当前位置:文档之家› 法拉第电磁感应定律习题复习题及答案

法拉第电磁感应定律习题复习题及答案

法拉第电磁感应定律习题复习题及答案

一、高中物理解题方法:法拉第电磁感应定律

1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。导线的电阻不计,求0至t1时间内

(1)通过电阻R1上的电流大小及方向。

(2)通过电阻R1上的电荷量q。

【答案】(1)

2

02

3

n B r

Rt

π

电流由b向a通过R1(2)

2

021

3

n B r t

Rt

π

【解析】【详解】

(1)由法拉第电磁感应定律得感应电动势为

2

202

2

n B r

B

E n n r

t t t

π

π

∆Φ∆

===

∆∆

由闭合电路的欧姆定律,得通过R1的电流大小为

2

02

33

n B r

E

I

R Rt

π

==

由楞次定律知该电流由b向a通过R1。

(2)由

q

I

t

=得在0至t1时间内通过R1的电量为:

2

021

1

3

n B r t

q It

Rt

π

==

2.两间距为L=1m的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、磁感应强度大小B=2T的匀强磁场中.金属棒P垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m0未知),将重物由静止释放,经过一段时间,将另一根完全相同的金属棒Q垂直放在导轨上,重物立即向下做匀速直线运动,金属棒Q恰好处于静止状态.己知两金属棒的质量均为m=lkg、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度

g=l0m/s2,sin 37°=0.6,cos37°=0.8.求:

(1)金属棒Q放上后,金属棒户的速度v的大小;

(2)金属棒Q放上导轨之前,重物下降的加速度a的大小(结果保留两位有效数字);(3)若平行直导轨足够长,金属棒Q放上后,重物每下降h=lm时,Q棒产生的焦耳热.

【答案】(1)3m/s v = (2)22.7m/s a = (3)3J 【解析】 【详解】

(1)金属棒Q 恰好处于静止时

sin mg BIL θ=

由电路分析可知E BLv = ,2E I R

= , 代入数据得,3m/s v =

(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得

00sin ()m g mg m m a θ-=+

代入数据得,22.7m/s a =

(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知 Q 棒产生的焦耳热为3J 2

Q Q =

=总

3.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:

(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;

(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q.

【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】

(1)0-3s 内,由法拉第电磁感应定律得:

122V B

E L L t t

∆Φ∆=

==∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上

(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N

外力F 大小为0.5N .方向沿斜面向上 (3)q =It ,E

I R r =+;E t

∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512

C 1.5C 1.50.5

BL S q R r ⨯⨯=

==++

4.如图所示,质量为2m 的 U 形线框ABCD 下边长度为L ,电阻为R ,其它部分电阻不计,其内侧有质量为m ,电阻为R 的导体棒PQ ,PQ 与线框相接触良好,可在线框内上下滑动.整个装置竖直放置,其下方有垂直纸面的匀强磁场,磁感应强度为B .将整个装置从静止释放,在下落过程线框底边始终水平.当线框底边进入磁场时恰好做匀速运动,此时导体棒PQ 与线框间的滑动摩擦力为

.经过一段时间,导体棒PQ 恰好到达磁场上

边界,但未进入磁场,PQ 运动的距离是线框在磁场中运动距离的两倍.不计空气阻力,重力加速度为g .求:

(1)线框刚进入磁场时,BC 两端的电势差; (2)导体棒PQ 到达磁场上边界时速度大小;

(3)导体棒PQ 到达磁场上边界前的过程线框中产生的焦耳热.

【答案】(1)52mgR BL (2)2215mgR B L (3)322

44

125m g R B L

【解析】

试题分析:(1)线框刚进入磁场时是做匀速运动.由平衡知识可列:

1

22

mg mg BIL +=

52BC mgR

U IR BL

==

(2)设导体棒到达磁场上边界速度为,线框底边进入磁场时的速度为

;导体棒相

对于线框的距离为

,线框在磁场中下降的距离为

52mgR

IR BL

ε==

联解上述方程式得:22

15PQ mgR

B L υ=

(3)线框下降的时间与导体棒下滑的时间相等

联解上述方程式得:322

44

125m g R Q B L

= 考点:法拉第电磁感应定律;物体的平衡.

5.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab 在水平向右的拉力F 作用下,以水平速度v 沿金属导轨向右做匀速直线运动,导体棒ab 始终与金属导轨形成闭合回路.已知导体棒ab 的长度恰好等于平行导轨间距l ,磁场的磁感应强度大小为B ,忽略摩擦阻力.

(1)求导体棒ab 运动过程中产生的感应电动势E 和感应电流I ;

(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒

方向的洛伦兹力做功而产生的.如图乙(甲图中导体棒ab )所示,为了方便,可认为导体棒ab 中的自由电荷为正电荷,每个自由电荷的电荷量为q ,设导体棒ab 中总共有N 个自由电荷.

a.求自由电荷沿导体棒定向移动的速率u ;

b.请分别从宏观和微观两个角度,推导非静电力做功的功率等于拉力做功的功率. 【答案】(1) Blv F Bl

(2) F NqB 宏观角度

【解析】

(1)根据法拉第电磁感应定律,感应电动势E Blv = 导体棒水平向右匀速运动,受力平衡,则有F BIl F ==安 联立解得:F

I Bl

=

(2)a 如图所示:

每个自由电荷沿导体棒定向移动,都会受到水平向左的洛伦兹力1f quB = 所有自由电荷所受水平向左的洛伦兹力的合力宏观表现为安培力F 安 则有:1F Nf NquB F ===安 解得:F u NqB

=

B, 宏观角度:非静电力对导体棒ab 中所有自由电荷做功的功率等于感应电源的电功率,则有:P P EI Fv ===非电 拉力做功的功率为:P Fv =拉

因此P P =非拉, 即非静电力做功的功率等于拉力做功的功率; 微观角度:如图所示:

对于一个自由电荷q ,非静电力为沿棒方向所受洛伦兹力2f qvB = 非静电力对导体棒ab 中所有自由电荷做功的功率2P Nf u 非= 将u 和2f 代入得非静电力做功的功率P Fv =非

拉力做功的功率P Fv =拉

因此P P =非拉 即非静电力做功的功率等于拉力做功的功率.

6.如图甲所示,一水平放置的线圈,匝数n=100匝,横截面积S=0.2m 2,电阻r=1Ω,线圈处于水平向左的均匀变化的磁场中,磁感应强度B 1随时间t 变化关系如图乙所示。线圈与足够长的竖直光滑导轨MN 、PO 连接,导轨间距l =20cm ,导体棒ab 与导轨始终接触良好,ab 棒的电阻R=4Ω,质量m=5g ,导轨的电阻不计,导轨处在与导轨平面垂直向里的匀强磁场中,磁感应强度B 2=0.5T 。t=0时,导体棒由静止释放,g 取10m/s 2,求: (1)t=0时,线圈内产生的感应电动势太小;

(2)t=0时,导体棒ab 两端的电压和导体棒的加速度大小; (3)导体棒ab 到稳定状态时,导体棒所受重力的瞬时功率。

【答案】(1)2V ;(2)1.6V ;2m/s 2;(3)0.25W ; 【解析】⑴由图乙可知,线圈内磁感应强度变化率: 0.1T /s B

t

∆=∆ 由法拉第电磁感应定律可知: 12V B

E n n S t t

∆Φ∆===∆∆ ⑵t =0时,回路中电流: 1

0.4A E I R r

=

=+ 导体棒ab 两端的电压 1.6V U IR ==

设此时导体棒的加速度为a ,则由: 2mg B Il ma -= 得: 222m /s B Il

a g m

=-

= ⑶当导体棒ab 达到稳定状态时,满足: 2mg B I l ='

12E B lv

I R r

+'=

+ 得: 5m /s v =

此时,导体棒所受重力的瞬时功率0.25W P mgv ==

【点睛】本题是感生电动势类型,关键要掌握法拉第电磁感应定律的表达式

B S

E n

t

∆⋅=∆,再结合闭合电路欧姆定律进行求解,注意楞次定律来确定感应电动势的方向.

7.如图所示,导体棒ab 质量m 1=0.1kg ,,电阻10.3R =Ω,长度L=0.4m ,横放在U 型金属框架上。框架质量m 2=0.2kg ,,放在绝缘水平面上,与水平面间的动摩擦因数为0.2,MM'、NN'相互平行,相距0.4m ,电阻不计且足够长。连接两导轨的金属杆MN 电阻

20.1R =Ω。整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T 。垂直于ab 施加

F=2N 的水平恒力,ab 从静止开始无摩擦地运动,始终与MM'、NN'保持良好接触。当ab 运动到某处时,框架开始运动。设框架与水平面间最大静摩擦力等于滑动摩擦力,

210/g m s =。

(1)求框架开始运动时ab 速度的大小;

(2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量量0.1Q J =,求该过程ab 位移x 的大小;

(3)从ab 开始运动到框架开始运动,共经历多少时间。 【答案】(1)6/m s (2)1.1m (3)0.355s

【解析】(1)由题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力为:

12)N f F m m g μμ==+(

ab 中的感应电动势为: E Blv =,MN 中电流为: 12

E

I R R =

+

MN 受到的安培力为: F IlB =安,框架开始运动时,有: F f =安 由上述各式代入数据,解得: 6/v m s =;

(2)导体棒ab 与MN 中感应电流时刻相等,由焦耳定律2

Q I Rt =得知, Q R ∝ 则闭合回路中产生的总热量: 12

2

R R Q Q R +=总 由能量守恒定律,得: 211

2

Fx m v Q =+总 代入数据解得: 1.1x m =

(3)ab 加速过程中,有: 22112B l v

F m a R R -=+

取极短时间间隔t ∆, 22112B l v

F t t m a t R R ∆-∆=∆+

即: 22

112

B l F t x m v R R ∆-∆=∆+

对整过程求和可得: 22

112

B l Ft x m v R R -=-+()

解得: (

)22

112m v B l t x F R R F

=++

代入数据解得: 0.355t s =

点睛:ab 向右做切割磁感线运动,产生感应电流,电流流过MN ,MN 受到向右的安培力,当安培力等于最大静摩擦力时,框架开始运动,根据安培力、欧姆定律和平衡条件等知识,求出速度,依据能量守恒求解位移,对加速过程由动量定理列式,可得出合外力的冲量与动量变化之间的关系;本题是电磁感应中的力学问题,考查电磁感应、焦耳定律、能量守恒定律定律等知识综合应用和分析能力,要注意正确选择物理规律列式求解。

8.如图所示,两光滑平行金属导轨abcd d c b a ''''、,aa '之间接一阻值为R 的定值电阻,

dd '之间处于断开状态,abb a ''部分为处于水平面内,且ab bb b a a a L ==='''=',

bcdb c d '''部分为处于倾角为θ的斜面内,bc cd dd d c c b b b L ''''''======.abb a ''

区域存在一竖直向下的磁场1B ,其大小随时间的变化规律为1B kt =(k 为大于零的常数);cdd c ''区域存在一垂直于斜面向上的大小恒为2B 的磁场.一阻值为r 、质量为m 的导体棒MN 垂直于导轨从bb '处由静止释放.不计导轨的电阻,重力加速度为g .求:

(1)导体棒MN 到达cc '前瞬间,电阻R 上消耗的电功率; (2)导体棒MN 从bb '到达cc '的过程中,通过电阻R 的电荷量;

(3)若导体棒MN 到达cc '立即减速,到达dd '时合力恰好为零,求导体棒MN 从cc '到

dd '运动的时间.

【答案】(1)

()

242

k L R

R r + (2)2

2sin kL L

q R r

g θ

=

+ (3)()()()23

232sin m R r v v B L t kB L mg R r θ+=-+'+-(式

中()32222

sin 2sin ,B kL mg R r v gL v B L

θ

θ'++==

【解析】 【分析】 【详解】

(1)因磁场1B 随时间的变化规律为1B kt =,所以B

k t

∆=∆,abb a ''所组成回路产生的感应电动势22B

E L kL t t

ϕ∆∆=

==∆∆

流过电阻R 的电流: E

I R r

=

+ 电阻R 消耗的功率: 2

R P I R = 联立以上各式求得: ()

242

R k L R

P R r =

+

(2)电阻R 的电荷量: q It =, 2

kL I I R r

==+

根据牛顿第二定律: sin mg ma θ=

导体棒从MN 从bb '到达cc '中,通过的位移:212

L at =

联立解得:

q =

(3)根据(2)问,求得导体棒到达cc '

时的速度:v 到达dd '时合力为0,则: 222sin B Lv kL B L mg R r θ⎛⎫

-= ⎪+⎝'⎭

解得:()3222

2sin B kL mg R r v B L

θ

'++=

导体棒MN 从cc '到达dd '过程中,运用动量定理 :()2sin B I Lt mgt mv mv θ-'=--'-

从cc '到达dd '过程中,流过导体棒MN 的电荷量: q I t ''= 且 22

2B L kL q t R r R r

'=-

++ 联立以上式子,求得

()()()23

232sin m R r v v B L

t kB L mg R r θ

+=

-+'+-

(式中v ()3222

2

sin B kL mg R r v B L

θ

'++=

9.如图甲所示,光滑的平行金属导轨水平放置,导轨间距L =1 m ,左侧接一阻值为R =0.5 Ω的电阻.在MN 与PQ 之间存在垂直轨道平面的有界匀强磁场,磁场宽度d =1 m .一质量m =1 kg 的金属棒a b 置于导轨上,与导轨垂直且接触良好,不计导轨和金属棒的电阻.金属棒ab 受水平力F 的作用从磁场的左边界MN 由静止开始运动,其中,F 与x (x 为金属棒距MN 的距离)的关系如图乙所示.通过电压传感器测得电阻R 两端电压随时间均匀增大.则:

(1)金属棒刚开始运动时的加速度为多少? (2)磁感应强度B 的大小为多少?

(3)若某时刻撤去外力F 后金属棒的速度v 随位移s 的变化规律满足v =v 0﹣

22

B L mR

s (v 0为撤去外力时的速度,s 为撤去外力F 后的位移),且棒运动到PQ 处时恰好静止,则金属棒从MN 运动到PQ 的整个过程中通过左侧电阻R 的电荷量为多少?外力F 作用的时间为多少?

【答案】(1)a=0.4m/s 2;(2)B=0.5T ;(3)t=1s 【解析】 【详解】

解:(1)金属棒开始运动时,0x =,0v =,金属棒不受安培力作用 金属棒所受合力为:0.4N F = 由牛顿第二定律得:20.4m/s F

a m

=

= (2)由题意可知,电阻R 两端电压随时间均匀增大,即金属棒切割磁感线产生的感应电动势随时间均匀增大,由E BLv =可知,金属棒的速度v 随时间t 均匀增大,则金属棒做初速度为零的匀加速运动.加速度:20.4m/s a = 由匀变速直线运动的位移公式可得:22v ax = 由图乙所示图象可知,0.8m x =时,0.8N F =

由牛顿第二定律得:22B L v

F ma R

-=

解得:0.5T B =

(3)金属棒经过磁场的过程中,感应电动势的平均值: B S BLd

E t t t

ϕ∆∆===∆∆∆ 感应电流的平均值:E

I R

=

通过电阻R 的电荷量:q I t =∆ 解得:1C BLd

q R R

ϕ∆=

==

设外力F 的作用时间为t ,力F 作用时金属棒的位移为:212x at = 撤去外力后,金属棒的速度为:022

B s v v L Rm

=- 到PQ 恰好静止,0v =

则撤去外力后金属棒运动的距离为:22

mR at B L s •= 则 22

212B L at at d Rm

+•= 解得:1s t =

10.如图所示,水平放置的平行金属导轨宽度为d =1 m ,导轨间接有一个阻值为R =2 Ω的灯泡,一质量为m =1 kg 的金属棒跨接在导轨之上,其电阻为r =1 Ω,且和导轨始终接触良好.整个装置放在磁感应强度为B =2 T 的匀强磁场中,磁场方向垂直导轨平面向下.金属棒与导轨间的动摩擦因数为μ=0.2,现对金属棒施加一水平向右的拉力F =10 N ,使金属棒从静止开始向右运动.求:

则金属棒达到的稳定速度v 是多少?此时灯泡的实际功率P 是多少?

【答案】6 m/s 32W

【解析】

由1Bdv I R r

=+和F 安=BId 可得221B d v F R r

=+安 根据平衡条件可得F =μmg +F 安

解得v 1=6 m/s

由P=I 2R 得P=32W

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案 一、法拉第电磁感应定律 1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求: (1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离; (3)ab 棒开始下滑至EF 的过程中回路中产生的热量。 【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】 (1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动, a = sin mg m θ =gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得: 1Blv t ?Φ =? 2(sin )x x B l I BI g t t θ??= 解得 2sin x l t g θ = ab 棒在区域Ⅱ中做匀速直线运动的速度

法拉第电磁感应定律习题复习题附答案解析

法拉第电磁感应定律习题复习题附答案解析 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==⨯=⨯ (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -⨯===⨯ 2.如图所示,正方形单匝线框bcde 边长L =0.4 m ,每边电阻相同,总电阻R =0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P ,手持物体P 使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L =0.4 m ,磁感线方向垂直于线框所在平面向里,磁感应强度大小B =1.0 T ,磁场的下边界与线框的上边eb 相距h =1.6 m .现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb 边保持水平,刚好以v =4.0 m/s 的速度进入磁场并匀速穿过磁场区,重力加速度g =10 m/s 2,不计空气阻力.

法拉第电磁感应定律习题复习题及答案

法拉第电磁感应定律习题复习题及答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。导线的电阻不计,求0至t1时间内 (1)通过电阻R1上的电流大小及方向。 (2)通过电阻R1上的电荷量q。 【答案】(1) 2 02 3 n B r Rt π 电流由b向a通过R1(2) 2 021 3 n B r t Rt π 【解析】【详解】 (1)由法拉第电磁感应定律得感应电动势为 2 202 2 n B r B E n n r t t t π π ∆Φ∆ === ∆∆ 由闭合电路的欧姆定律,得通过R1的电流大小为 2 02 33 n B r E I R Rt π == 由楞次定律知该电流由b向a通过R1。 (2)由 q I t =得在0至t1时间内通过R1的电量为: 2 021 1 3 n B r t q It Rt π == 2.两间距为L=1m的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、磁感应强度大小B=2T的匀强磁场中.金属棒P垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m0未知),将重物由静止释放,经过一段时间,将另一根完全相同的金属棒Q垂直放在导轨上,重物立即向下做匀速直线运动,金属棒Q恰好处于静止状态.己知两金属棒的质量均为m=lkg、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度 g=l0m/s2,sin 37°=0.6,cos37°=0.8.求: (1)金属棒Q放上后,金属棒户的速度v的大小; (2)金属棒Q放上导轨之前,重物下降的加速度a的大小(结果保留两位有效数字);(3)若平行直导轨足够长,金属棒Q放上后,重物每下降h=lm时,Q棒产生的焦耳热.

法拉第电磁感应定律易错题复习题附答案

法拉第电磁感应定律易错题复习题附答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小; (2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向; (4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热. 【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4) 203 Q J 【解析】 【分析】 t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】 (1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ ) 根据P =I 2 R PQ 代入数据解得:B =2T (2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s

法拉第电磁感应定律练习(含答案)

法拉第电磁感应定律练习 一、选择题 1、对于法拉第电磁感应定律,下面理解正确的是【】 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大D.穿过线圈的磁通量变化越快,感应电动势越大 2、关于感应电动势大小的下列说法中,正确的是【】 A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大3、如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可以在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则【】 A.ef将匀速向右运动 B.ef将往返运动 C.ef将减速向右运动,但不是匀减速 D.ef将加速向右运动 4、如图 (a)、(b)所示的电路中,电阻R和自感线圈L的电阻值都很小,且小于灯A的电阻,接通S,使电路达到稳定,灯泡A发光,则【】 A.在电路(a)中,断开S后,A将逐渐变暗 B.在电路(a)中,断开S后,A将先变得更亮,然后逐渐变暗 C.在电路(b)中,断开S后,A将逐渐变暗 D.在电路(b)中,断开S后,A将先变得更亮,然后渐渐变暗 【详解】(a)电路中,灯A和线圈L串联,电流相同,断开S时,线圈上产生自感电动势,阻碍原电流的减小,通过R、A形成回路,渐渐变暗.(b)电路中电阻R和灯A串联,灯A的电阻大于线圈L的电阻,电流则小于线圈L中的电流,断开S时,电源不给灯供电,而线圈产生自感电动势阻碍电流的减小,通过R、A形成回路,灯A中电流比原来大,变得更亮,然后渐渐变暗.所以选项AD正确. 5、如图8中,闭合矩形线框abcd位于磁感应强度为B的匀强磁中,ab边位于磁场边缘,线框平面 与磁场垂直,ab边和bc边分别用L1和L2。若把线框沿v的方向匀速拉出磁场所用时间为△t,则 通过框导线截面的电量是【b 】 二、填空题 6、一个200匝、面积为20cm2的圆线圈,放在匀强磁场中,磁场方向与线圈平面成30o角,磁感应强度在0.05s内由0.1T增加到0.5T,则初状态穿过线圈的磁通量是10- 4 Wb,在0.05s内穿过线圈的磁通量的变化量是4×10- 4wb,线圈中平均感应电动势的大小是 1.6 V。 7、4m长的直导体棒以3m/s的速度在0.05T的匀强磁场中作垂直于磁场的匀速运动,导体棒两端的感应电动势为0.6 V。 8、一个500 匡的线圈,其电阻为5Ω,将它与电阻为 495Ω的电热器连成闭合电路.若在0.3s内穿过线圈的磁匝量从0.03Wb均匀增加到0.09Wb,则线圈中产生的感应电动势为__100 _V,通立电热器的电流为 _0.2_A 三、计算题

高考物理法拉第电磁感应定律习题试卷及答案解析

高考物理法拉第电磁感应定律习题试卷及答案解析 一、高中物理解题方法:法拉第电磁感应定律 1.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小; (2)金属杆速度为2.0m/s 时的加速度大小; (3)根据v−t 图象估算在前0.8s 内电阻上产生的热量. 【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】 (1)由题图知,杆运动的最大速度为4/m v m s =, 有22sin sin m B L v F mg F mg R αα=+=+ 安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安 得222222 212sin 182100.5 2/2/2 B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:2 11sin 2 Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】 本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用. 2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质

法拉第电磁感应定律习题复习题附答案

法拉第电磁感应定律习题复习题附答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求: (1)拉力做功的功率P; (2)ab边产生的焦耳热Q. 【答案】(1)P= 222 B L v R (2)Q= 23 4 B L v R 【解析】 【详解】 (1)线圈中的感应电动势 E=BLv 感应电流 I=E R 拉力大小等于安培力大小 F=BIL 拉力的功率 P=Fv= 222 B L v R (2)线圈ab边电阻 R ab= 4 R 运动时间 t=L v ab边产生的焦耳热 Q=I2R ab t = 23 4 B L v R 3.如图甲所示,相距d的两根足够长的金属制成的导轨,水平部分左端ef间连接一阻值为2R的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d、质量为m的金属棒ab电阻为R,通过固定在棒两端的金属轻滑环套在导轨上,滑

法拉第电磁感应定律典型练习题40道 附答案

姓名:_______________班级:_______________考号:_______________ 题号一、选择 题 二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 评卷人得分

B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大 D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

高中物理法拉第电磁感应定律易错题知识点及练习题附答案解析

高中物理法拉第电磁感应定律易错题知识点及练习题附答案解析 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==⨯=⨯ (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -⨯===⨯ 2.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求:

高考物理法拉第电磁感应定律习题知识归纳总结含答案解析

高考物理法拉第电磁感应定律习题知识归纳总结含答案解析 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2. (1)求磁感应强度B的大小; (2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h; (3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热. 【答案】(1)1 T (2)0.3 m(3)0.3n J 【解析】 【详解】 (1)当h=2L时,bc进入磁场时线框的速度 === v gh gL 222m/s 此时金属框刚好做匀速运动,则有: mg=BIL 又 E BLv == I R R 联立解得 1mgR = B L v 代入数据得: 1T B= (2)当h>2L时,bc边第一次进入磁场时金属线框的速度

022v gh gL => 即有 0mg BI L < 又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有 '222v v gL =+ 解得: 6m /s v '= 根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有 2v v gh '== 即有 0.3m h = (3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有: '2211 (2)22 mv mg L mv Q +=+ 代入解得: 00.3J Q = 则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。 2.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。匀强磁场与导轨平面垂直。阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触。t =0时,将开关S 由1掷到2。用q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。请定性画出以上各物理量随时间变化的图象(q-t 、i-t 、v-t 、a-t 图象)。 【答案】图见解析. 【解析】 【详解】 开关S 由1掷到2,电容器放电后会在电路中产生电流。导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动。导体棒切割磁感线,速度增大,感应电动势E=Blv ,即增大,则实际电流减小,安培力F=BIL ,即减小,加速度a =F /m ,即减小。因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速)。由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的,故a-t 图像如图:

高考物理法拉第电磁感应定律压轴难题知识点及练习题附答案

高考物理法拉第电磁感应定律压轴难题知识点及练习题附答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求: (1)磁通量变化率,回路的感应电动势。 (2)a 、b 两点间电压U ab 。 【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】 (1)由B =(2+0.2t )T 得磁场的变化率为 0.2T/s B t ∆=∆ 则磁通量的变化率为: 0.04Wb/s B S t t ∆Φ∆==∆∆ 根据E n t ∆Φ =∆可知回路中的感应电动势为: 4V B E n nS t t ∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知: 112 2.4V ab E R R R U =+= 答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。 (2)a 、b 两点间电压U ab 为2.4V 。 2.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:

电磁感应精讲精练:法拉第电磁感应定律典型习题含答案

[基础巩固题组] 1.(多选)粗细均匀的导线绕成匝数为n 、半径为r 的圆形闭合线圈.线圈放 在磁场中,磁场的磁感应强度随时间均匀增大,线圈中产生的电流为I,下列说 法正确的是( •.一.nAB 解析:选BD.由题给条件可知感应电动势为E=n :r 2石,电阻为R= 电流I=E,联立以上各式得I=竽受,则可知B 、D 项正确,A 、C 项错误.R2Pzi 2.(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴 上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强 磁场B 中.圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( A.若圆盘转动的角速度恒定,则电流大小恒定 B.若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动 C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化 D.若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2 倍 解析:选AB.由右手定则知,圆盘按如题图所示的方向转动时,感应电流沿 1' a 至U b 的万向流动,选项B 正确;由感应电动势E=\Bl 2⑴知,角速度恒定,则 感应电动势恒定,电流大小恒定,选项A 正确;角速度大小变化,感应电动势 A.电流 I 与匝数n 成正比 B.电流 C.电流 D.电流 I 与线圈半径r 成正比 I 与线圈面积S 成正比 I 与导线横截面积S 0成正比 p27r S b ,

大小变化,但感应电流万向不变,选项C 错误;若⑴变为原来的2倍,则感应电动势变为原来的2倍,电流变为原来的2倍,由P=I 2R 知,电流在R 上的热功率变为原来的4倍,选项D 错误. 3 .(多选)一导线弯成如图所示的闭合线圈,以速度V 向左匀速进入磁感应强度为B 的匀强磁场,磁场方向垂直纸面向外.线圈总电阻为R,从线圈进入磁场开始到完全进入磁场为止,下列结论正确的是() A.感应电流一直沿顺时针方向 B.线圈受到的安培力先增大,后减小 C.感应电动势的最大值E=BrV …人…… B (r 2+<2\ D.穿过线圈某个横截面的电荷量为-L ^一1 解析:选AB.在闭合线圈进入磁场的过程中,通过闭合线圈的磁通量逐渐增 大,根据楞次定律可知感应电流的方向一直沿顺时针方向,A 正确;线圈切割磁感线的有效长度先变长后变短,感应电流先变大后变小,安培力也先变大后变小, B 正确;线圈切割磁感线的有效长度最大值为2r,感应电动势最大值E=2BrV, 出…人年"△①B 『+2『2 )… C 错误;穿过线圈某个横截面的电荷量为Q=~\D 错误. RR 4 .如图所示,正方形线框的左半侧处在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,线框的对称轴MN 恰与磁场边缘平齐.若第1次将线框从磁场中以恒定速度V i 向右匀速拉出,第2次以线速度V 2让线框绕轴MN 匀速转过90°,为使两次操作过程中,线框产生的平均感应电动势相等,则() 解析:选A.第i 次将线框从磁场中以恒定速度V i 向右匀速拉出,线框中的加 8乂 必—然 乂y x a xXxr-Q 乂XXXX A. v i :V 2=2:兀 C.V i :V 2=1:2 B. V i :V 2=兀: 2

物理法拉第电磁感应定律的专项培优练习题(含答案)及详细答案

一、法拉第电磁感应定律 1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求: (1)拉力做功的功率P; (2)ab边产生的焦耳热Q. 【答案】(1)P= 222 B L v R (2)Q= 23 4 B L v R 【解析】 【详解】 (1)线圈中的感应电动势 E=BLv 感应电流 I=E R 拉力大小等于安培力大小 F=BIL 拉力的功率 P=Fv= 222 B L v R (2)线圈ab边电阻 R ab= 4 R 运动时间 t=L v ab边产生的焦耳热 Q=I2R ab t = 23 4 B L v R 2.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6 Ω,线圈电阻R2=4Ω求:

(1)磁通量变化率,回路的感应电动势。 (2)a 、b 两点间电压U ab 。 【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】 (1)由B =(2+0.2t )T 得磁场的变化率为 0.2T/s B t ∆=∆ 则磁通量的变化率为: 0.04Wb/s B S t t ∆Φ∆==∆∆ 根据E n t ∆Φ =∆可知回路中的感应电动势为: 4V B E n nS t t ∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知: 112 2.4V ab E R R R U =+= 答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。 (2)a 、b 两点间电压U ab 为2.4V 。 3.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。一质量为m 的金属棒从ab 位置由静止开始下落,到达cd 位置前已经开始做匀速运动,棒通过cdfe 区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为R ,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g ,求:

2022届高考物理第一轮总复习全程训练 课练30 法拉第电磁感应定律 自感现象 Word版含答案

课练30 法拉第电磁感应定律自感现象 1. 在如图所示的电路中,两个灵敏电流表G1和G2的零点都在刻度盘中心,当电流从“+”接线柱流入时,指针向右摆,当电流从“-”接线柱流入时,指针向左摆.在电路接通后再断开的瞬间,下列说法中符合实际状况的是( ) A.G1表指针向左摆,G2表指针向右摆 B.G1表指针向右摆,G2表指针向左摆 C.G1、G2表的指针都向左摆 D.G1、G2表的指针都向右摆 2. (多选)如图所示,在线圈上端放置一盛有冷水的金属杯,现接通沟通电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( ) A.增加线圈的匝数 B.将金属杯换为瓷杯 C.取走线圈中的铁芯 D.提高沟通电源的频率 3. 如图所示,边长为2L的正方形虚线框内有垂直于纸面对里的匀强磁场,磁感应强度大小为B.一个边长为L、粗细均匀的正方形导线框abcd,其所在平面与磁场方向垂直,导线框的对角线与虚线框的对角线在一条直线上,导线框各边的电阻大小均为R.在导线框从图示位置开头以恒定速度沿对角线方向进入磁场,到整个导线框离开磁场区域的过程中,下列说法正确的是( ) A.导线框进入磁场区域时产生顺时针方向的感应电流 B.导线框中有感应电流的时间为 2L v C.导线框的bd对角线有一半进入磁场时,整个导线框所受安培力大小为 B2L2v 4R D.导线框的bd对角线有一半进入磁场时,导线框a、c两点间的电压为 2BLv 4 4. (多选)如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO′为其对称轴.一导线折成边长为l的正方形闭合回路abcd,回路在纸面内以恒定速度v0向右运动,当运动到关于OO′对称的位置时( ) A.穿过回路的磁通量为零 B.回路中感应电动势大小为2Blv0 C.回路中感应电流的方向为顺时针方向 D.回路中ab边与cd边所受安培力方向相同 5.(多选) 如图甲所示,螺线管匝数n=1 500匝,横截面积S=20 cm2,螺线管导线电阻r=1 Ω,电阻R=4 Ω,磁感应强度B的B—t图象如图乙所示(以向右为正方向),下列说法正确的是( ) A.电阻R中的电流方向是从A到C B.感应电流的大小保持不变 C.电阻R两端的电压为6 V D.C点的电势为4.8 V 6. (多选)如图所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈等距离排列,且与传送带以相同的速

法拉第电磁感应定律习题知识点及练习题含答案解析

法拉第电磁感应定律习题知识点及练习题含答案解析 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==⨯⨯ 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

法拉第电磁感应定律习题知识归纳总结含答案

法拉第电磁感应定律习题知识归纳总结含答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==⨯⨯ 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

高中物理 选修二(2019)第二章 电磁感应 第2节法拉第电磁感应定律 基础练习(含答案)

法拉第电磁感应定律 基础练习 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.将多匝线圈置于磁感应强度大小随时间变化的磁场中,关于线圈中产生的感应电动势,下列说法正确的是( ) A .感应电动势与线圈的匝数无关 B .通过线圈的磁通量越大,感应电动势越大 C .通过线圈的磁通量变化越快,感应电动势越大 D .通过线圈的磁通量为0,感应电动势一定也为0 2.下列关于电磁感应说法正确的是( ) A .只要磁通量发生变化,就会产生感应电流 B .穿过闭合回路磁通量最大时,感应电流也一定最大 C .穿过闭合回路磁通量为零时,感应电流也为零 D .感应电流激发的磁场总是阻碍线圈中磁通量的变化 3.如图所示,导体直导轨OM 和PN 平行且OM 与x 轴重合,两导轨间距为d ,两导轨间垂直纸面向里的匀强磁场沿y 轴方向的宽度按sin 2y d x d π =的规律分布,两金属 圆环固定在同一绝缘平面内,外圆环与两导轨接触良好,与两导轨接触良好的导体棒从OP 开始始终垂直导轨沿x 轴正方向以速度v 做匀速运动,规定内圆环a 端电势高于b 端时,a 、b 间的电压u ab 为正,下列u ab -x 图像可能正确的是( ) A .

B. C.D. 4.如图所示,导体棒ab沿水平面内的光滑导线框向右做匀速运动,速度v=6.0m/s.线框宽度L=0.3m,处于垂直纸面向下的匀强磁场中,磁感应强度B=0.1T.则感应电动势E的大小为 A.0.18V B.0.20 V C.0.30V D.0.40V 5.如图所示,xOy坐标系第一象限有垂直纸面向外的匀强磁场,第三象限有垂直纸面向里的匀强磁场,磁感应强度大小均为B,第二、四象限内没有磁场.一个围成四分之一圆弧形的导体环Oab,其圆心在原点O,开始时导体环在第四象限,从t=0时刻起绕O点在xOy坐标平面内逆时针匀速转动.若以逆时针方向的电流为正,下列表示环内感应电流i随时间t变化的图象中,正确的是() A.B. C.D. 6.关于电场和磁场的有关问题,下列说法中正确的是() A.电场是电荷周围空间实际存在的物质

法拉第电磁感应定律习题试卷附答案

法拉第电磁感应定律习题试卷附答案 一、高中物理解题方法:法拉第电磁感应定律 1.如图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L=0.4m,上端接有电阻R=0.3Ω,虚线OO′下方是垂直于导轨平面的匀强磁场,磁感强度B=0.5T。现将质量 m=0.05kg、电阻r=0.1Ω的金属杆ab,从OO′上方某处垂直导轨由静止释放,杆下落过程中始终与导轨保持良好接触,杆下落过程中的v-t图像如图乙所示,0-1s内的v-t图像为过原点的直线,2s后的v-t图像为平行于t轴的横线,不计空气阻力,g取10m/s2,求: (1)金属杆ab刚进入磁场时感应电流的大小; (2)已知金属杆ab在t=2s时在磁场中下落了h=6.65m,则杆从静止下落2s的过程中电阻R 产生的热量是多少? 【答案】(1)I1=5A (2)Q R=3.9J 【解析】 【分析】 本题首先通过对图像的分析,得到金属杆刚开始做匀加速直线运动,可以利用运动学公式与闭合电路的相关知识求解,其次抓住图中匀速可以列出平衡式子,对于非匀变速可以从能量角度列示求解。 【详解】 (1)由图乙可知,t=1s时,金属杆进入磁场 v1=gt E1=BLv1 联立以上各式,代入数据得 I1=5A (2)由第1问,v1=10m/s,2s后金属杆匀速运动,由:mg=BI2L E2 = BLv2,代入数据得:v2=5m/s 金属杆下落过程有: 代入数据得Q R=3.9J 【点睛】

本题强化对图像的认识,图像中两段运动比较特殊,一段是匀加速,一段是匀速,这个是解题的突破口,可以用运动学公式结合电路相关公式求解问题。对于非匀变速突出从能量角度找突破口列示求解。 2.如图所示,无限长金属导轨EF 、PQ 固定在倾角为θ=30°的绝缘斜面上,轨道间距L =1m ,底部接入一阻值为R =0.06Ω的定值电阻,上端开口。垂直斜面向上的匀强磁场的磁感应强度B 0=5T 。一质量为m =2kg 的金属棒αb 与导轨接触良好,αb 连入导轨间的电阻r =0.04Ω,电路中其余电阻不计.现用一质量为M =6kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与αb 相连.由静止释放M ,当M 下落高度h =2m 时.αb 开始匀速运动(运动中αb 始终垂直导轨,并接触良好),不计一切摩擦和空气阻力.取g =10m/s 2.求: (1)αb 棒沿斜面向上运动的最大速度v m ; (2)αb 棒从开始运动到匀速运动的这段时间内电阻R 上产生的焦耳热Q R 。 【答案】(1)1m/s ;(2)57.6J ; 【解析】(1)对M :T =Mg 对m :T =mg sin θ+F 安 F 安=BIL 回路中感应电流E I R r =+ E =BLv m 联立得:v m =1m/s (2)由能量守恒定律知,系统的总能量守恒,即系统减少的重力势能等于系统增加的动能、焦耳热及摩擦而转化的内能之和, 有: 2 1sin M 2 m Mgh mgh Q m v θ=+++总() Q 总=96J 电阻R 产生的焦耳热: R R Q Q R r =+总 Q R =57.6J 【点睛】本题有两个关键:一是推导安培力与速度的关系;二是推导感应电荷量q 的表达式,对于它们的结果要理解记牢,有助于分析和处理电磁感应的问题.

【物理】物理 法拉第电磁感应定律的专项 培优练习题含答案

一、法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==⨯=⨯ (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -⨯===⨯ 2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:

(1)磁通量变化率,回路的感应电动势。 (2)a 、b 两点间电压U ab 。 【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】 (1)由B =(2+0.2t )T 得磁场的变化率为 0.2T/s B t ∆=∆ 则磁通量的变化率为: 0.04Wb/s B S t t ∆Φ∆==∆∆ 根据E n t ∆Φ =∆可知回路中的感应电动势为: 4V B E n nS t t ∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知: 112 2.4V ab E R R R U =+= 答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。 (2)a 、b 两点间电压U ab 为2.4V 。 3.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求 (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值. 【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220 B l t m 【解析】 【分析】 【详解】 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ①

相关主题
文本预览
相关文档 最新文档