当前位置:文档之家› 法拉第电磁感应定律易错题复习题附答案

法拉第电磁感应定律易错题复习题附答案

法拉第电磁感应定律易错题复习题附答案

一、高中物理解题方法:法拉第电磁感应定律

1.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小;

(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;

(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.

【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)

203

Q J

【解析】 【分析】

t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】

(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ ) 根据P =I 2 R PQ 代入数据解得:B =2T

(2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s

感应电动势为:E2=BLv2=12 V

根据闭合电路欧姆定律:2

2

4

MN PQ

E

I A

R R

==

+

安培力为:F安=BI2L=8 N

规定沿斜面向上为正方向,对PQ进行受力分析可得:

F2+F安cos 37°=mg sin 37°

代入数据得:F2=-5.2 N(负号说明力的方向沿斜面向下)

(3)MN棒做变加速直线运动,当x=5 m时,v=0.4x=0.4×5 m/s=2 m/s

因为速度v与位移x成正比,所以电流I、安培力也与位移x成正比,

安培力做功:

120

23

MN PQ

BLv

W BL x J

R R

=-⋅⋅=-

+

【点睛】

本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.

2.如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L=1 m,底部接入一阻值为R=0.4 Ω的定值电阻,上端开口.垂直斜面向上的匀强磁场的磁感应强度B=2 T.一质量为m=0.5 kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1 Ω,电路中其余电阻不计.现用一质量为M =2.86 kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放M,当M下落高度h=2.0 m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好).不计空气阻力,sin 53°=0.8,cos 53°=0.6,取g=10 m/s2.求:

(1)ab棒沿斜面向上运动的最大速度v m;

(2)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热Q R和流过电阻R的总电荷量q.

【答案】(1)3m/s.

(2)26.3J,8C

【解析】

【分析】

【详解】

(1)由题意知,由静止释放M后,ab棒在绳拉力T、重力mg、安培力F和轨道支持力N 及摩擦力f共同作用下做沿轨道向上做加速度逐渐减小的加速运动直至匀速运动,当达到

最大速度时,由平衡条件有: T ﹣mgsin θ﹣F ﹣f =0…① N ﹣mgcos θ=0…② T =Mg …③

又由摩擦力公式得 f =μN …④ ab 所受的安培力 F =BIL …⑤ 回路中感应电流 I m BLv R r

=

+⑥

联解①②③④⑤⑥并代入数据得: 最大速度 v m =3m/s …⑦

(2)由能量守恒定律知,系统的总能量守恒,即系统减少的重力势能等于系统增加的动能、焦耳热及摩擦而转化的内能之和,有: Mgh ﹣mghsin θ()2

12

m

M m v =

++Q+fh …⑧ 电阻R 产生的焦耳热 Q R R

R r

=

+Q …⑨ 根据法拉第电磁感应定律和闭合电路欧姆定律有: 流过电阻R 的总电荷量 q I =△t …⑩ 电流的平均值 E I R r

=

+⑪

感应电动势的平均值 E t

Φ=

磁通量的变化量△Φ=B •(Lh )…⑬

联解⑧⑨⑩⑪⑫⑬并代入数据得:Q R =26.3J ,q =8C

3.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距lm ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.求:

(1)金属棒沿导轨由静止开始下滑时的加速度大小;

(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8W ,求该速度的大小; (3)在上问中,若R =2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向. (g =10rn /s 2,sin37°=0.6, cos37°=0.8)

【答案】(1)4m /s 2(2)10m/s (3)0.4T ,方向垂直导轨平面向上

【解析】试题分析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律:

由①式解得=10×(O.6-0.25×0.8)m/s2=4m/s2②

(2)设金属棒运动达到稳定时,速度为,所受安培力为F,棒在沿导轨方向受力平衡

此时金属棒克服安培力做功的功率等于电路中电阻消耗的电功率:

由③、④两式解得

(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B

由⑥、⑦两式解得⑧

磁场方向垂直导轨平面向上

考点:导体切割磁感线时的感应电动势;牛顿第二定律

【名师点睛】本题主要考查了导体切割磁感线时的感应电动势、牛顿第二定律。属于中等难度的题目,解这类问题的突破口为正确分析安培力的变化,根据运动状态列方程求解。开始下滑时,速度为零,无感应电流产生,因此不受安培力,根据牛顿第二定律可直接求解加速度的大小;金属棒下滑速度达到稳定时,金属棒所受合外力为零,根据平衡条件求出安培力。

视频

4.如图甲所示,光滑的平行金属导轨水平放置,导轨间距L=1 m,左侧接一阻值为R=0.5 Ω的电阻.在MN与PQ之间存在垂直轨道平面的有界匀强磁场,磁场宽度d=1 m.一质量m=1 kg的金属棒a b置于导轨上,与导轨垂直且接触良好,不计导轨和金属棒的电阻.金属棒ab受水平力F的作用从磁场的左边界MN由静止开始运动,其中,F与x(x为金属棒距MN的距离)的关系如图乙所示.通过电压传感器测得电阻R两端电压随时间均匀增大.则:

(1)金属棒刚开始运动时的加速度为多少? (2)磁感应强度B 的大小为多少?

(3)若某时刻撤去外力F 后金属棒的速度v 随位移s 的变化规律满足v =v 0﹣

22

B L mR

s (v 0为撤去外力时的速度,s 为撤去外力F 后的位移),且棒运动到PQ 处时恰好静止,则金属棒从MN 运动到PQ 的整个过程中通过左侧电阻R 的电荷量为多少?外力F 作用的时间为多少?

【答案】(1)a=0.4m/s 2;(2)B=0.5T ;(3)t=1s 【解析】 【详解】

解:(1)金属棒开始运动时,0x =,0v =,金属棒不受安培力作用 金属棒所受合力为:0.4N F = 由牛顿第二定律得:20.4m/s F

a m

=

= (2)由题意可知,电阻R 两端电压随时间均匀增大,即金属棒切割磁感线产生的感应电动势随时间均匀增大,由E BLv =可知,金属棒的速度v 随时间t 均匀增大,则金属棒做初速度为零的匀加速运动.加速度:20.4m/s a = 由匀变速直线运动的位移公式可得:22v ax = 由图乙所示图象可知,0.8m x =时,0.8N F =

由牛顿第二定律得:22B L v

F ma R

-=

解得:0.5T B =

(3)金属棒经过磁场的过程中,感应电动势的平均值: B S BLd

E t t t

ϕ∆∆===∆∆∆ 感应电流的平均值:E

I R

=

通过电阻R 的电荷量:q I t =∆ 解得:1C BLd

q R R

ϕ∆=

== 设外力F 的作用时间为t ,力F 作用时金属棒的位移为:2

12

x at =

撤去外力后,金属棒的速度为:022

B s v v L Rm

=-

到PQ 恰好静止,0v =

则撤去外力后金属棒运动的距离为:22

mR

at B L

s •=

则 22212B L at at d Rm

+•=

解得:1s t =

5.如图所示,导线全部为裸导线,半径为r 的圆内有垂直于平面的匀强磁场,磁感应强度为B ,一根长度大于2r 的导线MN 以速度v 在圆环上自左向右匀速滑动,电路的固定电阻为R ,其余电阻忽略不计.试求MN 从圆环的左端到右端的过程中电阻R 上的电流强度的平均值及通过的电荷量.

【答案】2Brv R π2

B r R

π

【解析】

试题分析:由于ΔΦ=B·ΔS =B·πr 2,完成这一变化所用的时间2t=r v

∆ 故2

Brv

E t π∆Φ=

=∆ 所以电阻R 上的电流强度平均值为2E Brv

I R R

π=

= 通过R 的电荷量为2

·B r q I t R

π∆==

考点:法拉第电磁感应定律;电量

6.如图1所示,固定于水平面的U 形导线框处于竖直向下、磁感应强度为B 0的匀强磁场中,导线框两平行导轨间距为l ,左端接一电动势为E 0、内阻不计的电源.一质量为m 、电阻为r 的导体棒MN 垂直导线框放置并接触良好.闭合开关S ,导体棒从静止开始运动.忽略摩擦阻力和导线框的电阻,平行轨道足够长.请分析说明导体棒MN 的运动情况,在图2中画出速度v 随时间t 变化的示意图;并推导证明导体棒达到的最大速度为

0m E v B l

=

【答案】导体棒做加速度逐渐减小的加速运动,达到最大速度时,加速度

a =0;

【解析】 【分析】

导体棒在向右运动的过程中会切割磁感线产生感应电动势,与回路中的电源形成闭合回路,根据闭合电路的欧姆定律求得电流,结合牛顿第二定律判断出速度的变化; 【详解】

解:闭合开关s 后,线框与导体棒组成的回路中产生电流,导体棒受到安培力开始加速运动,假设某一时刻的速度为v ,此时导体棒切割产生的感应电动势为E Blv '= 初始阶段0E E '< 回路中的电流为:000E E E B lv

I r r

-'-=

= 导体棒受到的安培力为000·E blv

F B Il B l r

-==,方向水平向右 因此,导体棒的加速度为000·B l E B lv F a m m r

-=

=,方向水平向右,即与v 方向相同,随速度的增加,加速度减小,但仍与v 同方向,因此,导体棒做加速度逐渐减小的加速运动,达到最大速度时,加速度a =0,即有:0m E BIv =,解得0

0m E v B l

=

图象为

7.如图甲所示,倾角为足够长的倾斜导体轨道与光滑水平轨道平滑连接。轨道宽

,电阻忽略不计。在水平轨道平面内有水平向右的匀强磁场,倾斜轨道平面内

有垂直于倾斜轨道向下的匀强磁场,大小都为B ,现将质量

、电阻

的两个

相同导体棒ab 和cd ,垂直于轨道分别置于水平轨道上和倾斜轨道的顶端,同时由静止释放。导体cd 下滑过程中加速度a 和速度v 的关系如图乙所示。cd 棒从开始运动到最大速度的过程中流过cd 棒的电荷量

),

则:,

(1)cd和倾斜轨道之间的动摩擦因数是多少;

(2)ab和水平轨道之间的最大压力是多少;

(3)cd棒从开始运动到速度最大的过程中ab棒上产生的焦耳热是多少.

【答案】(1) ;(2) (3)

【解析】

【详解】

解:(1) 刚释放时,加速度:

对棒受力分析,由牛顿第二定律得:

解得:

(2)由图像可知,时棒速度达到最大,此时电路中的电流最大,此时速度:

,安培力达到最大,对地面压力也达到最大

对受力分析:

对棒受力分析:

解得:,

(3)安培力大小:

解得:

由:

解得:

从开始到速度最大的过程中,根据动能定理得:

产生的总焦耳热:

棒上产生的焦耳热:

8.如图所示,水平放置的平行金属导轨宽度为d=1 m,导轨间接有一个阻值为R=2 Ω的灯泡,一质量为m=1 kg的金属棒跨接在导轨之上,其电阻为r=1 Ω,且和导轨始终接触良好.整个装置放在磁感应强度为B=2 T的匀强磁场中,磁场方向垂直导轨平面向下.金属棒与导轨间的动摩擦因数为μ=0.2,现对金属棒施加一水平向右的拉力F=10 N,使金属棒从静止开始向右运动.求:

则金属棒达到的稳定速度v 是多少?此时灯泡的实际功率P 是多少? 【答案】6 m/s 32W 【解析】 由1

Bdv I R r

=

+和F 安=BId 可得221

B d v F R r

=

+安 根据平衡条件可得F =μmg +F 安 解得v 1=6 m/s 由P=I 2R 得P=32W

9.如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计).磁感应强度为B 的匀强磁场方向垂直于纸面向外.金属棒ab 的质量为m ,与导轨接触良好,不计摩擦.从静止释放后ab 保持水平而下滑.

试求:(1)金属棒ab 在下落过程中,棒中产生的感应电流的方向和ab 棒受到的安培力的方向.

(2)金属棒ab 下滑的最大速度v m .

【答案】(1)电流方向是b→a .安培力方向向上. (2)22

m mgR

v B L = 【解析】

试题分析:(1)金属棒向下切割磁场,根据右手定则,知电流方向是b→a .根据左手定则得,安培力方向向上.

(2)释放瞬间ab 只受重力,开始向下加速运动.随着速度的增大,感应电动势E 、感应电流I 、安培力F 都随之增大,加速度随之减小.当F 增大到F=mg 时,加速度变为零,这

时ab 达到最大速度.

由22m

B L v F mg R

==,

可得22m mgR v B L

考点:电磁感应中的力学问题.

10.两根足够长的光滑直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,且接有阻值为R 的电阻。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆MN 由静止沿导轨开始下滑.求:

(1)当导体棒的速度为v (未达到最大速度)时,通过MN 棒的电流大小和方向; (2)导体棒运动的最大速度. 【答案】(1) Blv

I R =,方向为从N 到M (2)22

sin m mgR v B L θ= 【解析】 【详解】

(1)当导体棒的速度为v 时,产生的感应电动势为E Blv = 回路中的电流大小为Blv

I R

=

由右手定则可知电流方向为从N 到M

(2)导体棒在磁场中运动时,所受安培力大小为

22B L v

F ILB R

== 由左手定则可知,安培力方向沿斜面向上当导体棒的加速度为零时,速度最大即:

22sin m

B L v mg R

θ=

可解得最大速度为:

22

sin m mgR v B L θ

=

答:(1)当导体棒的速度为v (未达到最大速度)时,通过MN 棒的电流大小为Blv

I R

=,方向为从N 到M ;

(2)导体棒运动的最大速度22

sin m mgR v B L θ

=

高考物理法拉第电磁感应定律(大题培优 易错 难题)附答案

一、法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==? 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==?=? (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -?===? 2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。线圈的半径为r 1。在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。导线的电阻不计,求0至t1时间内

(1)通过电阻R1上的电流大小及方向。 (2)通过电阻R1上的电荷量q。 【答案】(1) 2 02 0 3 n B r Rt π 电流由b向a通过R1(2) 2 021 3 n B r t Rt π 【解析】 【详解】 (1)由法拉第电磁感应定律得感应电动势为 2 202 2 n B r B E n n r t t t π π ?Φ? === ?? 由闭合电路的欧姆定律,得通过R1的电流大小为 2 02 33 n B r E I R Rt π == 由楞次定律知该电流由b向a通过R1。 (2)由 q I t =得在0至t1时间内通过R1的电量为: 2 021 1 3 n B r t q It Rt π == 3.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1, 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示,图线与横、纵轴的截距分别为t0和B0,导线的电阻不计.求 (1) 0~t0时间内圆形金属线圈产生的感应电动势的大小E; (2) 0~t1时间内通过电阻R1的电荷量q. 【答案】(1) 2 02 n B r E t π =(2) 2 012 3 n B t r q Rt π = 【解析】 【详解】 (1)由法拉第电磁感应定律E n t φ ? = ? 有 2 02 n B r B E n S t t π ? == ? ① (2)由题意可知总电阻R总=R+2R=3 R② 由闭合电路的欧姆定律有电阻R1中的电流 E I R = 总 ③ 0~t1时间内通过电阻R1的电荷量1 q It =④ 由①②③④式得 2 012 3 n B t r q Rt π =

法拉第电磁感应定律习题复习题附答案解析

法拉第电磁感应定律习题复习题附答案解析 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==⨯=⨯ (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -⨯===⨯ 2.如图所示,正方形单匝线框bcde 边长L =0.4 m ,每边电阻相同,总电阻R =0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P ,手持物体P 使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L =0.4 m ,磁感线方向垂直于线框所在平面向里,磁感应强度大小B =1.0 T ,磁场的下边界与线框的上边eb 相距h =1.6 m .现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb 边保持水平,刚好以v =4.0 m/s 的速度进入磁场并匀速穿过磁场区,重力加速度g =10 m/s 2,不计空气阻力.

法拉第电磁感应定律习题复习题及答案

法拉第电磁感应定律习题复习题及答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。导线的电阻不计,求0至t1时间内 (1)通过电阻R1上的电流大小及方向。 (2)通过电阻R1上的电荷量q。 【答案】(1) 2 02 3 n B r Rt π 电流由b向a通过R1(2) 2 021 3 n B r t Rt π 【解析】【详解】 (1)由法拉第电磁感应定律得感应电动势为 2 202 2 n B r B E n n r t t t π π ∆Φ∆ === ∆∆ 由闭合电路的欧姆定律,得通过R1的电流大小为 2 02 33 n B r E I R Rt π == 由楞次定律知该电流由b向a通过R1。 (2)由 q I t =得在0至t1时间内通过R1的电量为: 2 021 1 3 n B r t q It Rt π == 2.两间距为L=1m的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、磁感应强度大小B=2T的匀强磁场中.金属棒P垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m0未知),将重物由静止释放,经过一段时间,将另一根完全相同的金属棒Q垂直放在导轨上,重物立即向下做匀速直线运动,金属棒Q恰好处于静止状态.己知两金属棒的质量均为m=lkg、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度 g=l0m/s2,sin 37°=0.6,cos37°=0.8.求: (1)金属棒Q放上后,金属棒户的速度v的大小; (2)金属棒Q放上导轨之前,重物下降的加速度a的大小(结果保留两位有效数字);(3)若平行直导轨足够长,金属棒Q放上后,重物每下降h=lm时,Q棒产生的焦耳热.

法拉第电磁感应定律易错题复习题附答案

法拉第电磁感应定律易错题复习题附答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小; (2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向; (4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热. 【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4) 203 Q J 【解析】 【分析】 t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】 (1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ ) 根据P =I 2 R PQ 代入数据解得:B =2T (2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s

上海高考物理复习法拉第电磁感应定律专项易错题

上海高考物理复习法拉第电磁感应定律专项易错题 一、法拉第电磁感应定律 1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求: (1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离; (3)ab 棒开始下滑至EF 的过程中回路中产生的热量。 【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】 (1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动, a = sin mg m θ =gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得: 1Blv t ?Φ =? 2(sin )x x B l I BI g t t θ??= 解得 2sin x l t g θ = ab 棒在区域Ⅱ中做匀速直线运动的速度

易错点23 法拉第电磁感应定律 自感和涡流(原卷版) -备战2023年高考物理考试易错题

易错点23 法拉第电磁感应定律 自感和涡流 例题1. (多选)(2017·全国卷Ⅱ·20)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( ) A .磁感应强度的大小为0.5 T B .导线框运动的速度的大小为0.5 m/s C .磁感应强度的方向垂直于纸面向外 D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N 例题2. (多选)如图,光滑水平面上两虚线之间区域内存在垂直于纸面向里的范围足够大的匀强磁场,磁感应强度大小为B .边长为a 的正方形导线框PQMN 沿图示速度方向进入磁场,当对角线PM 刚进入磁场时线框的速度大小为v ,方向与磁场边界成45°角,若线框的总电阻为R ,则( ) A .PM 刚进入磁场时线框中的感应电流大小为Ba v R B .PM 刚进入磁场时线框所受安培力大小为B 2a 2v R C .PM 刚进入磁场时两端的电压为Ba v R D .PM 进入磁场后线框中的感应电流逐渐变小 一、法拉第电磁感应定律 1.法拉第电磁感应定律 (1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =n ΔΦ Δt ,其中n 为线圈的匝数.

2.磁通量Φ、磁通量的变化量ΔΦ及磁通量的变化率ΔΦ Δt 的比较: 磁通量Φ 磁通量的变化量ΔΦ 磁通量的变化率ΔΦ Δt 物理意义 某时刻穿过磁场中某个面的磁感线条数 在某一过程中,穿过某个面的磁通量的变化量 穿过某个面的磁通量变化的快慢 当B 、S 互相垂直时 的大小 Φ=BS ⊥ ΔΦ=⎩⎪⎨⎪⎧ Φ2-Φ1B ·ΔS S ·ΔB ΔΦΔt = ⎩⎪⎨⎪⎧ |Φ2-Φ1|Δt B ·ΔS Δt ΔB Δt ·S 注意 若穿过的平面中有方向相反的磁场,则不 能直接用Φ=BS .Φ为抵消以后所剩余的磁通量 开始和转过180°时平面都与磁场垂直,但穿过平面的磁通量是不同的,一正一负,ΔΦ=2BS ,而不是零 在Φ-t 图像中,可用图线的斜率表示ΔΦΔt 3.公式E =n ΔΦ Δt 的理解 感应电动势的大小E 由磁通量变化的快慢,即磁通量变化率ΔΦ Δt 决定,与磁通量Φ、磁通量的变化量ΔΦ无 关. 4.导线切割磁感线时感应电动势表达式的推导 如图所示,闭合电路一部分导线ab 处于匀强磁场中,磁感应强度为B ,ab 的长度为l ,ab 以速度v 匀速垂直切割磁感线. 则在Δt 内穿过闭合电路磁通量的变化量为ΔΦ=B ΔS =Blv Δt 根据法拉第电磁感应定律得E =ΔΦ Δt =Blv . 5.对公式的理解 (1)当B 、l 、v 三个量的方向互相垂直时,E =Blv ;当有任意两个量的方向互相平行时,导线将不切割磁感线,E =0. (2)当l 垂直B 且l 垂直v ,而v 与B 成θ角时,导线切割磁感线产生的感应电动势大小为E =Blv sin θ. (3)若导线是弯折的,或l 与v 不垂直时,E =Blv 中的l 应为导线在与v 垂直的方向上的投影长度,即有效切

法拉第电磁感应定律练习(含答案)

法拉第电磁感应定律练习 一、选择题 1、对于法拉第电磁感应定律,下面理解正确的是【】 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大D.穿过线圈的磁通量变化越快,感应电动势越大 2、关于感应电动势大小的下列说法中,正确的是【】 A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大3、如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可以在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则【】 A.ef将匀速向右运动 B.ef将往返运动 C.ef将减速向右运动,但不是匀减速 D.ef将加速向右运动 4、如图 (a)、(b)所示的电路中,电阻R和自感线圈L的电阻值都很小,且小于灯A的电阻,接通S,使电路达到稳定,灯泡A发光,则【】 A.在电路(a)中,断开S后,A将逐渐变暗 B.在电路(a)中,断开S后,A将先变得更亮,然后逐渐变暗 C.在电路(b)中,断开S后,A将逐渐变暗 D.在电路(b)中,断开S后,A将先变得更亮,然后渐渐变暗 【详解】(a)电路中,灯A和线圈L串联,电流相同,断开S时,线圈上产生自感电动势,阻碍原电流的减小,通过R、A形成回路,渐渐变暗.(b)电路中电阻R和灯A串联,灯A的电阻大于线圈L的电阻,电流则小于线圈L中的电流,断开S时,电源不给灯供电,而线圈产生自感电动势阻碍电流的减小,通过R、A形成回路,灯A中电流比原来大,变得更亮,然后渐渐变暗.所以选项AD正确. 5、如图8中,闭合矩形线框abcd位于磁感应强度为B的匀强磁中,ab边位于磁场边缘,线框平面 与磁场垂直,ab边和bc边分别用L1和L2。若把线框沿v的方向匀速拉出磁场所用时间为△t,则 通过框导线截面的电量是【b 】 二、填空题 6、一个200匝、面积为20cm2的圆线圈,放在匀强磁场中,磁场方向与线圈平面成30o角,磁感应强度在0.05s内由0.1T增加到0.5T,则初状态穿过线圈的磁通量是10- 4 Wb,在0.05s内穿过线圈的磁通量的变化量是4×10- 4wb,线圈中平均感应电动势的大小是 1.6 V。 7、4m长的直导体棒以3m/s的速度在0.05T的匀强磁场中作垂直于磁场的匀速运动,导体棒两端的感应电动势为0.6 V。 8、一个500 匡的线圈,其电阻为5Ω,将它与电阻为 495Ω的电热器连成闭合电路.若在0.3s内穿过线圈的磁匝量从0.03Wb均匀增加到0.09Wb,则线圈中产生的感应电动势为__100 _V,通立电热器的电流为 _0.2_A 三、计算题

高中物理法拉第电磁感应定律习题专项复习含答案解析

高中物理法拉第电磁感应定律习题专项复习含答案解析 一、高中物理解题方法:法拉第电磁感应定律 1.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。 (1)求金属棒达到稳定时的速度是多大; (2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少? (3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46 【解析】 【详解】 (1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有 sin A mg F θ= 其中 ,A E F BIL I R r == + 根据法拉第电磁感应定律,有E BLv = 联立解得: m 1.6s v = (2) 根据能量关系有 2 1·sin 2 mgs mv Q θ= + 电阻R 上产生的热量 R R Q Q R r = + 解得: 0.0183J R Q =

(3) 当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有: sin mg ma θ= 根据位移时间关系公式,有 21 2 x vt at =+ 设t 时刻磁感应强度为B ,总磁通量不变,有: ()BLs B L s x '=+ 当t =1s 时,代入数据解得,此时磁感应强度: 5T 46 B '= 2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷. (1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ; (2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E . (3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明. 【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】

高考物理法拉第电磁感应定律压轴难题知识点及练习题及答案解析

高考物理法拉第电磁感应定律压轴难题知识点及练习题及答案解析 一、高中物理解题方法:法拉第电磁感应定律 1.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求 (1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ; (2) 0~t 1时间内通过电阻R 1的电荷量q . 【答案】(1)2020n B r E t π=(2)2 0120 3n B t r q Rt π= 【解析】 【详解】 (1)由法拉第电磁感应定律E n t φ ∆=∆有2020 n B r B E n S t t π∆==∆ ① (2)由题意可知总电阻 R 总=R +2R =3 R ② 由闭合电路的欧姆定律有电阻R 1中的电流E I R = 总 ③ 0~t 1时间内通过电阻R1的电荷量1q It = ④ 由①②③④式得2 01203n B t r q Rt π= 2.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L =0.5 m ,上端接有阻值R =0.3 Ω的电阻.匀强磁场的磁感应强度大小B =0.4 T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求: (1)此时通过电阻R 上的电流;

高考物理复习法拉第电磁感应定律专项易错题及详细答案

一、法拉第电磁感应定律 1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。重力加速度为g ,求: (1)匀强电场的电场强度 (2)流过电阻R 的电流 (3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd qR (3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得: qE =mg 解得 mg q E = (2)由电场强度与电势差的关系得: U E d = 由欧姆定律得: U I R = 解得 mgd I qR = (3)根据法拉第电磁感应定律得到: E N t ∆Φ =∆ B S t t ∆Φ∆=∆∆

根据闭合回路的欧姆定律得到:()E I R r =+ 解得: () B mgd R r t NqRS ∆+=∆ 2.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。一质量为m 的金属棒从ab 位置由静止开始下落,到达cd 位置前已经开始做匀速运动,棒通过cdfe 区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为R ,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g ,求: (1)金属棒匀速运动的速度大小; (2)金属棒与金属导轨间的动摩擦因数μ; (3)金属棒经过efgh 区域时定值电阻R 上产生的焦耳热。 【答案】(1) ;(2) ;(3)mgL 2。 【解析】 【分析】 (1)金属棒到达cd 位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解; (2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解; (3)根据功能关系结合焦耳定律求解。 【详解】 (1)金属棒到达cd 位置前已经开始做匀速运动,根据平衡条件可得:mg =BIL 1, 由于 解得: ; (2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe 区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里; 根据平衡条件可得:mg =μF A , 通过导体棒的电流I ′= ,则F A =BI ′L 1,

高考物理法拉第电磁感应定律压轴难题知识点及练习题附答案

高考物理法拉第电磁感应定律压轴难题知识点及练习题附答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求: (1)磁通量变化率,回路的感应电动势。 (2)a 、b 两点间电压U ab 。 【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】 (1)由B =(2+0.2t )T 得磁场的变化率为 0.2T/s B t ∆=∆ 则磁通量的变化率为: 0.04Wb/s B S t t ∆Φ∆==∆∆ 根据E n t ∆Φ =∆可知回路中的感应电动势为: 4V B E n nS t t ∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知: 112 2.4V ab E R R R U =+= 答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。 (2)a 、b 两点间电压U ab 为2.4V 。 2.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:

法拉第电磁感应定律习题复习题附答案

法拉第电磁感应定律习题复习题附答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求: (1)拉力做功的功率P; (2)ab边产生的焦耳热Q. 【答案】(1)P= 222 B L v R (2)Q= 23 4 B L v R 【解析】 【详解】 (1)线圈中的感应电动势 E=BLv 感应电流 I=E R 拉力大小等于安培力大小 F=BIL 拉力的功率 P=Fv= 222 B L v R (2)线圈ab边电阻 R ab= 4 R 运动时间 t=L v ab边产生的焦耳热 Q=I2R ab t = 23 4 B L v R 3.如图甲所示,相距d的两根足够长的金属制成的导轨,水平部分左端ef间连接一阻值为2R的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d、质量为m的金属棒ab电阻为R,通过固定在棒两端的金属轻滑环套在导轨上,滑

法拉第电磁感应定律典型练习题40道 附答案

姓名:_______________班级:_______________考号:_______________ 题号一、选择 题 二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 评卷人得分

B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大 D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

高考物理复习法拉第电磁感应定律专项易错题含答案解析

高考物理复习法拉第电磁感应定律专项易错题含答案解析 一、法拉第电磁感应定律 1.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求: (1)磁通量变化率,回路的感应电动势。 (2)a 、b 两点间电压U ab 。 【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】 (1)由B =(2+0.2t )T 得磁场的变化率为 0.2T/s B t ∆=∆ 则磁通量的变化率为: 0.04Wb/s B S t t ∆Φ∆==∆∆ 根据E n t ∆Φ =∆可知回路中的感应电动势为: 4V B E n nS t t ∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知: 112 2.4V ab E R R R U =+= 答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。 (2)a 、b 两点间电压U ab 为2.4V 。 2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。

法拉第电磁感应定律易错问题

法拉第电磁感应定律易错问题 【例1】在磁感应强度为B的匀强磁场中放着一个匝数为m直径为D的圆形闭合线圈,线圈的电阻为R,线圈平面跟磁感线垂直。如果以线圈的一条直径为轴把它翻转180。,翻转过程中穿过线圈磁通量的变化量为_________ 线圈导线某一横截面通过的电量是__________ 如果翻转所 用的时间为t,则翻转过程中产生的平均感应电动势为_________ 。 错误解法:线圈的横截面积为S=JI (D/2) 2,翻转前穿过它的磁通量为BS,翻转后的磁通量为BS,所以翻转过程中穿过线圈的磁通量的变化量为零。 错误原因:磁感线从线圈不同方向穿过时磁通量的符号是不同的,所以答案不为零。 正确解法:穿过它的磁通量的变化量为△①二2BS二2JTB (D/2) 2。 在翻转过程中产生的平均感应电动势为£二n△①/△■(:二2 n nB (D/2) 2/Ato 电流强度I二E/R二n△①/Z\tR, 通过导线某一横截面的电量q二二n△①/R二2^B (D/2) 2/Ro 【例2]光滑平行的异形金属轨道abed如图1所示,轨道的水平部分bed处于竖直向上的匀强磁场中。be处的宽度为cd处宽度的两倍,轨道足够长。将质量相同的金属棒P和Q分别放置在轨道的ab段和cd段。P 棒位于距水平轨道高为h的地方。放开P棒使其自由下滑,求P棒和Q 棒的最终速度。 错误解法=P棒下滑到爪平面时的速度为“阿 P进入水平轨道后相当于跟Q发生了完全非弹性碰撞,根据动量守恒定律nw = 2mV, P和Q的最后速度V = v /2 = J2«gh /2 匿]1

错误原因:两根棒上的电流强度虽然相等,但棒长不等,取两棒为研究对象,它们所受的合外力不为零,动量不守恒。 正确解袪:P棒下滑到爪平面吋的速度为9=阿 最后两棒的速度为V尸V Q/2时在闭合电路中产生的总电动势为零,达到平衡状态。在达到平衡状态前两棒的受力比为2:1。 对P 棒-2Ft=mv P-mv 对Q 棒Ft=mv Q-0 整理两式得Up二血莎/ 5 V Q =2^/2gh/5

第二章 法拉第电磁感应定律(章节复习) 参考答案

2.5 第二章 法拉第电磁感应定律(章节复习) 【知识再理解1】感应电流方向的判定——楞次定律 1. 规律:楞次定律、右手定则,楞次定律的推论:电磁感应现象中的安培力,产生总阻碍磁通量的变化。 2. 方法:(1)归纳法(2)推论法 【学以致用1】 1. 一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动.已知线圈平面始终与纸面垂直,当线圈第一次通过位置I 和位置Ⅱ时,顺着磁场的方向看去,线圈中感应电流的方向分别为:( ) A . 逆时针方向 逆时针方向 B . 逆时针方向 顺时针方向 C . 顺时针方向 顺时针方向 D . 顺时针方向 逆时针方向 2.矩形导线框abcd 与长直导线MN 放在同一水平面上,ab 边与MN 平行, 导线MN 中通入如图所示的电流方向,下列说法正确的是( ) A .当MN 中的电流增大时,导线框中有顺时针方向的感应电流 B .当MN 中的电流增大时,导线框所受的安培力方向向左 C .当导线框向右运动时,导线框有逆时针方向的感应电流 D .当导线框向右运动时,导线框所受的安培力的合力向左 【知识再理解2】感应电流大小的求解——法拉第电磁感应定律 1. 规律:法拉第电磁感应定律:电源-电路-电流-力-能等 2. 方法:(1)推论法 (2)等效法(3)转化法 【学以致用2】 1. 一个圆形线圈,共有n =10匝,其总电阻r =4.0Ω,线圈与阻值R 0=16Ω,的外电阻连成闭合回路,如图甲所示.线圈内部存在着一个边长l =0.20m 的正方形区域,其中有分布均匀但强弱随时间变化的磁场, 图乙显示了一个周期内磁场的变化情况,周期T =1.0×10-2s ,磁场方向以垂直线圈平面向外为正方向.求: (1)t =18 T 时刻,电阻R 0上的电流大小和方向; (2)0~2 T ,时间内,流过电阻R 0的电量; (3)一个周期内电阻R 0的发热量. 0.4A 方向b->a 1.5×10-3C 1.6×10-2J 2. 如图所示,足够长的光滑斜面与水平面夹角θ=37°,在斜面上有垂直斜面向上的有界匀强磁场,边界aa '和bb '与斜面底边平行,且间距为d=0.1m 。现有一质量为m=50g 、总电阻为R=1Ω、边长也为d=0.1m 的正方形金属线圈MNPQ ,其初始位置MN 边与磁场边界bb '平行,且相距L=0.12m ,现让金属线圈从 初始位置静止释放,线圈刚好匀速通过磁场。g 取10m/s 2,sin37° =0.6,cos37°=0.8,求∶

2019版高考物理总复习练习:第30课 法拉第电磁感应定律 含解析

第30课 ·法拉第电磁感应定律 1.根据法拉第电磁感应定律判断影响感应电动势的因素 (1)(经典题,4分)将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( ) A .感应电动势的大小与线圈的匝数无关 B .穿过线圈的磁通量越大,感应电动势越大 C .穿过线圈的磁通量变化越快,感应电动势越大 D .感应电流产生的磁场方向与原磁场方向始终相同 答案:C 解析:根据法拉第电磁感应定律可知,感应电动势E =n ,即感应电动势的大小与线圈的匝 数有关,故A 项错误。同时可知,感应电动势的大小与磁通量的变化率有关,磁通量变化越快,感应电动势越大,故C 项正确。感应电动势与磁通量大小无关,取决于磁通量的变化率,穿过线圈的磁通量大,如果磁通量的变化率为零,则感应电动势为零,故B 项错误。根据楞次定律可知,感应电流的磁场方向总是阻碍引起感应电流的磁通量的变化。当原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减小时,感应电流的磁场方向与原磁场方向相同,即“增反减同”,故D 项错误。 2.根据E =Blv 、E =12 Bl 2ω和E =nB 计算动生电动势 a .根据E =Bl v 计算导线平动切割磁感线产生的动生电动势 (2)(多选)(经典题,6分)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触。从圆环中心O 开始,杆的位置由θ确定,如图所示,则( ) A .θ=0时,杆产生的电动势为2Ba v B .θ=π 3时,杆产生的电动势为3Ba v C .θ=0时,杆受的安培力大小为3B 2a v (π+2)R 0

新高考物理考试易错题易错点23法拉第电磁感应定律自感和涡流附答案

易错点23 法拉第电磁感应定律 自感和涡流 易错总结 一、法拉第电磁感应定律 1.法拉第电磁感应定律(更多免费资源关注公众号拾穗者的杂货铺) (1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =n ΔΦΔt ,其中n 为线圈的匝数. 2.磁通量Φ、磁通量的变化量ΔΦ及磁通量的变化率 ΔΦΔt 的比较: 3.公式E =n ΔΦΔt 的理解 感应电动势的大小E 由磁通量变化的快慢,即磁通量变化率ΔΦΔt 决定,与磁通量Φ、磁通量的变化量ΔΦ无关. 4.导线切割磁感线时感应电动势表达式的推导 如图所示,闭合电路一部分导线ab 处于匀强磁场中,磁感应强度为B ,ab 的长度为l ,ab 以速度v 匀速垂直切割磁感线.

则在Δt 内穿过闭合电路磁通量的变化量为ΔΦ=B ΔS =Blv Δt 根据法拉第电磁感应定律得E =ΔΦΔt =Blv . 5.对公式的理解 (1)当B 、l 、v 三个量的方向互相垂直时,E =Blv ;当有任意两个量的方向互相平行时,导线将不切割磁感线,E =0. (2)当l 垂直B 且l 垂直v ,而v 与B 成θ角时,导线切割磁感线产生的感应电动势大小为E =Blv sin θ. (3)若导线是弯折的,或l 与v 不垂直时,E =Blv 中的l 应为导线在与v 垂直的方向上的投影长度,即有效切割长度. 图甲中的有效切割长度为:L =cd sin θ; 图乙中的有效切割长度为:L =MN ; 图丙中的有效切割长度为:沿v 1的方向运动时,L =2R ;沿v 2的方向运动时,L =R . 6.导体转动切割磁感线产生的电动势 如图所示,导体棒在磁场中绕A 点在纸面内以角速度ω匀速转动,磁感应强度为B ,则AC 在切割磁感线时产生的感应电动势为E =Bl v =Bl ·ωl 2=12 Bl 2ω. 二、自感和互感 1.当一个线圈中的电流变化时,它产生的磁场就发生变化,变化的磁场在周围空间产生感生电场,在感生电场的作用下,另一个线圈中的自由电荷定向运动,于是产生感应电动势. 2.一个线圈中电流变化越快(电流的变化率越大),另一个线圈中产生的感应电动势越大. 3.应用与危害 (1)应用:变压器、收音机的磁性天线都是利用互感现象制成的.

相关主题
文本预览
相关文档 最新文档