当前位置:文档之家› 混凝土温控及防裂措施

混凝土温控及防裂措施

混凝土温控及防裂措施
混凝土温控及防裂措施

8.11 混凝土温控防裂措施

8.11.1 基本条件及要求

8.11.1.1 混凝土允许最高温度

根据招标文件要求,坝后厂房混凝土允许设计最高温度见表8.11-1。

表8.11-1坝后厂房工程混凝土设计允许最高温度单位:℃

注:L为浇筑块长边尺寸。

8.11.1.2 控制浇筑层最大高度和间歇时间

基础和老混凝土约束部位浇筑层高控制为 1.5m~2.0m,基础约束区以外最大浇筑高度控制在2.0m~3.0m以内,上、下层浇筑间歇时间为5d~7d,对混凝土浇筑层较厚、温控要求较严部位可适当延长2d~3d。在高温季节,可采用表面流水冷却的方法进行散热。应严格按施工图纸所示或经监理人批准的分层分块图进行浇筑。

8.11.2 混凝土出机口温度控制

(1)混凝土拌制过程中,降低混凝土的水化热温升

1) 尽量选用水化热低的水泥。

2) 在保证混凝土质量满足设计、施工要求的前提下,改善混凝土骨料级配,掺加优质的掺和料和外加剂以适当减少单位水泥用量。

(2)根据招标文件要求,在高温季节或较高温季节浇筑混凝土时,应采用预冷混凝土浇筑,在计算混凝土浇筑温度时应充分考虑混凝土运输过程中的温度回升。各月、分部位混凝土浇筑温度及出机口温度控制指标见表8.11-2。

8.11.3.1 混凝土运输温控

(1)采用搅拌车运输时,在运输混凝土前对机械运输设备喷雾或冲洗预冷,采取隔热遮阳措施。

(2)通过汽车运输的混凝土,根据拌和楼和建筑塔机、布料杆、混凝土泵等的生产能力,以及仓面浇筑的情况,合理安排汽车数量及拌和强度,一般每车运输混凝土不少于3.0m3,运输车辆安装遮阳棚,运输途中拉上遮阳棚,拌和楼前安装喷雾装置,对回程的车辆喷雾降温。

(3)运输道路优选最短路径,以使混凝土在最短时间内到达浇筑地点。

(4)在条件允许的施工现场搭设遮阳棚,启动冷却水降温系统,所有待料搅拌车进行待料洒水降温。

8.11.3.2 浇筑过程温控

(1)高温季节浇筑时,在下料的间歇期,用聚乙烯卷材覆盖仓面,防止温度倒灌。

(2)夏季浇筑仓内配备喷雾设施,喷雾设备有轴流风机、摆动式喷雾机雾化管等,根据仓面特点来配置喷雾设备,考虑摆动式喷雾机降温效果较好,一般情况下,选择用摆动式喷雾机,局部不宜用喷雾机的部位用雾化管。

(3)混凝土浇筑前,配置足够的施工设备,加快入仓强度和浇筑强度,缩短运输时间和混凝土浇筑时间,减少太阳对运输混凝土的辐射。

(4)为缩短坯层覆盖时间,加大入仓强度,可减少坯层厚度,每坯层厚调整为35~40cm。

8.11.4 混凝土冷却通水

8.11.4.1 冷却水管的布置及埋设

(1)埋设部位:有初期通水、中期通水和后期冷却要求的部位均需埋设冷却水管。冷却水管采用1英寸(直径2.54cm)黑铁管,也可采用塑料、高密聚乙烯类管材。

(2)冷却水管及供水管的规格、类型、间距长度、通水量等应满足初期、中期通水降温的要求。

(3)冷却水管的布置要求:冷却水管一般按1.5m×1.5m布置,当层厚大于2.0m时,应在浇筑层中间埋设一层冷却水管。冷却水管单根水管长度不得超过250m。中间埋设的冷却水管一般采用高密聚乙烯类管材,随仓位浇筑到高程埋设。

(4)冷却水管宜预先加工成弯段和直段两部分,在仓内拼装成蛇形管圈。

埋设的冷却水管不能堵塞,并应固定和清除表面的鳞锈、油漆和油渍等物。管道的连接可用丝扣、法兰、焊接等方法,并应确保接头连接牢固,不得漏水。混凝土浇筑前应对已安装好的冷却水管各进行一次通水检查,通水压力0.3MPa~0.4MPa,如发现堵塞及漏水现象,应立即处理。在混凝土浇筑过程中,应注意避免水管受损或堵塞。

(5)通水冷却前对埋设的水管进行检查。对于不通或微通的,采取有效措施进行处理。

(6)开仓前,所有冷却水管立管均要加盖子进行保护。

8.11.4.2 初期冷却通水

根据招标文件技术要求,无论何时浇筑混凝土,采用预冷混凝土浇筑坝体混凝土最高温度仍可能超过设计允许最高温度时应采取初期通水冷却消减混凝土最高温度。初期通水应采用水温10℃~12℃的制冷水,通水时间15d~20d,水管通水流量不小于20L/min,通水时应每天调换一次进出口方向,在混凝土开仓时即开始通水。

①在大体积混凝土仓内埋设冷却水管,通冷却水,并按要求在埋设温度计;

②个性化通水。混凝土内部温度峰值出现以前,通10℃~12℃冷却水,流量不小于40L/min,峰值出现后,流量控制在10 L/min以下。通水时根据降温速度,调整流量大小,若温度降幅超过1℃/天,停止通水,自然降温。

8.11.4.3 中期通水冷却

中期通水根据现场监理指示确定开始通水时间,一般按照每年10月初对当年4月~9月浇筑的混凝土、11月初开始对当年10月浇筑的大体积混凝土块体进行中期通水冷却。中期通水前,对待通水的冷却水管进行全面检查,对堵塞的水管采取措施作疏通处理,并对各组水管进行闷温,记录闷温的结果,以了解混凝土内部的温度情况。根据闷温及检查的结果,针对性通水,通水采用江水,通水流量应达到30L/min,通水时间1.5个月~2.5个月,以混凝土块体温度达到20℃~22℃为准。

在通水期间,凡进水水温与出水水温持平时,可暂停5~10天后再通水。当进水温度低于混凝土内温度且温差较大时,每隔1~2天进出水方向互换一次,以将混凝土内部温度降至设计要求的温度。

通水一个月进行抽样闷温,结果在21~23 C时进行全面闷温,闷温的时间为3~5天。

认真作好中期通水的测温工作,每天测温2次,并认真做好记录。

8.11.4.4 后期冷却通水

后期通水是根据接缝灌浆要求进行,其通水计划是根据灌浆的计划来编排,

后期通水的主要措施:

正式通水前,先对冷却坝块的冷却管进行检查、疏通,并作好标识。在0.2MPa 水压作用下流量大于15L/min的为通畅,用“o”表示;流量在8~15L/min范围的为半通畅,用“φ”表示,流量小于8L/min为微通或不通,用“?”表示。对于微通或不通将视情况延长上下层冷却管的通水时间和加大流量。

通水前,先在各灌区选取3、4组冷却管进行闷温,时间为3天,掌握该部位内部温度,以确定通水类型(江水或制冷水)。控制混凝土实际接缝灌浆温度与设计接缝灌浆温度的差值在+1℃范围内,应避免较大的超温和超冷。原则上,若混凝土内部温度超过常温水达5℃以上的,可以先通常温水降温到进出口水温持平。然后改用制冷水,将温度降到接缝灌浆温度。

坝体保持连续通水,坝体混凝土与冷却水管间的温差不得超过20~25℃。水管通水量通制冷水时不小于20L/min,通江水时应达到25~30L/min,控制坝体降温速度不大于1℃/d。对未结束中期通水的部位,如需进行接缝灌浆,可视情况直接用制冷水进入后期冷却。

通水期间每隔2天变换一次进出水方向,并且每天对通水情况进行记录。内容包括有各进水干、支管流量、压力、进回水温度、通水时间等。当坝体达到灌浆温度时,停止通水。通水前及通水过程中,加强对已埋仪器的观测,开始观测时,每3天观测一次,接近或达到接缝灌浆温度期间,每3天观测2次。通水过程中,每隔30天左右进行一次抽样闷温。闷温时间为3~5天,测温时用高压风将管内积水缓缓吹出,接于小桶内,随即用温度计测若干值,并取其平均值作为闷温测值。

8.11.5 混凝土层间间歇

基础和老混凝土约束部位浇筑层高控制为 1.5m~2.0m,基础约束区以外最大浇筑高度控制在2.0m~3.0m以内,上、下层浇筑间歇时间为5d~7d,对混凝土浇筑层较厚、温控要求较严部位可适当延长2d~3d。

尽量避免薄层长间歇,最大间歇时间宜控制在14d以内。

8.11.6 混凝土表面保温

8.11.6.1 混凝土表面保温要求

(1) 保温材料:保温材料根据保温要求选定。保温后混凝土表面等效放热系数:大体积混凝土, ≤2.5~3.0W/m2 ?℃;孔口等结构混凝土≤2.0~2.5W/m2?℃。

(2) 对于永久暴露面,10月~次年4月份浇筑的混凝土,浇完拆模后立即设施工期的永久保温层,5月份~9月份浇筑的混凝土,10月初设施工期的永久保护层。施工期的永久保温指保温至工程运行前。

(3) 每年入秋(10月初),应将所有孔洞进出口进行封堵。

(4)作好气象预报工作,避免在夜间、气温骤降或寒冷气温条件下拆模,

如必须拆模则应立即对其表面进行保温。气温骤降期间,顶面保温至上层混凝土浇筑为止,揭开保温材料至浇筑上层混凝土的暴露时间不应超过6h~12h。

(5) 当日平均气温在2d~3d内连续下降超过(含等于)6℃时,28d龄期内混凝土表面(顶、侧面)必须进行表面保温保护。

(6) 低温季节(如拆模后混凝土表面温降可能超过6℃~9℃)以及气温骤降期间,应推迟拆模时间,否则拆模后应立即采取其他保护措施。

8.11.6.2 混凝土表面保温施工措施

聚乙烯卷材保温被利用定位锥孔来固定,定位锥孔内塞紧木塞,保温被覆盖后压盖木条,再用钉子固定,固定木条间距1.5 2.0m。

保温被施工在模板上升后由人工完成,保温被覆盖作业按3~4人为1组,先将块体表面清理干净。高空作业使用软梯,软梯系在其上部已安装好的模板上,作业人员系双保险后顺软梯下至工作面,仓面上的其他工作人员将聚乙烯卷材用绳索放下,软梯上的作业人员再将聚乙烯卷材用木条固定到混凝土面上。

特殊部位保温

孔洞封堵:当孔洞形成后,用2.0cm厚的聚乙烯卷材对孔口进行封堵,没有形成封闭孔洞的,不能通过封堵进出口进行保温的其侧面和过流面亦用 3.0cm 厚的聚苯板进行保温。各坝段的墩墙、牛腿等结构部位混凝土用2.0cm厚的聚乙烯卷材进行保温。

寒潮保温:当日平均气温在2-3天内连续下降超过6℃的,对28天龄期内的混凝土表面(非永久面),用2.0cm厚的聚乙烯卷材保温。

当气温降至0℃以下时,龄期在7天以内的混凝土外露面用保温被覆盖。浇筑仓面应边浇筑边覆盖。新浇的仓位应推迟拆模时间,如必须拆模时,拆模后及时保温。

多卡模板支架下保温:由于多卡模板支架下压混凝土表面,影响保温被的覆盖。因此,在多卡模板下缘悬挂2.0cm厚的聚乙烯保温被,作临时保温用,保温被随模板一起提升,并临时固定在支架下支撑处。模板拆除后即刻使用聚苯乙烯泡沫板或聚乙烯卷材做永久保温。

冬季的养护改用洒水养护,以免浇水对保温被的冲刷破坏。

所有永久面保温时间从浇筑完后起,到交付运行时止,在此期间,每年10初月份开始保温,以确保保温效果,次年4月拆除保温材料,避免影响文明施工和夏季发生火灾。

8.11.7 混凝土养护

采用洒水或流水养护:养护一般应在混凝土浇筑完毕后12~18h内即开始对大体积混凝土的水平施工缝养护到浇筑上层混凝土为止。高温和较高温季节表面进行流水养护,低温季节表面进行洒水养护,永久面采用花管洒水养护。模板与混凝土表面在模板拆除之前及拆除期间都保持潮湿状态,养护水流从混凝土顶面

向模板与混凝土之间的缝渗流,保持表面湿润直到模板拆除。洒水养护在模板拆除后继续进行。

8.11.8 温度测量

(1) 采用埋设在混凝土中的电阻式温度计或热电偶进行混凝土的温度测量工作。在主厂房及坝后钢管段等建筑物的施工期内,选择典型浇筑仓埋设施工期温度计,每个浇筑仓内埋设3支温度计,必要时增设测温计。在相应建筑物开工前,提交施工期温度计埋设规划(含埋设部位、数量、监测及资料整理等内容),经监理人批准后实施。

(2)记录并每周提交一次温度测量报告报送监理人,内容除包括(但不限于):混凝土浇筑温度、混凝土内部温度、每条冷却水管的冷却水流量、流向、压力、入口温度、出口温度以及监理人要求的其它测量指标。

(3) 当要测量最终的混凝土平均温度时,可以先停止一条冷却水管中的循环水流动5d,然后测量该水管中的水温,其平均值代表该混凝土的平均温度。

(4) 在混凝土施工过程中,应至少每4h测量1次出机口混凝土温度、入仓温度、浇筑温度以及浇筑体冷却水的温度,并做记录。

(5) 温度计安装完毕后,承包人应按监理人批准的方法对设备进行校正、观测、并记录仪器设备在工作状态下的初始读数。温度计埋设后24h以内,每隔4h测1次,之后每天观测3 次,直至混凝土达到最高温度为止。以后每天观测1次,持续一旬。再往后每两天观测1次,持续1月,其余时段每月观测一次。

混凝土施工防裂措施方案

混凝土施工防裂措施方案 1、施工工艺流程及操作要点 (1)工艺流程 进行预拌混凝土超长墙体施工期裂缝控制,必须建立全过程控制体系。该体系是在传统混凝土工程工艺流程的基础上,针对施工期裂缝防治完善而成。主要工艺流程如下: 基于裂缝防治的结构及构造措施优化→混凝土原材料优选→配合比体积稳定性优化设计→混凝土拌制及运输→混凝土浇注→混凝土养护及拆模 (2)操作要点 1)基于裂缝防治的结构及构造措施优化 a)要求混凝土具有足够的强度,较小的早期收缩变形及良好的抗裂能力; b)较长的现浇钢筋混凝土墙体是收缩裂缝的高发区,墙体中的钢筋除应满足强度要求外,应充分考虑混凝土收缩而加强,应有足够的配筋率,钢筋布置宜细而密分布。水平构造钢筋宜置于受力钢筋外侧,当置于内侧时,宜在混凝土保护层内加设防裂钢筋网片。 c)配筋率及间距应考虑混凝土收缩变形规律,结合结构计算和工程经验确定。 d)剪力墙中温度、收缩应力较大的部位,水平分布钢筋的配筋率宜适当提高。 e)墙中的预埋管线宜置于受力钢筋内侧,当置于保护层内时,宜在其外侧加置防裂钢筋网片。预留孔、预留洞周边应配有足够的加强钢筋并保证有足够的锚固长度。 2)混凝土原材料优选 为控制预拌混凝土施工期间收缩裂缝的发生,预拌混凝土供应方应对混凝土原材料进行优化选择。 3)配合比体积稳定性优化设计 对要求施工期间不出现早期裂缝的结构(构件),预拌混凝土供应方应在优选原材料和常规配合比设计的基础上,进行抗裂配合比优化设计,使混凝土除具有符合设计和施工所要求的性能外,还具有抵抗收缩开裂所需要的性能。 4)收缩、体积稳定性试验及评价 为提供有良好抗裂性能的混凝土,预拌混凝土供应方应在优选原材料、优化配合比的基础上进行收缩、体积稳定性试验及评价。 5)混凝土拌制及运输

混凝土温控及防裂措施

8.11 混凝土温控防裂措施 8.11.1 基本条件及要求 8.11.1.1 混凝土允许最高温度 根据招标文件要求,坝后厂房混凝土允许设计最高温度见表8.11-1。 表8.11-1坝后厂房工程混凝土设计允许最高温度单位:℃ 注:L为浇筑块长边尺寸。 8.11.1.2 控制浇筑层最大高度和间歇时间 基础和老混凝土约束部位浇筑层高控制为 1.5m~2.0m,基础约束区以外最大浇筑高度控制在2.0m~3.0m以内,上、下层浇筑间歇时间为5d~7d,对混凝土浇筑层较厚、温控要求较严部位可适当延长2d~3d。在高温季节,可采用表面流水冷却的方法进行散热。应严格按施工图纸所示或经监理人批准的分层分块图进行浇筑。 8.11.2 混凝土出机口温度控制 (1)混凝土拌制过程中,降低混凝土的水化热温升 1) 尽量选用水化热低的水泥。 2) 在保证混凝土质量满足设计、施工要求的前提下,改善混凝土骨料级配,掺加优质的掺和料和外加剂以适当减少单位水泥用量。 (2)根据招标文件要求,在高温季节或较高温季节浇筑混凝土时,应采用预冷混凝土浇筑,在计算混凝土浇筑温度时应充分考虑混凝土运输过程中的温度回升。各月、分部位混凝土浇筑温度及出机口温度控制指标见表8.11-2。

8.11.3.1 混凝土运输温控 (1)采用搅拌车运输时,在运输混凝土前对机械运输设备喷雾或冲洗预冷,采取隔热遮阳措施。 (2)通过汽车运输的混凝土,根据拌和楼和建筑塔机、布料杆、混凝土泵等的生产能力,以及仓面浇筑的情况,合理安排汽车数量及拌和强度,一般每车运输混凝土不少于3.0m3,运输车辆安装遮阳棚,运输途中拉上遮阳棚,拌和楼前安装喷雾装置,对回程的车辆喷雾降温。 (3)运输道路优选最短路径,以使混凝土在最短时间内到达浇筑地点。 (4)在条件允许的施工现场搭设遮阳棚,启动冷却水降温系统,所有待料搅拌车进行待料洒水降温。 8.11.3.2 浇筑过程温控 (1)高温季节浇筑时,在下料的间歇期,用聚乙烯卷材覆盖仓面,防止温度倒灌。 (2)夏季浇筑仓内配备喷雾设施,喷雾设备有轴流风机、摆动式喷雾机雾化管等,根据仓面特点来配置喷雾设备,考虑摆动式喷雾机降温效果较好,一般情况下,选择用摆动式喷雾机,局部不宜用喷雾机的部位用雾化管。 (3)混凝土浇筑前,配置足够的施工设备,加快入仓强度和浇筑强度,缩短运输时间和混凝土浇筑时间,减少太阳对运输混凝土的辐射。 (4)为缩短坯层覆盖时间,加大入仓强度,可减少坯层厚度,每坯层厚调整为35~40cm。 8.11.4 混凝土冷却通水 8.11.4.1 冷却水管的布置及埋设 (1)埋设部位:有初期通水、中期通水和后期冷却要求的部位均需埋设冷却水管。冷却水管采用1英寸(直径2.54cm)黑铁管,也可采用塑料、高密聚乙烯类管材。 (2)冷却水管及供水管的规格、类型、间距长度、通水量等应满足初期、中期通水降温的要求。 (3)冷却水管的布置要求:冷却水管一般按1.5m×1.5m布置,当层厚大于2.0m时,应在浇筑层中间埋设一层冷却水管。冷却水管单根水管长度不得超过250m。中间埋设的冷却水管一般采用高密聚乙烯类管材,随仓位浇筑到高程埋设。 (4)冷却水管宜预先加工成弯段和直段两部分,在仓内拼装成蛇形管圈。

混凝土防裂技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 混凝土防裂技术措施(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4346-45 混凝土防裂技术措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 本标段混凝土以常态混凝土为主,由于工期要求,进水塔等大体积混凝土结构需在高温季节浇筑,结合工程实际情况和,对混凝土的具体施工浇筑过程、施工分层方法、养护过程、拆模时间、施工间歇时间、层间施工间歇时间、养护方法、表面保温方法(保温材料材质、保温材料厚度、复合保温方法、保温时间、保温拆除时间)制定了具体的施工方案。 混凝土产生裂缝的原因有许多种,实践证明,大体积混凝土产生裂缝的主要原因为收缩裂缝。大体积混凝土浇筑后,由于水泥在水化凝结过程中,要散发大量的水化热,因而使混凝土体积膨胀,此时,混凝土产生较小压应力。待达到最高温度以后,随着热量向外部介质散发,温度将由最高温度降至一全稳定温度或冷稳定温度场,将产生一个温差。如果浇筑温度

钢筋混凝土的抗裂措施

钢筋混凝土的抗裂措施 摘要:对于钢筋砼裂缝的处理方法,需要根据实际的情况进行,文章从钢筋混凝土的材料特性以及设计、施工、材料的方面结合现场的施工方法以及建筑房屋的构造特征进行选择,并做好养护工作,双方面进行才能使裂缝问题得到根本解决。 关键词:房屋钢筋混凝土结构件施工技术控制措施 在房屋的建设质量上,钢筋混凝土结构的裂缝问题,由于涉及到居住安全,消费者尤为敏感。一旦房屋结构出现裂缝,消费者往往会向政府有关部门和开发企业投诉。那些较严重的裂缝,会影响结构的安全度和使用寿命,给住户造成不安全感,给当地政府带来不良影响,给建筑商带来严重信誉损失和重大经济损失。因此,研究钢筋混凝土结构裂缝问题,不仅有一定的社会意义,还有重大的经济意义。 对于钢筋混凝土裂缝问题,我们要高度重视,要通过设计、施工等各个环节采取各种技术措施来予以控制。首先,要杜绝因设计、地基处理不当等出现危害结构安全的结构性裂缝。这种裂缝关系到生命财产的安全,在工程上一定要避免。其次,要控制裂缝,通过各种努力使裂缝分散、细化,达到无害程度。再次,要正确及时处理好出现的正常裂缝。一般出现的正常裂缝,只要通过适当的正确处理,保证建筑物的正常使用,又不影响其使用功能,就不会变成有害裂缝。 1 合理的设计方式 施工过程中的钢筋混凝土结构,是由柱、数层楼板和连接多层楼板的模板支撑系统组成的临时性的受力体系(见图1),此受力体系可能随着施工工序的进行而改变。在整个施工过程中,结构的形状、材料的性质以及所承受的施工荷载,均随时间变化。荷载效应随着施工进程不断累积,可能使施工过程中楼板承担的荷载远超过结构设计允许的楼板承载能力。这些特点使得施工期钢筋混凝土结构的特征与使用期的结构迥然不同,有时会产生整个结构生命周期中最危险的状况。钢筋混凝土结构施工过程中楼板出现的裂缝、挠度过大乃至破坏倒塌往往与此有关。 同时,混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6~1.0)×10 ,长期加荷时的极限拉伸变形也只有(1.2~2.0)×10 。由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。 因此,考虑到建筑房屋的受力情况,在施工前期的设计过程中应当积极选择中低强度的混凝土材料,其强度等级控制在C20~C35范围为最佳,切勿使用高强混凝土。在进行抗裂计算时需充分考虑抗裂薄弱部位,这样就从设计源头对混

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

浅论关于建筑施工的大体积混凝土温控与防裂技术的研究

浅论关于建筑施工的大体积混凝土温控与防裂技术的研究摘要:众所周知,现在的高层建筑使用的混凝土越来越多,随之而来的就是一个混凝土结构开裂的技术问题。尤其是在建筑工程主要结构部分出现裂缝问题,如果不能及时预防开裂的形成,那么将对整个工程结构形成致命危害。这不是危言耸听,我们要在建筑施工中将大体积混凝土温控和防裂技术应用到实际工程施工中,找到防裂最好的措施。 关键字:建筑施工;混凝土;温控;裂缝;防裂;措施 abstract: as we all know, the concrete is increasingly used in high-rise buildings, followed by a technical problem of concrete structure cracking, especially in the main structure part of the building. if the cracks can not be prevent timely, it will cause deadly hazard to the whole project structure, which is not alarmist. therefore, we should apply thetemperature control and crack prevention technique of large volume of concrete into practical construction to find the best measures to prevent crack. key words: engineering construction; concrete; temperature control; cracks; crack prevention; measures 中图分类号:tu377文献标识码:a 文章编号:2095-2104(2012)改革开放三十多年以来,我国的国民经济不断发展,取得了世人瞩目的成绩。而作为我们国家经济的主要支柱产业---房地产行

大面积混凝土地坪抗裂措施研究

大面积混凝土地坪抗裂措施研究 摘要:大面积混凝土地坪施工容易产生裂缝,这是由很多原因形成的,既有施工原因,也有设计和其他原因,混凝土裂缝不容忽视,本文对地坪裂缝原因进行了分析,提出了防治裂缝的措施。 关键词:地坪;混凝土;抗裂 商品混凝土质量稳定,工作性好,在我国的国民经济建设中发挥了重大作用。然而,随着商品混凝土的大量运用,用水量大以及对早期强度高的追求,给混凝土的质量带来隐患。工业厂房地面采用商品混凝土现浇造成地坪开裂的现象普遍存在。裂缝使混凝土的承载力降低,容易造成渗漏,使混凝土结构耐久性降低,不仅影响美观,而且会造成使用功能下降,更严重的则会影响设备的正常运行造成事故等问题。 一、地坪开裂原因分析 1.1 施工原因 1.1.1 地基处理质量失控地坪一般坐落于地基之上,地 坪地基有天然地基和人工地基之分,不论是天然地基还是人工处理地基,一旦质量失控都会导致地坪开裂。 (1)天然地基天然地基质量失控的主要原因是忽视了 地基土的均匀性所导致的,在大面积地坪范围内,总体上地

基承载力是比较均匀的,但局部总有少量的不均匀,如果忽视这些局部不均匀的影响,就会导致天然地基质量失控,使用过程中,就可能发生局部不均匀沉降,造成地坪开裂。 (2)人工处理地基软弱地基需要经过压实,换填,甚 至采用复合地基进行处理,或者因地势较低,需要进行回填处理的地基均为人工处理地基。 1.1.2 施工环境控制不严格一些工程地坪开裂后,在处 理时发现局部两层混凝土夹层中有泥土,这说明施工时未将新老混凝土结构紧密层处理干净,导致了局部空鼓、开裂。 1.1.3 基层施工质量失控地坪设计一般分为基层和面层,基层材料主要有建筑垃圾、碎石、砂、砂石、矿渣、灰土、水泥砂浆、钢渣、素混凝土等等,如果施工方法不到位,同样会导致基层质量失控。 1.2设计原因 1.2.1地坪设计抗裂能力不足地坪设计一般考虑的是理 想状态,但如果施工条件受限,实际情况与理想状态相差太多,设计强度储备不足,或地基回填时遭遇阴雨天气,施工方很难保证回填质量,而设计方未能采取有效补救措施,则会导致地坪抗裂能力降低,达不到设计要求。 1.3 材料问题 1.3.1 水泥问题水泥是混凝土的主要组成部分,是混凝 土强度的保证。如果采用过期水泥或不合格水泥产品,混凝

混凝土入模温度控制

石家庄至武汉客运专线新建铁路工程 (河南段2标段) 混凝土入模温度控制措施 编制: 审核: 审批: 中铁二十局集团石武客专河南段项目部一分部

2008年11月

混凝土入模温度控制措施 黄河公铁两用桥北引桥是我分部施工的一个重点工程。施工中对于混凝土的耐久性指标要求比较高,每一个施工环节都应严格控制,以确保混凝土能够真正达到耐久性要求。结合我单位施工实际情况,本着既要保证混凝土施工质量,又要保证工期顺利进行的原则,针对混凝土入模温度这一要求,特制定以下措施: 一、夏期施工中对砼入模温度的控制 当昼夜平均气温(当地时间6时、14时及21时室外气温的平均值)高于30℃时,即已进入夏期施工,混凝土入模温度不宜高于30℃ 1、采用砼搅拌运输车运输砼。运输车储运罐装混凝土前用水冲洗降温,并在砼搅拌运输车罐顶设置棉纱降温刷,及时浇水使降温刷保持湿润,在罐车行走转动过程中,使罐车周边湿润,蒸发水汽降低温度,并尽量缩短运输时间。运输混凝土过程中宜慢速搅拌混凝土,不得在运输过程加水搅拌。 2、夏期浇筑砼前,要做好充分准备,备足施工机械,创造好连续浇筑的条件。砼从搅拌机到入模的时间及浇筑时间要尽量缩短。 3、施工时间段的选择 环境温度势必会增加用于拌制混凝土的各种材料的温度。根据夏季天气的特征,通过试验室测得睛天时不同时间段的平均温度: 8:00温度为27.5℃,14:00温度为33.7℃,17:00温度为28.7℃,19:00温度为27.3℃,进入夜间后温度会逐渐降低。所以,施工开盘时间选定在19:00以后,避开高温时段。 4、原材料的温度控制

(1)、水泥和粉煤灰的温度控制 优先采用进场时间较长的水泥和粉煤灰进行拌制混凝土,尽可能降低水泥及粉煤灰在生产过程中存留的余热。通过测温得出新进材料与放置24小时以上的材料相比温度平均差15℃,2天后温度基本稳定。通过对温度相对稳定的水泥进行测试得出平均温度为 38.6℃。粉煤灰温度为33.6℃。所以采用温度较稳定的胶凝材料是控制混凝土温度最为关键的一点。 (2)、集料的温度控制 从混凝土配合比中可以看出,一方混凝土中粗细骨料用量将近占总量80%,所以控制好粗细骨料的温度是控制混凝土入模温度的基础。通过对粗细骨料的温度测试得出:8:00为27.3℃,14:00为33.2℃,17:00为28.9℃,19:00为27.3℃,根据以上不同时段对集料温度测试结果,综合考虑,降低骨料温度可以采用以下措施: A、采用通风良好的遮阳大棚料场,避免太阳直射达到降温目的。 B、避开白天高温时段,在晚19:00以后环境温度逐渐下降之后和早上7:00以前环境温度还未上升之前这一时间段内进行施工。 C、应急时可采用对骨料洒水降温的方法进行降温。(注意含水率的测试,以保证混凝土配合比的质量) (3)、水温控制 水温控制是降低混凝土入模温度的最佳方法。通过对刚抽出的地下水进行测温,测得温度为18℃(必要时可采用冰块降温),采用刚抽出的地下水用于砼拌制混凝土可以满足降温要求。 (4)、外加剂温度控制 外加剂掺量较少,并且,外加剂罐放置在拌和楼下通风阴凉处,所以对混凝土的温度影响很小,故不考虑其温度对混凝土入模温度的影响。

混凝土防裂技术措施(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 混凝土防裂技术措施(2021版)

混凝土防裂技术措施(2021版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 本标段混凝土以常态混凝土为主,由于工期要求,进水塔等大体积混凝土结构需在高温季节浇筑,结合工程实际情况和,对混凝土的具体施工浇筑过程、施工分层方法、养护过程、拆模时间、施工间歇时间、层间施工间歇时间、养护方法、表面保温方法(保温材料材质、保温材料厚度、复合保温方法、保温时间、保温拆除时间)制定了具体的施工方案。 混凝土产生裂缝的原因有许多种,实践证明,大体积混凝土产生裂缝的主要原因为收缩裂缝。大体积混凝土浇筑后,由于水泥在水化凝结过程中,要散发大量的水化热,因而使混凝土体积膨胀,此时,混凝土产生较小压应力。待达到最高温度以后,随着热量向外部介质散发,温度将由最高温度降至一全稳定温度或冷稳定温度场,将产生一个温差。如果浇筑温度大于稳定温度(准稳定温度场),这个温差就更大。这时,混凝土因为降温,将发生体积收缩,由于受周围约束将出现拉应力,当产生的拉应力大于此时混凝土材料本身所能提供的

混凝土温控的措施1

1绪论 实习任务:根据所学内容和相关专业知识,简述大体积混凝土温度应力 的概念以及应力作用下产生的裂缝。详述大体积混凝土温度控制的任务和作用, 以及在不同施工阶段解释说明温控的具体措施。 实习的作用:全面检验和巩固课程学习效果,可以利用所学理论解决实 际水利工程问题的能力,增强我们的专业素质,提高自我的学习能力,和实践 能力。 2温度应力 2.1温度应力的概念:由于温度变化,结构或构件产生伸或缩,而当伸缩受到限制时,结构或构件内部便产生应力,称为温度应力。 2.2产生的原因:在凝固、冷却的过程中因为产品结构、环境等因素造成各个位置散热条件不会完全相同,热胀冷缩而形成的互相之间因为收缩而产生的作用力。 3温度裂缝 3.1裂缝的类型:(1)表面裂缝(2)贯穿裂缝和深沉裂缝 3.2裂缝的部位 (1)表面裂缝:多发生在浇筑块侧壁,方向不定,数量较多。 (2)贯穿裂缝和深沉裂缝:这种裂缝自基础面向上开展,严重时可能贯穿整个坝段。此种裂缝切割的深度达3~5m,宽度达1~3mm,且多垂直基面向上延伸,既能平行纵缝贯穿,也能沿流向贯穿。 3.3温度裂缝的原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果, 一方面是 混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 (1)表面裂缝:混凝土浇筑后,其内部由于水化热温升,体积膨胀,如遇寒潮,表层降温收缩。内胀外缩,在混凝土内部产生压应力,表层产生拉应力。在混凝土内处于内外温度平均值的点应力为零,高于平均值的点承受压应力,低于平均值的点承受拉应

混凝土防裂控制措施(最新)

混凝土防裂控制措施 混凝土开裂后,其性能与原状混凝土性能相差很大,尤其是对耐久性的影响更大,而混凝土渗透反过来又会加速和促使混凝土的进一步恶化,严重影响结构的长期安全和耐久运行。而裂缝大多又是在早期产生的,因此,探讨裂缝产生的原因和防止裂缝的出现就显得格外重要。 混凝土产生裂缝风险的原因很多,归纳起来主要包括三类:结构设计不合理引起的裂缝;混凝土自身性能(力学、变形及热学性能)引起的裂缝;外部环境因素和约束条件引起的裂缝,三者既相互关联又相互影响。 那么混凝土防裂控制措施有哪些呢? 1、从不同的方面选择混凝土原材料 (1)掺和料的选择。为了更好地改善混凝土的抗裂性能,在混凝土的掺和料中优先选用I级或Ⅱ级粉煤灰。如果使用硅灰作为掺和料,其掺量不宜大于3%,并应采取可靠的防治裂缝的技术措施。 (2)水泥的选择。现在个体企业增多,小厂水泥也不乏存在。为了保证质量,应选择既能保证产品质量稳定、又具有大批生产能力的大型水泥厂生产的水泥。其品种优先选择的顺序是低碱水泥、硅酸盐水泥、普通硅酸盐水泥。对于不同用途、不同环境所使用的水泥,应根据设计要求来决定,例如浇筑大体积混凝土就应选择低热水泥。

(3)外加剂的选择。外加剂的选择与气温的高低、场地的远近以及混凝土运用的地方等有关系。选择的外加剂一定要与水泥的化学性能相适应,如选择多种外加剂时,要看各种外加剂之间的化学性能是否相匹配。总之,一定要选择合适的外加剂,否则适得其反。 (4)细骨料的选择。混凝土中细骨料的选择即为砂的选择,一定要选择泥量、泥块含量符合要求以及颗粒级配良好的细骨料。当细骨料级配较差时,应用几种粒径不同的细骨料进行颗粒级配,从而达到良好的级配效果。对于抗裂要求较高的混凝土,宜选取含泥量小于1.5%、含泥块量小于0.5%的中砂。 (5)粗骨料的选择。粗骨料的选择即为碎石等骨料的选择,要根据设计要求来决定。无论选择何种骨料,都应选择粒形好、空隙率小、针片状含量少、级配良好的粗骨料。 (6)经过有关技术人员的多次试验,结果表明:在混凝土中掺入一定量的纤维和(或)阻裂的有机聚合物(如聚丙希、尼龙类纤维等),可提高混凝土的抗裂性能。 2、混凝土配合比主要参数的选择 (1)水泥用量。在我们的潜意识里认为水泥加得越多越好,其实并非如此。在配置混凝土时,宜尽量降低水泥用量,只要其满足混凝土设计强度即可。通常水泥含量应符合这样一个范围:普通强度等级的混凝土水泥用量为150kg/m3-450kg/m3,高强混凝土中水泥及掺和料总量应不大于550kg/m3。

混凝土温度控制措施

混凝土温度控制措施 一、混凝土工程执行的温控标准 (1)混凝土温度控制应遵循《水工混凝土施工规范》(DL/T5144-2001)中的有关规定; (2)具体温控措施见设计方的《大坝混凝土施工技术要求》; (3)趾板、面板强约束区混凝土在低温季节浇筑; (4)趾板混凝土最高温度不超过33~35?C,面板混凝土最高温度不超过31~33?C,基础约束区稳定温度16.5?C。 二、混凝土温控措施 (1)合理安排混凝土施工时段 趾板、面板及基础强约束区的混凝土在低温季节浇筑。 (2)优化配合比设计 严格选择优质原材料,按设计推荐的配合比进行配合比试验,确定最佳配合比。掺用高效优质复合型外加剂、I级优质粉煤灰,提高混凝土的增强、抗裂性能。 (3)严格按设计要求和施工规范分缝分块分层 趾板沿长度方向设施工缝,施工缝间距不超过25~30m;在趾板转折点、地质缺陷处或基岩岩性发生变化处设置伸缩缝;面板混凝土分缝分块严格按施工图纸要求进行。 (4)加强养护与通水散热。 在混凝土表面覆盖绒毛毡保温被或双层草袋进行保温,防止气温骤升时表面水份过分挥发或气温骤降等产生表面干缩裂缝。夏季浇筑混凝土时,在仓面内采取喷雾、隔热、防晒等措施,运输设备设置遮阳棚等。混凝土表面连续喷(洒)

水养护。对一般浇筑层连续养护至上一层施工;对面板和趾板混凝土,保湿养护至大坝蓄水。 (5)加强施工组织管理,确保现场施工顺利进行 在混凝土浇筑前,作好各项准备工作,机械设备、材料供应、施工人员等均安排充足,做到“人停机不停”。在滑模上部设置防雨棚,若温度较高,可起到遮阳防晒的作用;若遇气温较低,可起到保温作用,必要时在棚内设置碘钨灯升温。若浇筑混凝土期间温度较高,则尽量利用夜间施工,避开中午高温时段。

混凝土温控措施

1.8混凝土温控防裂措施 1.8.1混凝土温控要求 浇筑大体积混凝土应在一天中气温较低时进行。混凝土的浇筑温度(振捣后 50~100mm 深处的温度)不宜高于28℃。在炎热季节浇筑大体积混凝土时,宜将 混凝土原材料进行遮盖,避免日光爆晒。根据原料温度推算拌合后混凝土的温度 可按下式进行: max 0()t T T T ξ=+ (1) 式中: ξ —不同浇筑块厚度、不同龄期时的降温系数,可由表查得 0T —混凝土的浇筑入模温度 max T —混凝土内部最高温度 ()t T —在t 龄期时混凝土的绝热温升 ()(1)mt c t m Q T e C ρ -=- (2) 式中: c m —每立方米混凝土水泥用量 Q —每千克水泥水化热量 C —混凝土的比热,一般取0.96J/Kg ·K ρ —混凝土的质量密度,取2400Kg/m 3 e ―常数,为2.718 m ―与水泥品种,浇筑时与温度有关的经验系数,取0.3 t ―混凝土浇筑后至计算时的天数 1.8.2混凝土温控措施 为防止大体积混凝土温差过大产生温度裂缝,从而保证混凝土的质量,在混 凝土施工中,我们主要采取了以下措施: 1、采用低水化热水泥 施工中选用了水化热较低的矿渣硅酸盐水泥,同时,为减少混凝土配合比中

的水泥用量,在确保混凝土强度及坍落度的条件下,适当掺入了粉煤灰及外加剂,以降低混凝土的水化热温升,控制最终水化热。 2、控制混凝土入模温度 混凝土的入模温度指混凝土运输至浇筑时的温度,降低混凝土的入模温度措施是用冷水对粗骨料进行冲洗,选择在夜间浇筑混凝土,混凝土入模温度控制在了24℃以内。 3、控制混凝土分层浇筑厚度 尽量减少浇筑层厚度,以便加快混凝土散热速度。施工采用汽车泵泵送入模时候,混凝土浇筑时严格控制分层厚度为每30cm一层,自一侧向另一侧顺序浇筑,保证在下层混凝土初凝前浇筑完成上层混凝土。分层厚度利用钢筋或其它标尺做参照物,派专人进行负责,一个下料点到位后,移至下一个下料点,依次进行,混凝土布料完成且平整后开始振捣。 4、加强混凝土的振捣质量 浇筑过程中配备6条插入式振动棒,分区负责保证振捣质量,尤其是在钢筋密集处,必须保证其密实性和均匀性,防止出现过振、漏振现象。 混凝土浇筑到设计标高后,要除去表面浮浆,安排专人找平。为防止混凝土表面出现收缩裂缝,用木抹进行二次收浆找平。 5、及时保温养护 (1)在遇气温骤降的天气或寒冷季节浇筑大体积混凝土后,应注意覆盖保温,加强养护。 (2)保温养护采用在混凝土表面蓄水养护的方法,养护安排专人进行,个别蓄水养护不到的部位给予覆盖并经常洒水,保持混凝土表面湿润不失水。6、做好混凝土温度监测 对于重要结构在混凝土内部埋设电阻式温度计测量混凝土温度,全面掌握混凝土内部温度,出现较大温差时及时采取降温措施。每100m2仓面面积应不少于1个测点,每一浇筑层应不少于3个测点。测点应均匀分布在浇筑层面上时、浇筑块内部的温度观测,除按设计规定进行外,应根据混凝土温度控制的需要,补充埋设仪器进行观测。 1.8.3混凝土裂缝、漏浆处理

超厚大体积混凝土防裂措施 建筑组织设计施工项目方案建筑方案

第一卷超厚大体积混凝土防裂措施 武汉国际贸易中心大厦为一幢地上50层,地下2层,建筑面积12.5万m2的超高层大型综合写字楼,结构形式为内筒外框密肋梁楼板结构,位于汉口建设大道与新华路交汇处西南侧,合同工期仅26个月。 本工程主楼承台底板为超厚大体积混凝土,底板厚分别为3.1m、3.7m、4.8m,总体积1.1万m3一次性浇筑。要确保大体积混凝土的质量,除应满足强度等级、抗渗要求及内实外光等混凝土的常规要求外,关键在于严格控制混凝土在硬化过程中由于水化热而引起的内外温差,防止内外温差过大而导致混凝土裂缝,为此采取了如下措施。 第1章合理确定配合比 主楼底板设计为C40、S8混凝土,不仅要满足强度要求,而且要满足抗渗要求,更关键的是大体积混凝土各层间温度差产生的应力(最大温度收缩应力)应小于同一时间混凝土所具备的抗拉强度。根据上述要求,抓住如何降低水化热这个关键,进行了大量的试验工作,选用不同的水泥、掺合料、外加剂进行了试验。 根据试验结果,并考虑到每立方米混凝土的水泥用量,每增减10kg,其水化热将使混凝土的温度相应升降1℃,水泥的用量可尽量减少,通过多方考虑研究最后决定采取如表3-2-1所示的配合比。 注:采用425号矿渣水泥,中租砂,5~30mm碎石,拥落度为l6~18cm.CAS掺料系硫酸铝钙型微膨胀剂,又名钙矶石。CAS掺入混凝土中具有如下特点: (1)改善混凝土的孔结构,使总孔隙率减小,毛细孔径减小,从而提高混凝土的抗渗强度;(2)改善混凝土的应力状态,膨胀能转变为自应力,使混凝土处于受压状态,从而提高混凝土的抗裂能力;(3)CAS取代一部分水泥后还能提高混凝土的强度(特别是矿渣水泥),在保持混凝土强度不变的情况下,可节省水泥从而大幅度降低混凝土的绝对温度,减少温度裂纹的危害;(4)CAS 分快凝型和缓凝型两种,缓凝型能降低水泥水化热的峰值,并推迟它的到来时间,符合大体积混凝土技术要求。 从使用效果看,掺入CAS还能改善混凝土拌合物的和易性、可靠性,不离析及保水性能良好等优点。

混凝土冬季施工防裂控制措施

混凝土冬季施工防裂控制措施 发表时间:2015-01-26T13:55:49.803Z 来源:《防护工程》2014年第11期供稿作者:刘晓辉 [导读] 变形作用各种变形作用(温度、收缩、不匀沉降) 是引起大体积混凝土产生裂缝的主要原因。 刘晓辉中铁九局集团有限公司辽宁省 110051 摘要:混凝土的冬季施工质量控制问题,是一项关键施工技术。本文结合工程实例,阐述混凝土冬季施工在原材料选择、温度控制以及施工组织等方面的防裂控制措施。 关键词:混凝土;冬季施工;防裂控制措施 1、工程概况 沈阳市和平区地王国际花园某高层楼,属于商住两用楼,共28层,1-5层是商业网点,5层以上是住宅,建筑总高度约90 m ,总建筑面积48000 m2 ,基础由混凝土灌注桩及钢筋混凝土筏板梁组成。筏板混凝土厚度分别为1.2、1.5、1.8、2.4、2.8 m厚 ,混凝土设计强度为C45,抗渗等级要求P8,混凝土总方量约4500 m3 ,按施工技术规范标准规定厚度属于大体积混凝土结构。混凝土浇筑时间为07年11月19日至11月25日,室外自然气温为- 10~1 ℃,属于冬季施工。因此,需要制定混凝土冬季施工技术方案,防止混凝土发生温度收缩裂缝。 2、混凝土产生裂缝的原因分析 大体积混凝土在施工阶段产生温度裂缝的主要原因是:一方面由于混凝土内外温度差过大而产生的温度应力和温度变形;另一方面是结构物内外的约束要阻止这种变形,一旦温度应力超过混凝土所能承受的抗拉强度时,即产生裂缝。 2.1、变形作用各种变形作用(温度、收缩、不匀沉降) 是引起大体积混凝土产生裂缝的主要原因。它们引起的应力超过了混凝土的抗拉强度,或者认为它们引起的拉应力超过了混凝土极限拉伸时,混凝土就会开裂。混凝土表面裂纹容易渗透有害介质,腐蚀钢筋和加速混凝土碳化,不利于结构的耐久性。 2.2、约束变形如果只有变形而没有约束,混凝土也不会开裂。大体积混凝土基础受到的约束有内约束和外约束两种。内约束是混凝土内部各质点之间的相互影响、相互制约,如混凝土内外产生温差时,内部温度高混凝土要膨胀,外部温度低混凝土要收缩;内外相互制约,使外表面混凝土产生拉应力,此拉应力如果过大,就会使混凝土开裂。外约束是指另一结构物或物体引起的约束,如果混凝土在降温或收缩变形过程中,受到地基或结构边界条件的影响, 也会产生拉应力, 严重时可导致开裂。 3、防止温度收缩裂缝的技术措施 3.1、控制混凝土配合比混凝土裂纹主要是温升应力引起的。根据混凝土热工计算得出混凝土水化热引起的结构内部最高温度可达60 ℃左右。为了控制混凝土温升,优先选用低水化热品种水泥。优化混凝土施工配合比,最大限度降低水泥用量。本工程选用矿渣硅酸盐42.5#水泥。泵送混凝土的含砂率控制在40 %~44 %之间,细骨料选用中粗砂,含泥量不超过3 %。 粗骨料选择均匀坚固、含泥量小、5~30 mm级配优良碎石,含泥量小于1 % ,针片状含量小于15 %。选用大粒径骨料,可减少用水量相应减少混凝土的收缩和沁水现象,同时也可减少水泥用量,降低水化热。在混凝土中掺入适量的粉煤灰可代替部分水泥,降低水化热量,增加混凝土的和易性和保水性,从而提高混凝土的可泵性。掺入高效泵送减水剂SP402 ,提高混凝土的和易性,同时减少拌合水量,减低混凝土的收缩行。 3.2、混凝土的浇注本工程采用商品混凝土,现场设置两台混凝土输送泵,配6~7 辆混凝土运输罐车,每辆车6 m3 ,每车在运输时间约40 min ,混凝土采用缓凝混凝土,初凝时间设计为5h 。筏板板体部分最大浇筑速度为50m3/ h ,平均为37.5 m3/ h ,每天浇筑900 m3 。混凝土的运输根据现场使用情况由专人负责指挥,及时调整。根据现场实际,采用由远到近,斜面分层一次浇筑,分层厚度400~500 mm ,混凝土倾斜角度约为1∶5。混凝土浇筑过程中,两台输送泵并列推进,每台泵最大作业宽度15 m。现场值班人员根据实际情况记录每处混凝土的浇捣时间,及时安排第二次混凝土浇捣时间,避免出现施工缝。考虑混凝土冬季施工要求,混凝土用热水搅拌,保证出罐温度为8 ~10 ℃,入模温度不低于5℃。 3.3、温度控制 3.3.1、测温点布设大体积混凝土设置温度跟踪测量点,准确测量温度变化情况。根据结构形式、浇筑顺序及结构特点在不同区域布置测温点。温度监测点布置见图1所示。浇筑较早的地区布点,可较早地掌握该工程的混凝土温度变化规律,并能及时地指挥后续施工和养护工作。 3.3.2、混凝土保温养护及监控措施混凝土冬季施工最关键的防护措施是保温防冻,必要时采取供暖保温。本工程保温措施采用两层塑料布夹两层草垫子,外罩聚乙烯棚布。 由于水化热的作用,在混凝土浇筑后的3~5 d结构内部温升达到高峰值阶段。在初凝阶段,紧贴混凝土表面覆盖一层塑料薄膜,防止混凝土水分蒸发,以实现混凝土的自养护,外侧加盖双层草袋及一层塑料薄膜,确保混凝土结构表层最大温差不超过25 ℃。根据混凝土测温数据以及天气气温变化情况及时考虑防冻防寒措施。 混凝土结构的中心部位由于热量聚积,且最不容易散热,温度最高。混凝土表面散热快,温度最低。测温点的布置要能够充分反映结构温度场的变化情况。结构竖向布置3层测温点,即混凝土上表面、混凝土中心(1/ 2 厚度处)和距混凝土底面20 cm 处。 混凝土内部温度变化比较缓慢, 升温最快5 ℃/ h ,降温速度更慢,一般降温速度为4~5 ℃/ d。在混凝土内部升温阶段每2 h 测报一次温度,恒温阶段每4 h 测报一次温度,降温阶段每6 h 测报一次温度。

大体积混凝土防裂措施

大体积混凝土裂缝的可能原因 1.1.1裂缝的类型和形成原因大体积混凝土墩台身或基础等结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素如下: 收缩裂缝: 混凝土的收缩引起收缩裂缝。收缩的主要影响因素是混凝土中的用水量和水泥用量,混凝土中的用水量和水泥用量越高,混凝土的收缩就越大。选用水泥品种的不同,干缩、收缩的量也不同。收缩量较小的水泥为中低热水泥和粉煤灰水泥。 混凝土的逐渐散热和硬化过程引起的收缩,会产生很大的收缩应力,如果产生的收缩应力超过当时的混凝土极限抗拉强度,就会在混凝土中产生收缩裂缝。 人们对收缩给予了很大的关注,但引人关注的并不是收缩本身,而是由于它会引起开裂。混凝土的收缩现象有好几种,比较熟悉的是干燥收缩和温度收缩,这里着重介绍的是自身收缩,还顺便提及塑性收缩问题。自身收缩与干缩一样,是由于水的迁移而引起。但它不是由于水向外蒸发散失,而是因为水泥水化时消耗水分造成凝胶孔的液面下降,形成弯月面,产生所谓的自干燥作用,混凝土体的相对湿度降低,体积减小。水灰比的变化对干燥收缩和自身收缩的影响正相反,即当混凝土的水灰比降低时干燥收缩减小,而自身收缩增大。如当水灰比大于时,其自干燥作用和自身收缩与干缩相比小得可以忽略不计;但是当水灰比小于时,体内相对湿度会很快降低到80%以下,自身收缩与干缩则接近各占一半。 自身收缩中发生于混凝土拌合后的初龄期,因为在这以后,由于体内的自干燥作用,相对湿度降低,水化就基本上终止了。换句话说,在模板拆除之前,混凝土的自身收缩大部分已经产生,甚至已经完成,而不像干燥收缩,除了未覆盖且暴露面很大的地面以外,许多构件的干缩都发生在拆模以后,因此只要覆盖了表面,就认为混凝土不发生干缩。

混凝土防裂控制措施

9.1.6.3混凝土防裂控制措施 降低水泥水化热和变形,控制混凝土的水化升温。 降低混凝土温度差,控制混凝土内部和表面的温度的差值。 加强施工中的温度控制,延缓降温速率、减少混凝土收缩。 改善约束条件,削减温度应力。通过后浇带的设置,放松了约束程度,减少了每次浇筑长度的蓄热量,防止水化热的积聚,减少温度应力。 提高混凝土的极限拉伸强度。 选择良好级配的粗骨料,严格控制其含泥量,加强混凝土的振捣,提高混凝土密实度和抗拉强度,减小收缩变形,保证施工质量。 浇筑后及时排除表面积水,加强早期养护,提高混凝土早期或相应龄期的抗拉强度和弹性模量。 9.1.6.4减少混凝土水化热的方法或措施 选用低水化热或中水化热的水泥品种配制混凝土。 充分利用混凝土的后期强度,减少每立方米混凝土中水泥量。根据试验每增减10Kg水泥,其水化热将使混凝土的温度相应升降1℃。 使用粗骨料,尽量选用粒径较大、级配良好的粗细骨料;控制砂石含泥量;掺加粉煤灰等掺合料或掺加相应的减少剂、缓凝剂,改善和易性、降低水灰化,以达到减少水泥用量、降低水化热的目的。 在拌合混凝土时,还可掺入适量的微膨胀剂或膨胀水泥,使混凝土得到补偿收缩,减少混凝土的温度应力。 9.1.6.5控制混凝土温差的方法 在混凝土入模时,采取措施改善和加强模内的通风,加速模内热量的散发。 混凝土泌水处理和表面处理:及时排除混凝土在振捣过程中产生的泌水,消除泌水对混凝土层间粘结能力的影响,提高混凝土的密实度及抗裂性能;浇筑混凝土的收头处理也是减少表面裂缝的重要措施,因此,在混凝土浇筑后,先初步按标高用长刮尺刮平,在初凝前再由抹灰工人逐步压光。 在混凝土浇筑之后,做好混凝土的保温保湿养护,缓缓降温,充分发挥徐变特性;减低温度应力,夏季应注意避免曝晒,注意保湿,温度较低时采取措施保温覆盖,以免发生急剧的温度梯度发生。 采取长时间的养护,规定合理的拆模时间,延缓降温时间和速度,充分发挥

超厚大体积混凝土防裂措施[详细]

超厚大体积混凝土防裂措施 武汉国际贸易中心大厦为一幢地上50层,地下2层,建筑面积12.5万米2的超高层大型综合写字楼,结构形式为内筒外框密肋梁楼板结构,位于汉口建设大道与新华路交汇处西南侧,合同工期仅26个月. 本工程主楼承台底板为超厚大体积混凝土,底板厚分别为3.1米、3.7米、4.8米,总体积1.1万米3一次性浇筑.要确保大体积混凝土的质量,除应满足强度等级、抗渗要求及内实外光等混凝土的常规要求外,关键在于严格控制混凝土在硬化过程中由于水化热而引起的内外温差,防止内外温差过大而导致混凝土裂缝,为此采取了如下措施. 第1章合理确定配合比 主楼底板设计为C40、S8混凝土,不仅要满足强度要求,而且要满足抗渗要求,更关键的是大体积混凝土各层间温度差产生的应力(最大温度收缩应力)应小于同一时间混凝土所具备的抗拉强度 .根据上述要求,抓住如何降低水化热这个关键,进行了大量的试验工作,选用不同的水泥、掺合料、外加剂进行了试验. 根据试验结果,并考虑到每立方米混凝土的水泥用量,每增减10千克,其水化热将使混凝土的温度相应升降1℃,水泥的用量可尽量减少,通过多方考虑研究最后决定采取如表3-2-1所示的配合比. 注:采用425号矿渣水泥,中租砂,5~30米米碎石,拥落度为l6~18厘米.CAS掺料系硫酸铝钙型微膨胀剂,又名钙矶石.CAS掺入混凝土中具有如下特点: (1)改善混凝土的孔结构,使总孔隙率减小 ,毛细孔径减小 ,从而提高混凝土的抗渗强度 ; (2)改善混凝土的应力状态,膨胀能转变为自应力,使混凝土处于受压状态,从而提高混凝土的抗裂能力;(3)CAS取代一部分水泥后还能提高混凝土的强度 (特别是矿渣水泥),在保持混凝土强度不变的情况下,可节省水泥从而大幅度降低混凝土的绝对温度 ,减少温度裂纹的危害;(4) CAS分快凝型和缓凝型两种,缓凝型能降低水泥水化热的峰值,并推迟它的到来时间,符合大体积混凝土技术要求. 从使用效果看,掺入CAS还能改善混凝土拌合物的和易性、可靠性,不离析及保水性能良好等优点. 大体积底板的混凝土施工,既要满足强度及抗渗要求又要使混凝土在硬化过程中所产生的水化热尽可能小 ,在满足前者的前提下,后者就成了大体积混凝土施工的主要矛盾.按常规都采用普通水泥加UEA,但通过试验发现普通水泥用量过大 ,内部水化热较高(达94℃),不利于温控和养护;而425号矿渣水泥不仅可以满足强度和抗渗要求,内部水化热也较低(只有76℃),而且水泥标号低,用量也较少,有利于大体积混凝土的施工.为此决定采用425号矿渣水泥.因水泥标号低,用量少,相应所产生的水化热就小 ,从而降低了温度差应力,避免了混凝土裂缝的产生. 对其他材料都按规范要求进行严格控制.对所确定的配合比还进行了抗渗试验,在抗渗试验中,4个试样未出现渗水时的最大水压力为1米Pa,满足抗渗要求. 第2章混凝土浇筑量计算 由计算得知,为防止上、下、左、右、前、后各浇筑层间搭接时间差因超出混凝土初凝时间而

相关主题
文本预览
相关文档 最新文档