当前位置:文档之家› 稳定杆设计计算

稳定杆设计计算

稳定杆设计计算
稳定杆设计计算

7 横向稳定杆

为了降低偏频和改善行驶平顺性,乘用车悬架的垂直刚度和侧倾角刚度设计得较低,在转弯时可能产生较大侧倾,影响行驶稳定性。为同时获得较大的静挠度和侧倾角刚度,在汽车中广泛地采用了横向稳定杆,如图8.53所示。另外,在前、后悬架上采用横向稳定杆,还可以调整前、后悬架的侧倾角刚度之比,获得需要的转向特性。但是当汽车在坑洼不平的路面上行驶时,左、右车轮垂直位移不同,横向稳定杆被扭转,加强了左、右车轮之间的运动联系,对行驶平顺性不利。

图8.53 横向稳定杆的安装示意图

为了缓冲、隔振、降低噪音,横向稳定杆与悬架和车身(车架)的连接处均有橡胶支承(图8.53中A、T、C处)。由于布置上的原因,横向稳定杆通常做成比较复杂的形状,但为简化计算,一般认为横向稳定杆是等臂梯形,同时假定在车身侧倾时力臂的变化可忽略不计。

如图8.54所示,设在车身侧倾时,在横向稳定杆的一个端点作用力F,在其另一个端点作用有大小相等、方向相反的力。下面推导在F作用下横向稳定杆端点的位移

f。

c

(a) 横向稳定杆尺寸示意图 (b) 车轮位移与横向稳定杆位移图

图8.54 横向稳定杆安装尺寸及位移图

图8.55为横向稳定杆半边的弯矩图。在力F 作用下横向稳定杆发生弹性变形,F 作的功与横向稳定杆中总的变形位能相等。

图8.55 横向稳定杆半边弯矩图

横向稳定杆变形位能的计算公式如下: (1) T l 段的扭转位能。

2T

1p

=4F l U GJ (8-110)

式中,p J 为横向稳定杆的截面极惯性矩;G 为材料剪切弹性模量;T l 为横向稳定杆直线段长度。

(2) 1l 段的弯曲位能。

23

12 =6F l U EJ

(8-111)

式中,J 为横向稳定杆的截面惯性矩;E 为材料弹性模量。

(3) 0l 段的弯曲位能。

00

2

22

2322

2

33200002()()1

=d d ()2212l l F l l x M x F U x x l l l EJ EJ

l EJ ???+==?+?????

?? (8-112) 其中,x 轴的原点在横向稳定杆的对称中心。 (4) 2l 段的弯曲位能。

[]2

2

22

2234332300()1 =d ()d ()226l l M x F U x F l x x l l l EJ EJ EJ

??=?+=?+-???? (8-113) F 作的功与横向稳定杆中总的变形位能相等,有

c

12342

Ff U U U U =+++ (8-114) 得

223222

33T 1c 320323p ()2{()[()]}46126Fl l F l F F f l l l l l l F GJ EJ EJ EJ

?=?++?+?+?+- (8-115)

由于2l 一般很小,可忽略式中右边第四项,得

223

320T 1c ()236p l l l l l l f F GJ EJ EJ ??+?=?++??

????

(8-116) 此外,还应该考虑橡胶支座(轴承)和连接杆上橡胶垫所产生的位移为

n 0d n n z 00n 011C C F F F f F F C C C C C C C ????'+ ? ?=+=?+=?= ? ?'''????

(8-117) 式中,z C 为总的换算橡胶零件线刚度,n 0z n 0

C C C C C '='+,n C 为连接杆上橡胶垫的线刚度;0

C '为换算到横向稳定杆端点的橡胶支座线刚度,可以按照如下方法确定:设R 是橡胶支座上的力,c 0

l R F l =。

支座变形为

30000

Rl R

f C C l ==

(8-118) 式中,0C 为橡胶支座的径向刚度。

相应的横向稳定杆的端点位移为

2

c c 002

000c 00l l F F f f l C l l C l ??'==?=

???

??? ?

??

(8-119)

所以

2

000c 0l F

C C l f ??'==? ?'??

(8-120)

()

2

0n 02c n 00z 222n c 00

0n 0c l C C l C C l C C l C l l C C l ??'? ?

'??=='??+'+? ?

??

(8-121) 因此,横向稳定杆的总位移z f 为

223320T 1z c d p Z ()1236l l l l l l f f f F GJ EJ EJ C ??

+?=+=?+++??????

(8-122)

设车身在侧倾时受到横向稳定杆所产生的阻力矩s M ,侧倾角为?,根据虚位移原理得

z s 2F f M ??=? (8-123)

z

t

c

22n f f m B

B

?=

= (8-124)

式中,B 为轮距;t f 为车轮位移;n 、c m 定义见图8.52。

假定车轮作平动,则

z c

2f n B m ???=

c z z

s z c

222m F f F f M FB f n n B m ???===?? (8-125)

设s C 为横向稳定杆的角刚度,则

2

2

22c c c

s s 223320z T 1c p z

2()222

33z m m m FB B FB M n n n C f n l l l f l l l B m GJ EJ EJ C ??????? ? ?????====+?+++

(8-126)

由于横向稳定杆主要承受扭矩作用,一般仅校核扭转剪应力为

s s 3

p 0.2M M W d τ==≤[]τ (8-127)

式中,d 为横向稳定杆直径;[]τ为许用扭转应力。横向稳定杆采用与螺旋弹簧相同的材料

制造,热处理也相同,可取[]τ=800N/mm 2

习 题

8-1 悬架设计应满足哪些要求,在设计中如何满足这些要求?

8-2 悬架有哪些具体说明类型?如何根据车型选择悬架的结构形式? 8-3 分析侧倾角刚度对汽车操纵稳定性的影响。

8-4 分析影响选取钢板弹簧的长度、片厚、片宽以及片数的因素。

8-5 独立悬架导向机构的设计要求有哪些?前轮定位参数的变化特性与导向机构有哪些关系?

8-6 减振器的主要性能参数有哪些?在设计中如何选取这些参数?8-7 在图8.24中,F 为地面施加在纵臂端点的垂直力,n F 为其垂直于纵臂轴线的分量,试推导式(8-32)。 8-8 某中型客车底盘采用纵置钢板弹簧后悬架,其主要参数如下:后轴满载轴荷为44250N ,非悬挂质量为5439N ;钢板弹簧作用长度为1375mm(前后段长度比例为1.15),弹

簧片宽为76mm ,片厚为9.5mm ,片数为13;质量转移系数2

m '=0.92。满载时弹簧固装点到地面距离c 为480mm ,许用应力[]σ为1000Mpa ,试对钢板弹簧进行校核。

8-9 某乘用车满载时前轴簧载质量为1060kg ,轴距2400mm ,满载时质心至前轴距离为1300mm 。采用螺旋弹簧非独立前悬架系统。螺旋弹簧平均直径D 为160mm ,许用静扭转应

力c []τ=500N/mm 2

,试按照静扭转强度选择钢丝直径d 。

8-10 参照教材图8.51,推导减振器阻尼系数公式:2

a 2

2cos m i a

ψωδ=。

悬架设计指南

设计指南(弹簧、稳定杆) 不管悬架的类型如何演变,从结构功能而言,它都是有弹性元件、减振装置和导向机构三部分组成。 一 弹性元件 弹性元件主要作用是传递车轮或车桥与车架或车身之间的垂直载荷,并依靠其变形来吸收能量,达到缓冲的目的。在现用的弹性元件中主要有三种;(1)钢板弹簧,(2)扭杆弹簧,(3)螺旋弹簧。 钢板弹簧设计 板弹簧具有结构简单,制造、维修方便;除作为弹性元件外,还兼起导向和传递侧向、纵向力和力矩的作用;在车架或车身上两点支承,受力合理;可实现变刚度,应用广泛。 (一) 钢板弹簧布置方案 1.1钢板弹簧在整车上布置 (1) 横置;这种布置方式必须设置附加的导向传力装置,使结构复杂,质量加大,只在少数轻、微车上应用。 (2) 纵置;这种布置方式的钢板弹簧能传递各种力和力矩,结构简单,在汽车上得到广泛应用。 1.2 纵置钢板弹簧布置 (1) 对称式;钢板弹簧中部在车轴(车桥)上的固定中心至钢板弹簧两端卷耳中 心之间的距离相等,多数汽车上采用对称式钢板弹簧。 (2) 非对称式;由于整车布置原因,或者钢板弹簧在汽车上的安装位置不动,又 要改变轴距或通过变化轴荷分配的目的时,采用非对称式钢板弹簧。 (二)钢板弹簧主要参数确定 初始条件:1G ~满载静止时汽车前轴(桥)负荷 2G ~满载静止时汽车后轴(桥)负荷 1U G ~前簧下部分荷重 2U G ~后簧下部分荷重 1W F =(G 1-G 1U )/2 ~前单个钢板弹簧载荷 2W F =(G 2-G 2U )/2 ~后单个钢板弹簧载荷 c f ~悬架的静挠度; d f -悬架的动挠度

1L ~汽车轴距; 1、 满载弧高a f 满载弧高指钢板弹簧装在车轴(车桥)上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差。a f 用来保证汽车具有给定的高度。当a f =0时,钢板弹簧在对称位置上工作。为在车架高度已确定时得到足够的动挠度,常取a f = 10~20mm 。 2、 钢板弹簧长度L 的确定 L —指弹簧伸直后两卷耳中心间的距离 (1)钢板弹簧长度对整车影响 当L 增加时:能显著降低弹簧应力,提高使用寿命; 降低弹簧刚度,改善汽车平顺性; 在垂直刚度C 给定的条件下,明显增加钢板弹簧纵向角刚度; 减少车轮扭转力矩所引起的弹簧变形; 原则上在总布置可能的条件下,尽可能将钢板弹簧取长些。 (2)钢板弹簧长度确定 钢板弹簧一般跟据经验确定; 轿车: L =(0.40~0.55)轴距 货车前悬架: L =(0.26~0.35)轴距 后悬架: L =(0.35~0.45)轴距 3、断面尺寸及片数确定 (1)宽度b 的确定 有关钢板弹簧的刚度、强度等,可按等截面简支梁的计算公式计算,但需引入挠度增大系数δ加以修正。因此,可根据修正后的简支梁公式计算钢板弹簧所需的总惯性矩J 0。对称式钢板弹簧 0J =[(L-ks )3c δ]/48E (1) s -U 形螺栓中心距; k -U 形螺栓加紧后无效长度系数(刚性加紧,k=0.5,挠性加紧,k=0); c -钢板弹簧垂直刚度(N/mm ),c=F W /f c ; δ-挠度增大系数(先确定与主片等长的重叠片数1n ,再估计一个总片数0n ,求得η=n 1/n 0,然后用δ=1.5/[1.04(1+0.5η)]初定δ;

横向稳定杆

横向稳定杆 横向稳定杆是抑制车体在转弯时产生侧倾的重要部件,横向稳定杆的两头与悬挂摇壁向连,当车体发生侧倾时横向稳定杆会顺势产生扭动,同时产生相反方向的回馈力使车体的侧倾得到控制,因此横向稳定杆实际上就是一根轴向扭动的杆状弹簧。 横向稳定杆又称为防倾杆、横行稳定器。在很多人的眼里,横向稳定杆只是一根不起眼的铁杆,其实它对汽车的操控性有不小的影响。一般的量产车都会装上横向稳定杆,目的是用来达成操控与舒适的妥协。横向稳定杆通常固定在左右悬架的下臂。汽车过弯时由于离心力作用而造成车身的侧倾,导致弯内轮和弯外轮的悬架位伸和压缩,使横向稳定杆的杆身扭转,横向稳定杆就是利用杆身被扭转而产生的反弹力来抑制车身的侧倾的。 悬挂系统的正常工作除了需要有好的弹簧和减震器以外还需要好的横向稳定杆辅助才行,因为弹簧和减震器只负责控制一只车轮,而前、后横向稳定杆却负责协调整个悬挂系统。所以横向稳定杆虽然从外观上看只是两条钢梁,但其作用却不容小视。高性能横向稳定杆就是为了配合减震器、弹簧应运而生的,一般高性能横向稳定杆都是经过冷锻的弹力合金钢线材弯制而成,还需要经过特殊的硬化处理。为了获得更稳定的控制车体侧倾能力,高性能横向稳定杆直径会大于原厂一定水平,可按不同的直径配合不同设计特性的减震器及弹簧,以获得完美的悬挂系统性能表现。

如果汽车左右轮分别通过不同路面凸起或坑洞时,也就是左右两轮的水平高度不相同时,会使横向稳定杆扭转而产生防倾阻力抑制车身侧倾。也就是说当左右两边的悬架上下同小动作时横向稳定杆就不会发生作用,只有在左右两边悬架因为路面起伏或转向过弯造成的不同步动作时横向稳定杆才产生作用。横向稳定杆只有在起作用时才会使悬架变硬,不像硬的弹簧会全面的使悬架变硬。如果要完全靠弹簧来减少车身的侧倾那可能需要非常硬的弹簧,更要用阻尼系数很高的减振器来抑制弹簧的弹跳,这样我们就必须要承受很硬的弹簧和减振器所造成的诸如行驶舒适性变差、行经不平路面时循迹性不良的后遗症。但是如果配合适当的横向稳定杆不但可以减少侧倾,更不必牺牲就在的舒适性和循迹性。因此,横向稳定杆和弹簧的合理搭配是达到行驶舒适性的操劳过度控性“双赢”的可行方法。 用在麦弗逊悬架中的横向稳定杆 所以,横向稳定杆和弹簧所提供的防倾阻力是相辅相成的,而且防倾阻力是成对发生的,也就是说车头的防倾阻力是和车尾防倾阻力伴随发生,但是由于车身配重比例以及其他外力的作用会使得前后的防倾阻力并不平衡,这样便会直接影响车身重量的转移和操控的平衡。假如后轮的防倾阻力太大会造成转向的过度,反之如果前轮的防倾阻力太大会造成转向不足。为了改善操控,不仅可利用横向稳定杆来抵制车身侧倾,还可以用来控制车身倾阻力的前后分配比例。横向稳定杆的功能就是保持车身的良好平衡和限制过弯时的车身侧倾以改善轮胎的贴地性。过弯时内轮的悬架伸长而弯外轮的悬架被压缩,这时横向稳定杆就会产生扭

实例悬架系统设计计算报告

编号:悬架系统设计计算报告项目名称:国内某车型 项目代码: 007 编制:日期: 校对:日期: 审核:日期: 批准:日期: 汽车设计有限公司 2011年11月

目次 1概述 ................................................................. 1.1 任务来源 ............................................................. 1.2 悬架系统基本介绍 ...................................................... 1.2.1 前悬架的结构形式..................................................... 1.2.2 后悬架的结构形式..................................................... 1.3 计算的目的............................................................ 2悬架系统设计的输入条件.................................................. 3悬架系统偏频的选取及悬架刚度计算......................................... 4弹簧计算.............................................................. 4.1 弹簧刚度的计算........................................................ 4.2 前螺旋弹簧钢丝直径的计算 ............................................... 5悬架系统静挠度计算..................................................... 6悬架侧倾角刚度计算..................................................... 6.1 前悬架侧倾角刚度计算................................................... 6.2 后悬架侧倾角刚度计算................................................... 6.3 整车侧倾角刚度计算..................................................... 6.4 整车的侧倾力矩........................................................ 6.5 整车的纵倾计算........................................................ 6.5.1 纵倾角的计算........................................................ 7减振器参数的确定....................................................... 7.1 减振器阻尼系数的确定................................................... 8参数列表.............................................................. 参考文献.................................................................

悬架设计计算

前轮距1200mm 后轮距1150mm 前悬架 等效单横臂长度 l=217.7mm 上横臂2 l=328mm 下横臂1 车轮定位参数 主销内倾角β=6 .16deg 主销后倾角λ=2 deg 上横臂两杆夹角为56 deg 每个杆长度为246.6mm 下横臂两杆夹角为45 deg 每个杆长度为355mm 上下横臂间球头销间距离c=250mm 悬架的定位角 纵向平面内上下横臂的布置 上-5 deg 下 5 deg 横向平面内的布置

上横臂与水平轴的夹角为10.8 deg 水平面内的布置横臂轴与纵轴线平行 h=58.87mm 侧倾中心高w 横向稳定器 支杆长度310mm 支杆底点距纵轴线的长度305mm 横向稳定杆长度225mm 支杆底点与横向稳定杆端点间的距离100mm 减震器导向杆长度293.3mm 后悬架 等效单横臂长度 l=271.6mm 上横臂3 l=328mm 下横臂4 上横臂两杆间夹角为60 deg 每根杆的长度313.6mm 下横臂A形杆的夹角为40 deg 每根杆的长度349mm 下横臂另一杆长为333.4mm 它和纵轴线的夹角为79.6 deg 双横臂结构如图示

上下横臂在车轮上连接点间的距离为260mm 双横臂的布置 水平面内上下横臂摆动轴线的布置 摆动轴与纵轴线平行 纵向平面内的布置 上2 deg 下-5 deg 横向平面内的布置

上横臂与水平轴的夹角为11.66 deg h=62.68mm 侧倾中心高wr 减震器导向杆长度为306.8mm 横向稳定器 支杆长度310mm 支杆底点距纵轴线的长度255mm 横向稳定杆长度175mm 支杆底点与横向稳定杆端点间的距离100mm

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

稳定杆设计计算

7横向稳定杆 为了降低偏频和改善行驶平顺性,乘用车悬架的垂直刚度和侧倾角刚度设计得较低,在转弯时可能产生较大侧倾,影响行驶稳定性。为同时获得较大的静挠度和侧倾角刚度,在汽车中广泛地采用了横向稳定杆,如图8.53所示。另外,在前、后悬架上采用横向稳定 杆,还可以调整前、后悬架的侧倾角刚度之比,获得需要的转向特性。但是当汽车在坑洼不平的路面上行驶时,左、右车轮垂直位移不同,横向稳定杆被扭转,加强了左、右车轮之间的运动联系,对行驶平顺性不利。 图8.53 横向稳定杆的安装示意图 为了缓冲、隔振、降低噪音,横向稳定杆与悬架和车身(车架)的连接处均有橡胶支承(图8.53中A、T、C处)。由于布置上的原因,横向稳定杆通常做成比较复杂的形状,但为简化计算,一般认为横向稳定杆是等臂梯形,同时假定在车身侧倾时力臂的变化可忽略不计。 如图8.54所示,设在车身侧倾时,在横向稳定杆的一个端点作用力 F ,在其另一个端 点作用有大小相等、方向相反的力。下面推导在F作用下横向稳定杆端点的位移f c。

(a)横向稳定杆尺寸示意图(b)车轮位移与横向稳定杆位移图 图8.54 横向稳定杆安装尺寸及位移图 图8.55为横向稳定杆半边的弯矩图。在力F作用下横向稳定杆发生弹性变形, 功与横向稳定杆中总的变形位能相等。 F作的 横向稳定杆变形位能的计算公式如下: (1) I T段的扭转位能。 式中,J p为横向稳定杆的截面极惯性矩; (2) 11段的弯曲位能。 4GJ p G为材料剪切弹性模量; (8-110) I T为横向稳定杆直线段长 度。 式中,J为横向稳定杆的截面惯性矩; (3) I。段的弯曲位能。 I n 2 号8dx 0 2EJ F2|3 U2 =” 6EJ E为材料弹性模 量。 (8-111) U3 1 2EJ l0 号2F (I b l2)X l o 2 dx F2 12EJ (I3 I2) l o (8-112) 其中,x轴的原点在横向稳定杆的对称中心。 (4) I2段的弯曲位能。 2 (x) 1 |2 U4 = dx F (I3 0 2EJ 2EJ 0 F作的功与横向稳定杆中总的变形位能相等,有 2 x) dx F2 6EJ (l3l2)2l33(8-113)

压杆稳定性最新计算

停车库的受力分析计算 一、停车状态如下图所示 二、分析立柱受力并校核 已知:立柱截面为环形,令钢管厚度﹩=(D-d)/2为20mm 即D-d=0.02,材料选为45#, 屈服强度s σ≥355Mpa,安全系数n 取为1.5,弹性模量取为210Gpa ,泊松比取为0.26。 解:简化模型如图1所示,显然Mx>My,故按照Mx 情况进行校核。板自重m1=500Kg ,小车自重为m2=2000Kg 。分析立柱受力知其受压力和弯矩(包含风载), 故:需校核其强度 即,[]σσ≤ 1、起升载荷Q 的确定 起升载荷包括允许起升的最大汽车重量、以及载车板,因起 升高度<50米,故钢丝绳质量不计。 因起升速度≤R v 0.2m/s,故起升载荷动载系数2?05.1min ==? 故,()2221m ???+=?=g m Q F 2、 风载荷W P 的确定 qA CK P W h = C ——风力系数,用以考虑受风结构物体型、尺寸等因素对风压的影响 h K ——风力高度变化系数 q ——计算风压() 2/m N A ——立柱垂直于风向的迎风面积() 2m 正视图左视图

1) 计算风压q 风压计算公式为 2613.0q v = 风压按照沿海地区工作状态风压计算v=20m/s,故q=245.22 m /N 风压按照工作状态下的最大计算风压计算,此时q 取2502m /N ,故最终q 取250 2m /N 。 2) 风力系数C 因为离地面高度≤10m,按照海上及海岛2 .010?? ? ??h ,风压高度变化系数h K 取1.00 因为是圆管结构且10q 2≈d (q 为计算风压,d 为圆管直径),故C 取0.9 3) 迎风面积A t A A ψ= ψ——结构的充实率,t A A = ψ,钢管桁架结构ψ值取0.2-0.4,故0.3 t A ——结构或物品外形轮廓面积在垂直于风向平面上的投影() 2m h D A t =() 2m D ——立柱外径;h ——立柱高度 D D qA CK P W 675 325000.19.0h =????== 3、 强度校核1 []n s σσσ= ≤ 即[]σσ≤+= W M A F max cmax 令W M A F + = σ 2??=Q F ;()g m m Q 21+= () 22 4 d D A -= π 21M M M += M1——由重力引起的弯矩;M2——由风载引起的弯矩 ()3.121m 1?+=g m M ;h P M W *=2 1 2

稳定杆设计计算

7 横向稳定杆 为了降低偏频和改善行驶平顺性,乘用车悬架的垂直刚度和侧倾角刚度设计得较低,在转弯时可能产生较大侧倾,影响行驶稳定性。为同时获得较大的静挠度和侧倾角刚度,在汽车中广泛地采用了横向稳定杆,如图8.53所示。另外,在前、后悬架上采用横向稳定杆,还可以调整前、后悬架的侧倾角刚度之比,获得需要的转向特性。但是当汽车在坑洼不平的路面上行驶时,左、右车轮垂直位移不同,横向稳定杆被扭转,加强了左、右车轮之间的运动联系,对行驶平顺性不利。 图8.53 横向稳定杆的安装示意图 为了缓冲、隔振、降低噪音,横向稳定杆与悬架和车身(车架)的连接处均有橡胶支承(图8.53中A、T、C处)。由于布置上的原因,横向稳定杆通常做成比较复杂的形状,但为简化计算,一般认为横向稳定杆是等臂梯形,同时假定在车身侧倾时力臂的变化可忽略不计。 如图8.54所示,设在车身侧倾时,在横向稳定杆的一个端点作用力F,在其另一个端点作用有大小相等、方向相反的力。下面推导在F作用下横向稳定杆端点的位移 f。 c

汽车设计 ·228· ·228· (a) 横向稳定杆尺寸示意图 (b) 车轮位移与横向稳定杆位移图 图8.54 横向稳定杆安装尺寸及位移图 图8.55为横向稳定杆半边的弯矩图。在力F 作用下横向稳定杆发生弹性变形,F 作的功与横向稳定杆中总的变形位能相等。 图8.55 横向稳定杆半边弯矩图 横向稳定杆变形位能的计算公式如下: (1) T l 段的扭转位能。 2T 1p =4F l U GJ (8-110) 式中,p J 为横向稳定杆的截面极惯性矩;G 为材料剪切弹性模量;T l 为横向稳定杆直线段长度。 (2) 1l 段的弯曲位能。 23 12 =6F l U EJ (8-111) 式中,J 为横向稳定杆的截面惯性矩;E 为材料弹性模量。 (3) 0l 段的弯曲位能。 00 2 22 2322 2 33200002()()1 =d d ()2212l l F l l x M x F U x x l l l EJ EJ l EJ ???+==?+????? ?? (8-112) 其中,x 轴的原点在横向稳定杆的对称中心。 (4) 2l 段的弯曲位能。 []2 2 22 2234332300()1 =d ()d ()226l l M x F U x F l x x l l l EJ EJ EJ ??=?+=?+-???? (8-113) F 作的功与横向稳定杆中总的变形位能相等,有

横向稳定杆

为了降低汽车的固有振动频率以改善行驶平顺性,现代轿车悬架的垂直刚度值都较小,从而使汽车的侧倾角刚度值也很小,结果使汽车转弯时车身侧倾严重,影响了汽车的行驶稳定性。为此,现代汽车大多都装有横向稳定杆来加大悬架的侧倾角刚度以改善汽车的行驶稳定性。横向稳定杆在独立悬架中的典型安装方式如图4-39所示。当左右车轮同向等幅跳动时,横向稳定杆不起作用;当左右车轮有垂向的相对位移时,稳定杆受扭,发挥弹性元件的作用。横向稳定杆带来的好处除了可增加悬架的侧倾角刚度,从而减小汽车转向时车身的侧 倾角外,如前所述,恰当地选择前、后悬架的侧倾角刚度比值,也有助于使汽车获得所需要的不足转向特性。通常,在汽车的前、后悬架中都装有横向稳定杆,或者只在前悬架中安装。若只在后悬架中安装,则会使汽车趋于过多转向。横向稳定杆带来的不利因素有:当汽车在坑洼不平的路面行驶时,左右轮之间有垂向相对位移,由于横向稳定杆的作用,增加了车轮处的垂向刚度,会影响汽车的行驶平顺性。 在有些悬架中,横向稳定杆还兼起部分导向杆系的作用,其余情况下则在设计时应当注意避免与悬架的导向杆系发生运动干涉。为了缓冲隔振和降低噪声,横向稳定杆与车轮及车架的连接处均有橡胶支承。当横向稳定杆用于整体桥非独立悬架时,其侧倾角刚度与车轮处的等效侧倾角刚度相等。当用于独立悬架时(参见图4-39),横向稳定杆的侧倾角刚度C?b与车轮处的等效侧倾角刚度C?w之间的换算关系可如下求出:设汽车左右车轮接地点处分别作用大小相等,方向相反的

垂向力微量dF w,在该二力作用下左右车轮处的垂向位移为df w,相应的稳定杆端部受到的垂向力和位移分别为dF b和df b,由于此时要考察的是稳定杆在车轮处的等效侧倾角刚度,因而不考虑悬架中弹簧的作用力,则必然有dF w与dF b所做的功相等,即 df w×dF w=df b×dF b (4-58) 而作用在稳定杆上的弯矩和转角分别为 dM b=dF b×L (4-59) d?b=2df b/L (4-60) 式中L——横向稳定杆的角刚度C?b为 C?b=dM b/d?b= dF b L2 / 2df b (4-61) 同理可得在车轮的等效角刚度C?w为 C?w= dF w B2 / 2df w (4-62) 式中B——轮距。 将式(4-62)和式(4-58)代入式(4-61)得到 C?b=C?w(f w/f b)2×(L/B)2 (4-63) 由于连接点处橡胶件的变形,稳定杆的侧倾角刚度会减小约15%~30%。 当稳定杆两端受到大小相等、方向相反的垂向力P作用时(参见图4-40),其端点的垂向位移f 可用材料力学的办法求出,具体为 式中E——材料的弹性模量,E=2.06×105Mpa; I ——稳定杆的截面惯性矩,I= d4/64 mm;

!第八章压杆稳定性

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)? 解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。 15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。 解:(a) 柔度: 230 1500.4 λ?= = 相当长度:20.30.6l m μ=?= (b) 柔度: 150 1250.4 λ?== 相当长度:10.50.5l m μ=?= (c) 柔度: 0.770 122.50.4 λ?= = 相当长度:0.70.70.49l m μ=?= (d) 柔度: 0.590 112.50.4 λ?= = 相当长度:0.50.90.45l m μ=?= (e) 柔度: 145 112.50.4 λ?== 相当长度:10.450.45l m μ=?= 由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。即:() 22 cr EJ P l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为: () 2948 2 2 2 320010 1.610640.617.6410cr EJ P l N π ππμ-??? ??= ==?

() 2948 2 2 2 320010 1.610640.4531.3010cr EJ P l N π ππμ-??? ??= ==? 15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。 解: 92.6 33827452.5 p s s a λπσλ===--=== 15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr P 。若实际作用于挺杆的最大压缩力P =2.33kN ,规定稳定安全系数W n =2~5。试校核此挺杆的稳定性。 解:(1)

实例-悬架系统设计计算报告分解

编号:悬架系统设计计算报告 项目名称:国内某车型 项目代码: 007 编制:日期: 校对:日期: 审核:日期: 批准:日期: 汽车设计有限公司 2011年11月

悬架系统计算报告 目次 1概述 (2) 1.1 任务来源 (2) 1.2 悬架系统基本介绍 (2) 1.2.1 前悬架的结构形式 (2) 1.2.2 后悬架的结构形式 (2) 1.3 计算的目的 (3) 2悬架系统设计的输入条件 (3) 3悬架系统偏频的选取及悬架刚度计算 (3) 4弹簧计算 (5) 4.1 弹簧刚度的计算 (5) 4.2 前螺旋弹簧钢丝直径的计算 (8) 5悬架系统静挠度计算 (9) 6悬架侧倾角刚度计算 (9) 6.1 前悬架侧倾角刚度计算 (9) 6.2 后悬架侧倾角刚度计算 (11) 6.3 整车侧倾角刚度计算 (12) 6.4 整车的侧倾力矩 (13) 6.5 整车的纵倾计算 (15) 6.5.1 纵倾角的计算 (15) 7减振器参数的确定 (16) 7.1 减振器阻尼系数的确定 (16) 8参数列表 (18) 参考文献 (21)

悬架系统设计计算报告 1概述 1.1任务来源 根据《新车设计开发项目协议书-007项目设计开发》的规定,悬架系统参考样车进行逆向设计。 1.2 悬架系统基本介绍 该款车前悬架采用麦弗逊式独立悬架,后悬架采用整体式驱动桥钢板弹簧非独立悬架。 1.2.1 前悬架的结构形式 图1 前悬架结构形式 1.2.2 后悬架的结构形式

图2 后悬架结构形式 1.3 计算的目的 通过计算,求得反映其悬架系统性能的基本特征量,为零部件开发提供参考。计算内容主要包括悬架刚度、偏频、静挠度、动挠度、侧倾刚度和减振器阻尼等。 2悬架系统设计的输入条件 表1 悬架参数列表 CA07 标杆车 质心高(mm) 空载695 695 半载743 743 满载750 750 前轮距(mm)1415 1386 后轮距(mm)1430 1408 轴距(mm)2650 2700 空载质量(kg)1194 1180 满载质量(kg)1864 1850 前轴荷(kg)空载550 560 半载628 642 满载669 682 后轴荷(kg)空载644 620 半载906 878 满载1195 1181 前悬架非簧载质量(kg)80 80 后悬架非簧载质量(kg)120 120 3悬架系统偏频的选取及悬架刚度计算 前后悬架固有频率的匹配应合理,对乘用车,要求前悬架固有频率略低于后悬架的固有频率,还要不允许悬架撞击车架(或车身)。 由标杆车试验数据得出(表2): 表2 标杆车悬架刚度试验表

横向稳定杆刚度计算

稳定杆刚度和应力计算公式 1、横向稳定杆刚度计算:大小相等A′处的载荷Pd,作用在两端点A,图示为圆形实心断面,直径为) 方向相反,载荷作用点处变形为f(不考虑横向稳定杆的橡胶衬套变形刚度K为:?1f232llll???2 sinR(??sin2?l)?[1R=2=002K p 02GI2EI3EI2t2l????2??sin?sin22[)]??(()1R1R0 22GI22t?????223]2?21lR(?cossin))?R?(sin1024 mm/N);()l?l?l?R(121,(mm)式中;201l2l2?arctanφrad;, 22l?l?l22 l14?d?l4 mm,——圆截面惯性矩,I=64 3?d?3,II=mm ——圆截面极惯性矩,32tt G=G2N/mm75460,——剪切弹性模数, 模向稳定杆倾角刚度K为:R2Kl K (N.mm/rad)0?R 22、横向稳定杆应力计算: 车身侧倾角为时,稳定杆两端部载荷P为:?1 / 2 ?K)P?(N R l0???处,′段的θ=在最大弯曲应力BC,B′C?R?arctan?l0P222?Rl??2(N/mm) 0Zt3?d ——扭转断面系数:Zt=式中:Zt3):mm(,单位 16)Rlll?2R(P222???120)/mm(单位:.,在?0处的CC'点处N?l?R?最大剪应力0Z22l?l t21′段,可近似用下式计算:B′C、最大主应力?BC发生在max P2(N/mm)22?)2R(??l?R0max Z t

(范文素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注) 2 / 2

(整理)压杆稳定计算.

第16 章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F 由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F 达到屈服强度载荷F s (或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a 所示的同样粗细而比较长的杆件(图16-1b),当压力F 比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F 逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图 16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的 稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的 O 点处于平衡状态,如图 16-5a 所示。先用外加干 扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。 因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的 O 点处于平衡状态,如图 16-5c 所示。当用外加干 扰力使其偏离原有的平衡位置后, 小球将继续下滚, 不再回到原来的平衡位置。 因此, 小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的 O 点处于平衡状态,如图 16-5b 所示,当用外加干 扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置 O 1 再次处于平 衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡 状态为随遇平衡。 图 16-5 图 16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏 离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于 图 16-3

乘用车总体设计计算参数

汽车总体设计、计算参数 一、外形尺寸参数 1、轴距L 2、前后轮距B1与B2 3、汽车的外廓尺寸 总长、总宽、总高 GB 1589-79 4、汽车的前悬L F和后悬L R 由总布置最后确定(保证足够的接近角和离去角) (前悬处要布置发动机、水箱、弹簧前支架、保险杠、转向器等) 二、质量参数 1、汽车的装载量m G 轿车是指载客量,即座位数。 2、汽车的整备质量m0 总体设计初,可对同类型同级别且结构相似的样车及部件的质量进行测定分析,并以此为基础初步估算出新设计车个部件的质量及整车整备质量。 3、汽车的总质量m a 整备质量、载客量、行李质量m B、附加设备m F (每人按65kg计,行李质量(轿车)每人5~10kg) 4、轴荷分配 它对汽车的牵引性、通过性、制动性、操纵性和稳定性等主要使用性能以及轮胎的使用寿命都有很大影响。 轴荷分配对前后轮胎的磨损有直接影响。 三、主要性能参数 1、汽车动力性参数 汽车的动力性参数主要有直接档和I档最大动力因数、最高车速、加速时间、汽车的比功率和比转矩等。 1)直接档最大动力因数D0 max 2)I档最大动力因数D I max D I max直接影响汽车的最大爬坡能力和通过困难路段的能力以及起步并连续换档时的加速能力。它主要取决于所要求的最大爬坡度和附着条件。

3)最高车速V a max 以汽车行驶的功率平衡来确定。 GB/T 12544-90 汽车最高车速试验方法 4)汽车的比功率和比转矩 这两个参数分别表示发动机最大功率和最大转矩与汽车总质量之比。 5)加速时间 “0—100km/h”或“0—80km/h”的换档加速时间。 GB/T 12543-90汽车加速性能试验方法 表二动力性计算需要的数据

压杆稳定性计算

第16章压杆稳定 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5

压杆稳定

1、( )材料相同的压杆,柔度越大,稳定性越差,故它所能承受的外压力就越小。 1、( )压杆的临界应力是压杆处于临界状态维持直线平衡形式时横截面上的正应力。 2、( )材料相同,柔度相等的压杆,空心杆比实心杆的稳定性好,即空心杆所能承受的压力大。 3、对于压杆稳定,下面错误的伦述是( )。 A 、压杆的临界压力是保持稳定直线平衡的最大载荷。 B 、压杆的柔度越大,压杆越不稳定。 C 、大柔度压杆可以使用欧拉公式计算临界压力。 D 、矩形截面细长压杆,已知Iz>Ir ,计算临界载荷时,应取值Iz 为妥。 5、临界应力是压杆失稳时横截面上的应力( ) 6、示Q235钢压杆,截面为矩形,面积为3.2*103mm 2, 已知E=200GPA ,σs =235MPA ,λp=100,λs=61.6,试计算其临界载荷。(15分) 7、( )压杆的稳定性主要与压杆的截面大小和压杆的长度有关。 一、是非判断题 9.1 所有受力构件都存在失稳的可能性。 ( × ) 9.2 在临界载荷作用下,压杆既可以在直线状态保持平衡,也可以在微弯状态下保持平衡。 ( × ) 9.3 引起压杆失稳的主要原因是外界的干扰力。 ( × ) 9.4 所有两端受集中轴向力作用的压杆都可以采用欧拉公式计算其临界压力。 ( × ) 9.5 两根压杆,只要其材料和柔度都相同,则他们的临界力和临界应力也相同。 ( × ) 9.6 临界压力是压杆丧失稳定平衡时的最小压力值。 ( ∨ ) 9.7 用同一材料制成的压杆,其柔度(长细比)愈大,就愈容易失稳。 ( ∨ ) 9.8 只有在压杆横截面上的工作应力不超过材料比例极限的前提下,才能用欧拉公式计算其 临界压力。 ( × ) 9.9 满足强度条件的压杆不一定满足稳定性条件;满足稳定性条件的压杆也不一定满足强度 条件。 ( ∨ ) 9.10 低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成 的细长压杆的临界压力。 ( × ) 二、填空题 9.1 压杆的柔度λ综合地反映了压杆的 对临界应力的影响。 长度(l ),约束(μ),横截 面的形状和大小(i ) 有应力集中时

稳定杆制造工艺学相关知识

稳定杆制造工艺学相关知识 第一章绪论 为降低汽车的固有振动频率,改善行驶平顺性,现代汽车悬架的垂直刚度设计得较低,这就使汽车的侧倾角刚度值也较低,结果,当汽车在转弯时,产生很大的车身侧倾角,影响行驶稳定性,为克服这一缺点,常在悬架中采用横向稳定杆来提高悬架的侧倾角刚度,或是调整前、后悬架侧倾角刚度的比值,以保证汽车具有良好的行驶稳定性。 稳定杆主要是由稳定杆杆体与衬套组成。 1)稳定杆杆体设计主要是为避免与悬架的导向杆系发生运动干涉,同时起到稳定悬架作用,其装车后等效可看作为n形; 2)稳定杆衬套,主要是在横向稳定杆与车轮及车架的连接处,为了缓冲隔振和降低噪声。 第二章稳定杆材料 1)稳定杆所用材料为热轧弹簧钢,通常按照GB1222《弹簧钢》标准选用。材料必须符合WI8241 《原材料检验标准》,或使用经用户认可的其它牌号的材料。 2)若顾客对材质无明确要求,可按照下列原则选用(推荐): a)重卡稳定杆承载较大,优先选用淬透性好、承载能力高的50CrVA材料; b)空心稳定杆选用35CrMo材料; c)其它类型的产品可选用60Si2MnA材料。 3)原材料的单边脱碳层深度不得超过材料直径的2.5%。 4)稳定杆原材料必须有供应厂商的质量保证书。 第三章稳定杆制造工艺 产品的工艺过程:(例)

第一节原材料检验 购进材料后,我们首先要核对材料规格和数量以及随货的质量保证书,并由公司质量部对其进行来料检验,检验合格后方可办理入库手续。检验项目有尺寸检验、化学元素分析、物理性能(主要是硬度)和金相分析。 第二节下料 根据对图纸的放样结果,用锯床将原材料按规定长度切割成一段一段的坯料。下料断口倾角过大,导致端部成型不饱满,无法满足顾客疲劳寿命要求。 第三节弯制成型 此工序在所有制作工序中最为重要,也可以说是汽车横向稳定杆制作的技术核心部分。稳定杆杆体的弯曲形状都在该工序完成,三维数控弯管机为其主要设备。杆体的加热时间依据杆体直径(实心或空心)、线圈内径、线圈的输出功率等进行调整。弯管机弯制程序由技术人员给出。 第四节热处理 稳定杆热处理主要分为淬火处理和回火处理。 淬火是汽车横向稳定杆重要的热处理工艺,介质温度、介质中冷却时间都得严格控制,不得有过烧、扭曲,严重氧化、脱碳等缺陷。淬火的目的是使横向稳定杆获得所需要的马氏体组织,提高工件的硬度、强度和耐磨性,为回火热处理做好组织准备。汽车横向稳定杆一般采用专用淬火油进行淬火,50CrVA材料稳定杆,用室式气体加热炉加热,采用的淬火温度为890±10℃,保温时间依据杆体的直径不同而不同,而介质中冷却时间一般采用≥15min。除此之外,介质温度控制可分为:油介质温度控制≤70℃,PEG水溶剂介质温度控制≤50℃,油中杂质含量和水溶剂浓度将会严重影响淬火质量。汽车横向稳定杆是长物件,其淬火作业除遵守以上要求外,还应特别注意其整体加热和冷却中变形问题,故有淬火中热修与回火后修整。淬火结束后,测量其淬火硬度应≥50HRC,方可进行回火热处理。 回火是指稳定杆经淬火后48小时内,再加热到某一温度,保温一定时间,然后冷却到室温的热处理工艺。汽车横向稳定杆一般采用中温回火,这不仅消除了淬火时所产生的应力,还可以获得高的屈服强度、硬度、弹性极限和较高的韧性。如本公司50CrVA材料的稳定杆所采用回火温度480±10℃,回火时间90min,回火后得到的硬度值为42—48HRC和均匀细致的屈氏体组织,屈服强度、弹性极限和韧性也较为理想。回火时温度要均匀,保温时间要充足。 第五节修整 修整是将回火后形状尺寸稍有超差的横向稳定杆半成品通过人工修整为合格产品,由于产生塑性变形量很小,经检测能达到产品要求的疲劳寿命。该工序提高了产品的合格率,在很大程度上降低了生产成本,因此在生产中是不可缺少的。 第六节端部热成型 因安装需要,汽车横向稳定杆两端一般要加工为扁头状、圆头状。汽车横向稳定杆的端部热成型加工,采用中频炉加热,把材料加热到950—1000℃,在摩擦压力机及四工位机上成型。然后待端部冷却至室温,进行钻孔。此工序要严格控制工装模具定位与磨损情况。 第七节喷丸 喷丸是提高汽车横向稳定杆疲劳强度的重要工序。横向稳定杆经喷丸后产生塑性变形,形成一定厚度的表面强化层,强化层内形成较高的残余压应力和密度极高的位错,因而提高了横向稳定杆的疲劳极限。钢丸应选用钢丝丸,钢丝丸应无破碎,避免损伤稳定杆表面。 第八节喷塑

相关主题
文本预览
相关文档 最新文档