度的重要工序。横向稳定杆经喷丸后产生塑性变形,形成一定厚度的表面强化层,强化层内形成较高的残余压应力和密度极高的位错,因而提高了横向稳定杆的疲劳极限。钢丸应选用钢丝丸,钢丝丸应无破碎,避免损伤稳定杆表面。 第八节喷塑

相关主题
文本预览
相关文档 最新文档