当前位置:文档之家› 大型水轮机主轴锻造过程裂纹缺陷的预防

大型水轮机主轴锻造过程裂纹缺陷的预防

大型水轮机主轴锻造过程裂纹缺陷的预防
大型水轮机主轴锻造过程裂纹缺陷的预防

ISSN 100020054CN 1122223 N

清华大学学报(自然科学版)J T singhua U niv (Sci &Tech ),2008年第48卷第5期

2008,V o l .48,N o .5w 1

h ttp : qhxbw .ch inaj ournal

.net .cn

大型水轮机主轴锻造过程裂纹缺陷的预防

董岚枫, 钟约先, 马庆贤, 袁朝龙, 马力深

(清华大学机械工程系,先进成形制造教育部重点实验室,北京100084)

收稿日期:2007205230

基金项目:国家“十一五”科技攻关项目(2006BA F 02B 07)作者简介:董岚枫(1980—),男(汉),辽宁,博士研究生。通讯联系人:钟约先,教授,E 2m ail :zhongyx @tsinghua .edu .cn

摘 要:针对大型水轮机主轴内法兰锻件锻造过程的裂纹缺陷,采用热力学实验方法,研究了其主要用钢20Si M n 的高温力学性能。结果表明,提高变形温度和降低变形速率有利于避免该材料内部裂纹萌生。根据Cockcroft &L atham 延性断裂准则,计算得到了20Si M n 钢的延性断裂破坏因子为

30.0。利用D efo r m 3D 软件,对大型水轮机主轴内法兰锻造

过程进行了数值模拟,预测了该类锻件在空心镦粗过程中裂纹产生的趋势和区域,并提出将单砧压下量控制在8%以内和将镦粗变形量控制在45%的局部空心镦粗优化锻造工艺方案。

关键词:水轮机主轴;锻造裂纹;延性断裂;C &L 准则;

D efo r m 软件

中图分类号:T G 316

文献标识码:A

文章编号:100020054(2008)0520765204

Preven tion of forg i ng cracks i n heavy

hydro -genera tor shaf ts

DONG La nfe ng ,ZHONG Yue xia n ,MA Q ingxia n ,

Y UAN Cha o long ,MA L ishe n

(Key Laboratory for Advanced M ater i als Processi ng Technology of M i n istry of Education ,D epart men t of M echan ical Engi neer i ng ,

Tsi nghua Un iversity ,Be ij i ng 100084,Chi na )

Abstract :

T he h igh 2temperature m echanical p roperties of the

20Si M n steel used in heavy hydro 2generato r shafts w here fo rging cracks often occur w ere m easured experi m entally .T he results show that higher temperatures and low er strain rates help p revent the initiati on of fo rging cracks .

T he experi m ental data w as analyzed

based on the Cockcroft &L atham ductile fracture criteri on to give a calculati onal dam age param eter of 30.0.T he flange fo rging p rocess fo r a heavy hydro 2generato r shaft w as si m ulated using D efo r m 3D to p redict the crack initiati on trends and zones in a ho llow up setting p rocess .T he op ti m um fo rging design is recomm ended to use a p ress distance variati on rate of less than 8%in a single step and less than 45%in the local ho llow up setting p rocess .

Key words :hydro 2generato r shaft;fo rging crack;ductile fracture;

C &L criteri on;

D efo r m softw are

大型水轮机主轴为锻焊结构,属大型筒体类锻

件。主轴中内法兰锻件在锻造成形过程中,极易因工艺不当而产生裂纹缺陷,造成整个锻件报废。从局部受力角度分析,裂纹的产生形式主要有两种,即由拉应力引起的裂纹和由剪应力引起的裂纹。金属材料在上述应力状态下,材料内部固有缺陷(气孔、夹杂和裂纹等)处首先形成微裂纹,并以一定形式扩展、汇集,直至造成金属材料断裂或表面开裂。因此,预测和预防锻造过程中裂纹的萌生和发展趋势,是提高此类大型筒体类锻件质量和产品合格率的重要手段[1]

锻造生产过程中,金属材料处于塑性状态,因此其断裂形式多为延性断裂。在众多延性断裂判断准则中,以Cockcroft &L atham 延性断裂准则(C &L

准则)使用最为广泛。其表达式为

[2]

Εf

0ΡλΡ3

Ρ

λd Εγ=C .(1)

其中:Ρλ和Εγ分别为等效应力和等效应变;Εγf 为形成断裂时的等效应变;C 为延性断裂破坏因子;Ρ3

为最大主应力,拉应力时取正值,压应力时取0。C &L 准则表明,当金属材料局部塑性变形功达到某一临界值(即破坏因子C )时,该局部即发生断裂并产生裂纹。研究表明,C &L 准则能够较好地预测金属

材料塑性变形过程中的延性断裂[3-6]

国内生产大型水轮机主轴内法兰锻件的主要用钢为20Si M n 。本文采用物理模拟和数值模拟相结合的方法,研究20Si M n 钢的高温力学性能和延性断裂性能;结合生产实际,对该类锻件锻造过程裂纹缺陷进行预测和预防,并对锻造工艺方案进行优化。

1 裂纹萌生的高温模拟实验

1.1 实验设计

为掌握锻造过程中锻件内部拉应力、剪应力状

态对裂纹缺陷萌生的影响,使用Gleeb le3500热力学模拟实验机,对20Si M n钢进行高温纯拉伸、纯扭转力学性能实验。实验用料化学成分如表1所示[7]。锻造温度区间为800~1200℃[8],据此将拉伸实验分为800、900、1000、1100、1200℃五个变形温度档和0.5、0.05、0.005s-1三个应变速率档进行;扭转实验分为5、0.5、0.05s-1三个应变速率档进行,变形温度档与拉伸实验相同。试样在一定时间内保温后降至变形温度进行拉伸或扭转,直至断裂或出现明显颈缩和产生塑性失稳。

表1 20Si M n钢主要化学成分质量分数化学成分

w×100

JB T127022002规定实验用材料C0.16~0.220.18

Si0.60~0.800.71

M n1.00~1.301.11

S≤0.0250.018

P≤0.0250.007

1.2 数据分析

根据金属材料断裂理论[1,9],拉伸实验中材料在应力出现峰值时开始失效,宏观表现为产生颈缩,微观表现为内部微裂纹开始形成;而在高温扭转实验中,裂纹在材料发生塑性失稳时萌生[10]。定义材料

形成断裂即裂纹萌生时的应变为临界应变Ε

f

。由实验得到各种条件下20Si M n钢的高温拉伸和扭转流

动应力曲线,并将其临界应变Ε

f汇总整理,得图1。

由图1a可以看出,20Si M n钢高温拉伸裂纹萌生的临界应变整体随变形温度的增加而增大,但在900℃以前增大趋势不明显,较高应变速率下甚至有所下降。可见900℃以下时20Si M n钢塑性不佳,不宜进行较大拉应变量锻造加工。同时,临界应变随应变速率的增加而减小,可见在较低的应变速率下,该材料呈现更好的塑性和流动性,同时由于动态再结晶等软化机制的存在,也使其更加易于释放局部弹性变形能,有利于避免锻造裂纹的产生。

由图1b可见,20Si M n钢高温扭转裂纹萌生的临界应变整体随变形温度的增加而增大,而在较高应变速率(Ε?=5s-1)和1

000~1100℃下存在一个温度不敏感区,即临界应变基本不随变形温度而改变。同时,临界应变整体上随扭转应变速率的增加而减小,但在900℃以下存在一个应变速率不敏感区。整体而言,较高的温度和较低的扭转应变速率将有利于避免锻造过程中剪应力裂纹的产生。

图1 20Si M n钢应力裂纹产生临界应变规律曲线

综上所述,20Si M n钢在进行大型锻造件生产加工时,为避免裂纹萌生,应尽可能降低裂纹易生位置的拉伸和剪切应变速率,尽量创造静水压力的应力条件,并将锻造温度控制在900℃以上。

2 基于C&L准则的破坏因子求解

传统的C&L准则破坏因子求取办法,是用数值模拟方法重现物理模拟的过程,记录特定节点单元的应力应变历史,将其产生断裂前所有时刻的最大主应力对等效应变进行积分,得到破坏因子C的具体数值[4]。该方法计算过程繁琐,且其结果精度受数值模拟精度影响较大。本文发现,在近似理想的纯拉和纯剪等单一应力状态下,C&L准则积分式可以通过对特殊节点单元进行一定的处理得到简化,并可直接通过物理模拟实验数据求取C。

2.1 拉应力延性断裂破坏因子

拉伸实验中,试样中心变形区承受单向拉应力,故其最大主应力Ρ3等于轴向拉应力Ρ

A X I A L

,即

Ρ3=ΡA X I A L.

由于单向应力状态时,主应变为Ε

1

,而Ε2=Ε3,

又有塑性变形时Ε

1

+Ε2+Ε3=0,可以得到

Εγ=

2

3

(Ε1-Ε2)2+(Ε2-Ε3)2+(Ε3-Ε1)2=

667清华大学学报(自然科学版)2008,48(5)

Ε1=ΕAX I A L .

即单向拉伸状态下,等效应变等于主应变即轴向应

变。据此,C &L 准则中式(1)可以替换为

Εf

ΡA X I A L

d ΕAX I A L =C .(2)

即直接对试样萌生裂纹之前的轴向拉应力和轴

向应变求取积分,可得到材料的拉应力破坏因子。2.2 剪应力延性断裂破坏因子

扭转实验中,试样外表面变形区任一点均为纯剪切状态,由von M ises 屈服准则得到其最大主应

力Ρ3

等于剪应力Σ,等效应变由对称性可简化为Ε

γ=Χ3

.因此,在纯剪状态下式(1)可以替换为

Εf

13

Σd Χ=C .(3)

即直接对试样萌生裂纹之前的扭转应力和扭转应变求取积分后除以

3,可得剪应力破坏因子。

2.3 20Si M n 钢延性断裂破坏因子

将实验得到20Si M n 钢在高温拉伸和高温扭转

状态下的流动应力曲线,分别带入式(2)和(3)进行积分计算,求得各温度下材料的破坏因子的热力学实验计算值。同时利用D efo r m 3D 建立该热力学实验过程的数值模拟模型,将模型试样拉伸和扭转至对应的临界应变,再选取对应节点单元根据式(1)进行积分计算

,求得各温度下破坏因子的数值模拟计算值。上述两种方法的计算结果如图2所示。

图2 20Si M n 钢延性断裂破坏因子均值分布

由图2可见,各温度下由拉伸和扭转实验计算得到的破坏因子数值无明显区别,表明基于C &L 准则的破坏因子可以比较全面地反映金属材料在各种应力条件下的延性断裂趋势。综合计算得到20Si M n 钢的破坏因子均值为30.0,样本标准差1.6。同时,热力学实验计算结果和数值模拟计算结

果基本吻合(数值模拟结果均值为31.2),验证了本文提出方法的合理性和适用性。2.4 误差分析

由于热力学实验中,试样变形区与均温区不能

够完全重合,因此造成了本文中有以下误差存在。

1)破坏因子热力学实验计算值随变形温度升高而略有降低。拉伸和扭转实验中,试样变形区内均存在温度梯度,变形区两端温度要低于中心温度,而且这种现象会随着变形温度的升高而愈加严重。温度梯度的存在会造成变形区两端塑性降低,并导致试样整体塑性降低,材料在其真实临界应变之前就将发生失效,故破坏因子热力学实验计算值要略低于其真实值,并随变形温度的升高而愈加降低。

2)破坏因子热力学实验计算值整体低于其数值模拟计算值。同前,数值模拟计算过程没有能够体现出试样变形区温度梯度的存在,材料在其真实临界应变之后才会发生失效,因此求得的破坏因子值要略高于其真实值和同等条件热力学实验计算值。

综上分析,20Si M n 钢的破坏因子真实值应在上述数值模拟计算值和热力学实验计算值之间。

3 空心镦粗过程的数值模拟分析

某700MW 级大型水轮机主轴内法兰锻件尺寸如图3所示。由于其尺寸特点为径向厚度相对较小((D -d ) (2h )=2.5),因此终锻成形不适宜采用拔长扩孔

,而需采用空心镦粗。考虑到水压机吨位等设备因素,终锻成形应采用局部空心镦粗。

单位:m

图3 700MW 水轮机主轴内法兰锻件尺寸

采用D efo r m 3D V ersi on 5.0软件,针对该内法兰锻件终锻局部空心镦粗工艺进行数值模拟研

究。模拟试件采用1 1的比例进行构造。锻件采用刚塑性模型,上下平砧为刚体模型,为简化计算,取环形锻件的1 2作为计算对象。水压机速率设定为10mm s ,端面摩擦采用剪应力模型,其中摩擦因子

m 在高温锻造情况下设为0.7。材料的流动应力曲

线和动态软化模型等本构关系通过物理实验测得。

如图4a 所示,在变形区边界处破坏因子数值较高,个别位置已经超出了极限值30.0。应力分析表

7

67董岚枫,等: 大型水轮机主轴锻造过程裂纹缺陷的预防

明,该处存在一条较强的拉应力带。在单砧压下量为5%时,计算未出现破坏因子超标位置。因此,该锻件局部空心镦粗时单砧压下量应低于10%,以控制在5%~8%为宜。

由图4b 可见,此时错砧处承受较多的压应力而承受较少的拉应力和剪应力,因此破坏因子数值未进一步增加,错砧处裂纹萌生趋势没有加剧。而在第2砧变形区边界处,同样存在一条类似第1砧边界处的拉应力带,并造成新一轮裂纹萌生趋势。

由图4c 可见,上下端面内外沿处和锻件外表面处破坏因子数值较高,个别位置已经超出30.0。应力分析表明,在上下端面内外沿处由于端面摩擦的存在形成了较强的剪切应力带,而锻件外表面处则存在着较强的切向拉伸应力带,尤其以H 2高度处为最强。在镦粗变形量为40%时,计算未出现破坏因子超标位置。因此,该锻件空心镦粗时镦粗变形量应低于50%,以控制在40%~45%为宜

图4 700MW 水轮机主轴内法兰锻造过程破坏因子计算分布

4 结 论

1)锻造过程延性断裂裂纹产生于局部塑性变

形功超过材料临界值,而提高变形温度和降低变形速率都可以有效预防锻造裂纹的萌生。

2)统计计算得到了20Si M n 钢基于C &L 延性断裂准则的破坏因子。

3)大型筒体锻件空心镦粗工艺中,单砧压下量应控制在5%~8%左右,镦粗变形量应不超过45%,以避免产生各种形式的锻造裂纹。

参考文献 (References )

[1]汪大年.金属塑性成形原理[M ].北京:机械工业出版社,

1986.

[2]Cockcroft M G,L atham D J.D uctility and the wo rkability of m etals [J ].J Inst M et ,1968,96:33-39.

[3]

方刚,雷丽萍,曾攀.金属塑性成形过程延性断裂的准则及

其数值模拟[J ].机械工程学报,2002,38(增刊):21-25.

FAN G Gang,L E I L i p ing,ZEN G Pan .C riteria of m etal ductile fracture and num erical si m ulati on fo r m etal fo rging [J ].Ch in J M ech E ng ,2002,38(supp ):21-25.(in Ch inese )

[4]

陈 实,周贤宾.成形极限预测韧性断裂准则及屈服准则的影响[J ].北京航空航天大学学报,2006,32:969-973.

CH EN J iesh i,ZHOU X ianbin .Suitability of som e ductile

fracture criteria and yield criteria in fo rm ing li m it p redicti on [J ].J B eij ing U niv A ero A stro ,2006,32:969-973.(in Chinese )

[5]BAO Yingbin,W ierzbich i T.A comparative study on vari ous

ductile crack fo r m ati on criteria [J ].J E ng M a ter T echnol ,2004,126:314-324.[6]

C lift S E,H artley P,Sturgess C E N ,et al .F racture

p redicti on in p lastic defo rm ati on p rocess [J ].In t J M ech S ci ,

1990,32:1-17.[7]

JB T 127022002.水轮机、水轮发电机大轴锻件技术条件[S ].北京:机械工业出版社,2003.JB T 127022002.

T echnical standard of hydro 2generato r

shaft fo rgings [S ].Beijing:China M achine P ress,2003.(in Chinese )

[8]

李曼云,孙本荣.钢的控制轧制和控制冷却技术手册[M ].北京:冶金工业出版社,1990.

[9]丁建波.低碳钢拉伸试样端口分析[J ].九江职业技术学院

学报,2003(4):18-20.D I N G J ianbo.A nalysis of fracture shape of low 2carbon steel

tensile test samp le [J ].J J iu j iang V ocational &T echnica l

C olleg e ,2003(4):18-

20.(in Ch inese )

[10]马庆贤.大型管板等饼类锻件变形规律及夹杂性裂纹的模拟

研究[D ].北京:清华大学,1993.

M A Q ingxian .M odeling study on defo rm ati on nature and crack o riginated from inclusi ons in heavy disc fo rgings [D ].Beijing:T singhua U niversity,1993.(in Chinese )

8

67清华大学学报(自然科学版)2008,48(5)

水轮机转轮叶片裂纹分析及处理

水轮机转轮叶片裂纹分析及处理 马庆增,阚伟民 (广东省电力试验研究所,广东广州510600) 摘要:水轮机转轮的叶片出现裂纹会严重威胁水电厂的安全经济运行。通过对水轮机转轮叶片进行有限元计算分析,得出应力过于集中通常是叶片裂纹产生的主要原因,此外,叶片也存在设计、制造、运行方面的问题,为此,介绍了水轮机转轮叶片裂纹金属无损探伤的常用处理方法和一般工艺。 关键词:水轮机;转轮叶片;应力;有限元;裂纹 水轮机转轮叶片裂纹的频繁产生,对机组安全运行构成很大威胁,也给电厂带来极大的经济损失,因此,分析裂纹产生原因,并对易产生裂纹部位进行无损探伤检查,对及时处理缺陷,消除事故隐患是十分必要的。 1裂纹产生原因分析 1.1应力集中 采用有限元计算分析得出,转轮在水压力及离心力的作用下,大应力区主要分布在转轮叶片周边上,按第三强度理论计算的相当应力沿叶片周边的分布见图1。从图1可以看出,转轮叶片存在四个高应力区,他们的位置在叶片进水边正面(压力分布面)靠近上冠处;叶片出水边正面的中部;叶片出水边背面靠近上冠处;叶片与下环连接区内[1]。 1.2铸造缺陷及焊接缺陷 铸造气孔、铸造砂眼等在外部应力的作用下可能会成为裂纹源,造成裂纹的产生。由于转轮叶片与上冠、下环的厚度相差大,在冷却过程中易产生缩孔、疏松等。铸焊结构的转轮,若焊接工艺不当或焊工没有按照焊接工艺的要求进行焊接,在焊缝及热影响区也会出现裂纹(见图2)。

1.3原设计问题 转轮叶片与上冠、下环间的过渡R角设计较小,引起应力集中。 1.4运行上的原因 长期低负荷、超负荷或在震动区运行会使叶片在交变应力作用下产生裂纹或裂纹情况加剧。 2裂纹无损探伤检查 在大修时对转轮进行无损探伤检查,及时处理缺陷,消除事故隐患是十分必要的。严重的裂纹等缺陷用肉眼和放大镜外观检查即可发现,但较细小的缺陷和内部的缺陷必须用无损探伤检查。常用的无损检测方法有以下几种:磁粉探伤、渗透探伤、超声波探伤、金属磁记忆、射线检测等。裂纹易于产生的应力集中部位,如叶片进水边正面(压力分布面)靠近上冠处、叶片出水边正面的中部、叶片

裂缝原因分析和处理报告

xxxxxx工程 裂 缝 评 估 报 告 xxxx检验站二O一二年九月

xxx工程裂缝评估报告 报告编号:xxxx 报告编制: 审核: 主检: 批准: xxxxx检验站 二O一二年九月

第一章概述 1.2检测评定手段及目的 (1)外观检查:检测顶板裂缝宽度,评定顶板外观质量; (2)超声波法:检测裂缝深度。 1.3评估依据 本项目研究所依据的相关规范、规程以及相关文件主要有: (1)《超声法检测混凝土缺陷技术规程》(CECS 21:2000)。 (2)《混凝土结构设计规范》(GB 50010—2010)。 第二章外观检查、裂缝宽度和深度检测 2.1概述 在现场检测期时,对xxxxx箱涵左顶板外观进行了详细的检测,检测内容包括裂缝宽度、桥墩外观质量、裂缝深度检测等。 现场检测发现桥墩墩身出现纵向裂缝。裂缝宽度检测测采用KON-KF(B)裂缝宽度监测仪(见附图)。裂缝深度检测采用KON-FSY裂缝深度测试仪。 xxxxx箱涵共分三块施工,左块于2012年9月16日16点左右施工,右块于9月16日2点左右施工,中块于9月17日施工。只有在顶板左块于浇筑第二天出现了20多起纵向裂缝,少量横向裂缝。裂缝最长1.2m,80%的裂缝长度30-50mm;裂缝间间距80%为20-30mm;裂缝宽度为0.35-2.44mm;裂缝深度为9-51mm,其中85%的裂缝深度为25-30mm,其中2条裂缝深度为51mm。 图1 裂缝分布示意图

2.2原因分析 顶板裂缝:顶板裂缝形成原因多样复杂,一般以下几方面原因较突出。 (1)混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后(如爆晒、风吹),易形成干缩裂缝。 (2)模板浇筑混凝土之前洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。 (3)混凝土浇捣后在初凝前后没有进行抹平压光和养护不当也易引起裂缝。 (4)顶板浇注后,上人上料过早,上料集中,也易造成裂缝。 (5)混凝土过量使用外加剂,或水灰比、坍落度过大 结合工程调查和检测分析,裂缝产生的原因可能为①混凝土坍落度过大;②初凝前后没有进行抹平压光,造成表面水分蒸发后,表面砂浆层干缩大于下层混凝土,易形成干缩裂缝;③顶板左板混凝土浇筑后初凝在晚上8点左右,终凝在晚上2点左右,这时内外温差最大,且混凝土在刚失去塑性,强度很低,这也加大了表面收缩开裂。 第三章结论和建议 3.1结论 xxxxx顶板出现的裂缝进行超声波分析和外观检测,综合分析各类测试结果,结论如下: (1)xxxxx工程k0+628箱涵左顶板的纵向裂缝宽度在0.35-2.44mm之间, 大于《混凝土结构设计规范》(GB 50010—2010)规定的裂缝宽度容许值]=0.3mm。此类裂缝属混凝土表面收缩引起的干缩裂缝。 [W lim (2)通过非金属超声波分析仪对检测点检测,结果表明:裂缝深度在85%在25mm-30mm之间,裂缝开展深度值大部分在混凝土保护层内。 综合分析该裂缝对结构无显明影响,但影响结构的整体性和耐久性。 3.2建议 (1)加强对顶板的裂缝观测:观察其宽度和长度是否有加深加长的趋势。 (2)对于顶板裂缝进行有效的封闭处理。(详见第四章) 总之,xxxx顶板裂缝按上述建议进行有效处理后,结构的整体性和耐久

砼表面裂缝原因分析

砼表面裂缝原因分析 The manuscript was revised on the evening of 2021

砼表面裂缝原因分析 一、混凝土裂缝类型及成因 实际上,钢筋混凝土结构裂缝的成因复杂而繁多,甚至多种因素互相影响,但每一条裂缝均有其产生的一种或几种原因,其中最常见的是混凝土早期裂缝,混凝土早期裂缝有以下几种:1、塑性沉降裂缝此类裂缝产生的主要原因是由于混凝土骨料沉降时受到阻碍(如钢筋、模板)而产生的。这种裂缝大多出现在混凝土浇注后小时至3小时之间,混凝土尚处在塑性状态,混凝土表面消失水光时立即产生,沿着梁及板上面钢筋的走向出现,主要是混凝土塌落度大、沉陷过高所致。另外在施工过程中如果模板绑扎的不好、模板沉陷、移动时也会出现此类裂缝。 1、塑性收缩裂缝 此类裂缝产生的主要原因是混凝土浇筑后,在塑性状态时表面水分蒸发过快造成的。这类裂缝形状不规则、长短宽窄不一、呈龟裂状,深度一般不超过50mm.多在表面出现,产生的原因主要是混凝土浇注后3—4小时左右表面没有被覆盖,特别是平板结构在炎热或大风天气混凝土表面水分蒸发过快,或者是基础、模板吸水过快,以及混凝土本身的水化热高等原因造成混凝土产生急剧收缩,此时混凝土强度趋近于零,不能抵抗这种变形应力而导致开裂。 2、温度的变化与湿度的变化 裂缝:混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。 3、原材料质量引起的裂缝

锻造裂纹与热处理裂纹原理形态

一:锻造裂纹与热处理裂纹形态 一:锻造裂纹一般在高温时形成,锻造变形时由于裂纹扩大并接触空气,故在100X或500X 的显微镜下观察,可见到裂纹内充有氧化皮,且两侧是脱碳的,组织为铁素体,其形态特征是裂纹比较粗壮且一般经多条形式存在,无明细尖端,比较圆纯,无明细的方向性,除以上典型形态外,有时会出现有些锻造裂纹比较细。裂纹周围不是全脱碳而是半脱碳。 淬火加热过程中产生的裂纹与锻造加热过程形成的裂纹在性质和形态上有明显的差别。对结构钢而言,热处理温度一般较锻造温度要低得多,即使是高速钢、高合金钢其加热保温时间则远远小于锻造温度。由于热处理加热温度偏高,保温时间过长或快速加热,均会在加热过程中产生早期开裂。产生沿着较粗大晶粒边界分布的裂纹;裂纹两侧略有脱碳组织,零件加热速度过快,也会产生早期开裂,这种裂纹两侧无明显脱碳,但裂纹内及其尾部充有氧化皮。有时因高温仪器失灵,温度非常高,致使零件的组织极粗大,其裂纹沿粗大晶粒边界分布。 结构钢常见的缺陷: 1 锻造缺陷 (1)过热、过烧:主要特征是晶粒粗大,有明显的魏氏组织。出现过烧说明加热温度高、断口晶粒粗大,凹凸不平,无金属光泽,晶界周围有氧化脱碳现象。 (2)锻造裂纹:常产生于组织粗大,应力集中处或合金元素偏析处,裂纹内部常充满氧化皮。锻造温度高,或者终端温度低,都容易产生裂纹。还有一种裂纹是锻造后喷水冷却后形成的。 (3)折叠:冲孔、切料、刀板磨损、锻造粗糙等原因造成了表面缺陷,在后续锻造时,将表面氧化皮等缺陷卷入锻件本体内而形成折缝。在显微镜上观察时,可发现折叠周围有明显脱碳。 2 热处理缺陷 (1)淬裂:其特点是刚健挺直,呈穿晶分布,起始点较宽,尾部细长曲折。此种裂纹多产生于马氏体转变之后,故裂纹周围的显微组织与其它区域无明显区别,也无脱碳现象。(2)过热:显微组织粗大,如果是轻度过热,可采用二次淬火来挽救。 (3)过烧:除晶粒粗大外,部分晶粒已趋于熔化,晶界极粗。 (4)软点:显微组织有块状或网状屈氏体和未溶铁素体等。加热不足,保温时间不够,冷却不均匀都会产生软点。 二:锻造裂纹与热处理裂纹产生原因 锻造裂纹:钢在锻造过程中,由于钢材存在表面及内部缺陷,如发纹、砂眼、裂纹、夹杂物、皮下气泡、缩孔、白点和夹层等,都可能成为锻打开裂的原因。另外,由于锻打工艺不良或操作不当,如过热、过烧或终锻温度太低,锻后冷却速度过快等,也会造成锻件开裂。 热处理裂纹:淬火裂纹是宏观裂纹,主要由宏观应力引起。在实际生产过程中,钢制工件常由于结构设计不合理,钢材选择不当、淬火温度控制不正确、淬火冷速不合适等因素,一方面增大淬火内应力,会使已形成的淬火显微裂纹扩展,形成宏观的淬火裂纹,另一方面,由于增大了显微裂纹的敏感度,增加了显微裂纹的数量,降低了钢材的脆断抗力Sk,从而增大淬火裂纹的形成可能性。 影响淬裂的因素很多,这里仅将生产中常碰到的几种情况作一介绍: 1.原材料已有缺陷而导致的淬裂:

淬火开裂原因

淬火开裂原因 1材料弄混 2冷却不当,在M S点以下快冷,因组织应力大而开裂。淬火油中含水过多。 3未淬透工件心部硬度为36~45时,在淬硬层与非淬硬层交界处易形成淬火裂纹。 4具有最危险尺寸的工件易形成淬火裂纹。全淬透最危险尺寸是:水淬为8~15(mm),油淬为25~40(mm)。 5严重表面脱碳易形成网状裂纹。严重表面脱碳的高碳钢中,脱碳层的马氏体比体积小。易形成表面拉应力而导致形成网状裂纹。 6内径较小的深孔工件,由于内表面较外表面冷速慢,使得残余热应力作用小,所受的残余拉应力较外表面大,内壁易形成平行的纵向裂纹。 7淬火加热温度过高,引起晶粒粗化,晶界弱化,钢的脆断强度降低,易淬火开裂。 8重复淬火前,未进行中间退火,过热倾向大,前项淬火的应力还未消除,又增加了新的应力,应力叠加易开裂。另外,多次加热引起表面脱碳,促使开裂。 9大截面高合金钢工件淬火加热时,未经预热或加热速度过快,加热时的应力和组织应力增大,引起开裂。 10原始组织不良。如高碳钢球化退火质量欠佳,其组织是细片状珠光体和点状珠光体时,过热倾向大,晶粒粗化,马氏体含碳量高,淬火开裂倾向大。 11原材料显微裂纹,非金属夹杂物,严重的碳化物偏析,淬火开裂倾向增大。如非金属夹杂物,严重的碳化物沿轧制方向成带状分布,由于力学性能的各项异性,其横向性能比纵向性能低(30~50)%,在表面最大拉应力作用下,常呈纵向开裂。 12锻造裂纹在淬火时开裂。在普通炉内淬火加热时,破断面上有黑色的氧化皮,裂纹两侧有脱碳层。 13过烧裂纹。裂纹多呈网状,晶界有氧化或熔化现象。 14淬透性低的钢,被钳子夹持的地方,冷速慢,有非马组织,钳口位于淬硬层与非淬硬层交界处时易开裂。 15工件的尖角,孔,截面突变及粗加工刀痕等,因应力集中引起开裂。 16高速钢,高铬钢分级淬火工件,未冷至室温,就急于清洗而引起开裂。 17深冷处理因急冷,急热,引起较大的组织和热应力,且低温时,材料的淬断强度低,易开裂。 18淬火后未及时回火,工件内部的显微裂纹在淬火应力作用下扩展形成淬火裂纹。

红石电站水轮机转轮叶片裂纹的分析及处理(正式)

编订:__________________ 审核:__________________ 单位:__________________ 红石电站水轮机转轮叶片裂纹的分析及处理(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3394-86 红石电站水轮机转轮叶片裂纹的分 析及处理(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1机组参数 白山发电厂位于吉林省桦甸市境内,是“一厂两坝三站”的大型水力发电厂,也是东北电网中最大的水电厂,在电网中担负调峰、调频和事故备用。该厂总装机容量1700MW,其中白山右岸电站900MW(3×300MW),白山左岸电站600MW(2×300MW),红石电站200MW(4×50MW)。红石电站发电机组为立轴半伞式,水轮机转轮叶片材质是ZGoCr13Ni4Mo,型号为ZD190-LH-600。其参数为:最高水头256m;最低水头228m;额定转速1071r/min;额定功率5155MW;设计水头233m;设计流量251m3/s;飞逸转速240r/min;吸出高度-4m;最高效率91%;叶片安放角8°;叶片数5;水轮机转速上升率50%;蜗壳

混凝土表面裂缝产生的原因及处理方法通用版

安全管理编号:YTO-FS-PD798 混凝土表面裂缝产生的原因及处理方 法通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

混凝土表面裂缝产生的原因及处理 方法通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz'no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混凝土浇筑完毕后立即将表面覆盖并及时洒水养生。 对于体积过大的混凝土,应分层浇筑。在上层混凝土浇筑的过程中,会在混凝土在自重作用下产生沉降。当混

锻造工艺

复杂弯轴类锻件辊锻-摩擦压力机模锻复合锻造工艺 一、前言 复杂弯轴类锻件的最佳成形法一直是锻造行业致力研究的问题,前些年我国轻轿车生产数量不大,没有形成规模经营,故轻轿车复杂弯轴锻件的生产主要以传统的锤上模锻工艺进行小批量生产,有的厂家甚至采用自由锻—胎模锻工艺,需几火次才能锻成。近年来,我国轻轿车生产迅速发展,生产批量越来越大,整机制造水平越来越高,对复杂弯轴类锻件而言,不仅形状复杂,而且锻件尺寸精度,表面质量等方面的要求也更加严格,故探索轻轿车复杂弯轴类锻件的合理锻造方法,显得尤为重要。根据一汽轻轿车生产实际需求,在试验研究的基础上,我们采用了辊锻制坯—摩擦压力机模锻复合工艺替代传统的锤上模锻,生产了轻型车左转向节臂,奥迪轿车左、右下控制臂等五种复杂弯轴类锻件,其锻件技术水平达到了轻型车、奥迪轿车原图纸设计要求,各项技术经济指标均达到了预期目标。 二、工艺分析与方案确定 轻轿车复杂弯轴类锻件,其特点是轴线呈空间曲线形,多向弯曲,截面差与落差大,外形复杂,锻造成形与模具加工难度较大。以左转向节臂(图1)为例,按传统的锤上模锻工艺,一般要采用拨长—滚压—弯曲—锻造等工步。其突出缺点是锻件精度较差,工作时震动噪音大,材料消耗与能耗大,劳动条件差。如采用较先进的热模锻压力机成形法,虽然工人劳动条件好,生产率及锻件尺寸精度较高,也便于实现机械化和自动化,但其突出缺点是制造成本高,不便于拔长、滚压等制坯工步,需配其它辅助设备制坯。 图1 针对现有锻造工艺的诸多问题及复杂弯轴类锻件自身的技术特点,我们确定了辊锻——摩擦压力机模锻复合锻造工艺的方案,其工艺流程为:下料→中频感应加

水轮机转轮叶片裂纹的产生原因及解决措施 应尧

水轮机转轮叶片裂纹的产生原因及解决措施应尧 摘要:要想保证水利工程安全,应对可以影响其安全的因素进行分析。在水利 工程中水轮机的使用时间过长或是其它不利情况会导致其出现裂缝,从而阻碍水 轮机组的正常运行,甚至会导致安全事故的出现,给水利工程带来一定的经济损失。所以要想有效的解决水轮机裂缝问题应找出其中的原因并制定出防治裂缝的 方案,在此基础上提升水轮机转轮的工作效率与使用寿命。 关键词:水轮机;转轮叶片裂纹;产生原因;解决措施 1叶片裂纹产生原因 1.1受力分析 转浆式水轮机与混流式水轮机有一定的区别,混流式水轮机在进行叶片固定时,主要是由上冠与下环来进行固定的,所以没有办法根据水流与相关工作情况 进行调节,这样就需要做好工作流程运行设计工作,如果设计工作出现问题会出 现破坏、无撞击进口以及反向出口条件不佳的情况,会改变水流的方向与水流量,最终使水轮机叶片尾处以及微端水管内部会产生移动旋涡,移动旋涡轮流会出现 交变力,交变力的产生会对水轮机的叶片产生冲击并出现共振效应,强烈的振动 最终会造成叶片裂纹。 1.2工作超负荷 由于水电站工作强度相对较大,所以很多工作人员为了提升水轮机的工作效率,常常会超出工作范围,时间长了转轮机的承受时间会超出其本身的承载力, 这也给叶片带来一定的损伤,并导致安全隐患。在对水轮机进行设计时应对其所 处环境进行深刻的了解,由于地域不同水流情况也有所区别,叶片也会在水的应 力下产生变化,当叶片的最大受力点处于出水口与下环间的连接位置时,其受力 相对较弱,在压力长期作用下会导致叶片出现开裂的情况。由于水轮机在使用过 程中难免会因操作流程不符合标准而产生问题与损伤,焊接位置由于受到水流的 长期冲击会产生轻微的变形与气缝。在水轮机生产制作的过程中会因为一些操作 不精准而导致叶片受损,工作操作强度过高会导致叶片出现裂纹,再加之各部分 零件在连接时不精准,叶片会因水流冲击引起滑动,长时间后会因为其不稳定而 产生裂纹。 2解决水轮机转轮叶片裂缝的措施 2.1保证选型的准确性 水电站在选择水轮机型号时应与实际情况相结合,同时将导致叶片裂缝的原 因进行深入的分析,同时对吸出高度、额定转速以及额定处理等相关参数进行计算,在此基础上合理的选择机型。选择正确的机型可以有效的提升其使用寿命并 可以确保其运营的稳定性。此外,当在水压的作用下叶片所产生的振动频率与涡 列间产生共振,这样也会超出叶片的负荷导致裂纹。 2.2对设计进行进一步的优化 相关的设计单位在进行设计时,首先应对水轮机的整体运行效率进行综合性 的考虑;其次,应对压力没动现象进行考虑;第三,在保证水轮机刚度符合要求 的基础上对静强度要求进考量,以此来避免共振的产生;第四,可以适当的增加 叶片的厚度与叶片上冠与下环的焊接弧度,并尽可能的避免应力的集中,同时, 还应有效的避免共振区的出现,以此来避免叶片裂缝情况的发生。 2.3有效的控制水轮机的制造质量 在完成转轮组装后还应根据相关要求完成焊接工作,焊接工作结束后应对焊

混凝土结构裂缝产生原因分析,继续教育

第1题 造成结构不均匀沉降的原因主要有()个方面? A.3 B.4 C.5 D.6 E.7 答案:C 您的答案:C 题目分数:11 此题得分:11.0 批注: 第2题 有()个因素能引起结构温差裂缝? A.1 B.2 C.3 D.4 E.5 答案:C 您的答案:C 题目分数:11 此题得分:11.0 批注: 第3题 防止碱-集料反应而引起结构裂缝,有()项措施? A.3 B.4 C.5 D.6 E.7 答案:A 您的答案:A 题目分数:11 此题得分:11.0 批注: 第4题 塑性收缩裂缝,一般出现在()天气中?

A.湿热 B.干热 C.大风 D.暴风雨 E.干燥 答案:B,C 您的答案:B,C 题目分数:11 此题得分:11.0 批注: 第5题 ()构件保护层越厚,其在荷载作用下的横向裂缝就越容易出现? A.受拉构件 B.受弯构件 C.受压构件 D.偏心受压构件 E.偏心受拉构件 答案:A,B,D 您的答案:A,B,D 题目分数:11 此题得分:11.0 批注: 第6题 骨料级配不好,易造成结构()。 A.空洞 B.麻面 C.漏筋 D.涨模 E.凝结时间延长 答案:A,B,C 您的答案: 题目分数:12 此题得分:0.0 批注: 第7题 断面配筋率满足设计要求,钢筋规格粗细对结构裂缝影响不大。答案:错误 您的答案:错误

题目分数:11 此题得分:11.0 批注: 第8题 水泥越细,水化热越慢。 答案:错误 您的答案:错误 题目分数:11 此题得分:11.0 批注: 第9题 防止结构养护裂缝,养护水跟水温也有关系。答案:正确 您的答案:正确 题目分数:11 此题得分:11.0 批注: 试卷总得分:88.0 试卷总批注:

抹灰裂缝产生原因及防治措施

引言 抹灰工程是用胶凝材料及其砂浆以薄层涂抹在建筑物表面上直接做成饰面层的装饰工程。抹灰工程分一般抹灰和装饰抹灰,一般抹灰工程在普通等级的装饰工程上应用非常广泛。本文主要讨论室内一般抹灰的施工要点及产生室内抹灰裂缝的主要原因和控制措施。 1 施工要点 1.1 抹灰层的层次 为了保证抹灰层质量,抹灰必须分层操作,通常分为不同构造的三个层次。①底层,主要起与基层粘结作用,并对基层进行初步找平。 ②中层,主要起找平作用,使物面平整,并弥补因底层收缩出现的裂纹。③面层(罩面),主要起装饰作用。 底层灰的用料应根据基层材料种类的不同(如砖、混凝土或加气混凝土等)而选用不同的砂浆。一般底层灰砂浆较常用的是水泥砂浆、石灰砂浆、水泥石灰砂浆。底层灰厚度约为6.8mm。 中层灰浆的种类一般参照底层灰的选择处理,即与底层灰选择同种砂浆,配比也大致相同。厚度略厚于底层灰,约为10mm。 面层灰浆多为麻刀灰、纸筋灰、玻璃丝灰(纤维材料起良好的止裂作用)以及石灰砂浆,高级墙面用石膏灰浆。若用砂浆,配比中砂的用量要略为减少,细度要更细,以保证面层平整细腻。厚度约为2.5mm。 抹灰要分层进行的原因:①抹灰层分作用和用料不同的底层、中

层和面层,当然不能一次完成。②即使各层材料相同,若要一次完成,也有不易压实的操作困难。③厚厚的一层抹灰层自重大,当它超过砂浆与基层的粘结力时,抹灰层会掉落下来。采用分层抹灰,每层薄一些,并且后一层是在前一层6-7成干后抹上,此时前一层与前物面的粘结力已相当大,而后一层与前一层的粘结力只要承受薄薄的后一层自重。④使用含石灰膏的抹灰砂浆时,由于石灰膏的硬化是其主要成分Ca(OH)2 吸收空气中的CO2。生成CaCO3和H2O(水分要蒸发)。而空气中CO2含量很少,所以石灰膏硬化很缓慢。若不分层抹灰,在厚厚的抹灰层深处,石灰膏长时间不能结硬。采用分层抹灰,每层薄一些,各层之间有一定的施工间歇,就能使各层的石灰膏有充分硬化的环境条件。 1.2 抹灰层厚度控制 内墙抹灰层平均总厚度应不大于下列规定:普通抹灰—l8mm;中级抹灰—20mm;高级抹灰—25mm。抹灰层平均总厚度大于质量标准规定,不仅要增加造价,而且会影响质量。当抹灰层过厚时:①灰浆层自重大,易产生下垂现象,拉松灰浆与基层的粘结,导致出现空鼓。②抹灰层自重超过灰浆与基层的粘结力时,抹灰层脱落。③灰浆干燥收缩量大,所产生的收缩应力超过灰浆强度时,抹灰层开裂。另外,高级抹灰控制厚度要比普通抹灰大些,这是由于高级抹灰的表面平整度要求比普通抹灰要高些,即表面平整允许偏差要小些,抹灰层的表面平整是靠砂浆层厚度来调整的,表面平整度越高用以调整的砂浆层厚度应越宽裕些。

锻造裂纹成因分析

锻造裂纹 裂纹是锻压生产中常见的主要缺陷之一,通常是先形成微观裂纹,再扩展成宏观裂纹。锻造工艺过程(包括加热和冷却)中裂纹的产生与受力情况、变形金属的组织结构、变形温度和变形速度等有关。锻造工艺过程中除了工具给予工件的作用力之外,还有由于变形不均匀和变形速度不同引起的附加应力、由温度不均匀引起的热应力和由组织转变不同时进行而产生的组织应力。 应力状态、变形温度和变形速度是裂纹产生和扩展的外部条件;金属的组织结构是裂纹产生和扩展的内部依据。前者是通过对金属组织及对微观机制的影响而对裂纹的发生和扩展发生作用的。全面分析裂纹的成因应当综合地进行力学和组织的分析。 (一)形成裂纹的力学分析 在外力作用下物体内各点处于一定应力状态,在不同的方位将作用不同的正应力及切应力。裂纹的形式一般有两种:一是切断,断裂面是平行于最大切应力或最大切应变;另一种是正断,断裂面垂直于最大正应力或正应变方向。 至于材料产生何种破坏形式,主要取决于应力状态,即正应力σ与剪应力τ之比值。也与材料所能承受的极限变形程度εmax及γmax有关。例如,①对于塑性材料的扭转,由于最大正应力与切应力之比σ/τ=1是剪断破坏;②对于低塑性材料,由于不能承受大的拉应变,扭转时产生45°方向开裂。由于断面形状突然变化或试件上有尖锐缺口,将引起应力集中,应力的比值σ/τ有很大变化,例如带缺口试件拉伸σ/τ=4,这时多发生正断。 下面分析不同外力引起开裂的情况。 1.由外力直接引起的裂纹 压力加工生产中,在下列一些情况,由外力作用可能引起裂纹:弯曲和校直、脆性材料镦粗、冲头扩孔、扭转、拉拔、拉伸、胀形和内翻边等,现结合几个工序说明如下。 弯曲件在校正工序中(见图3-34)由于一侧受拉应力常易引起开裂。例如某厂锻高速钢拉刀时,工具的断面是边长相差较大的矩形,沿窄边压缩时易产生弯曲,当弯曲比较严重,随后校正时常常开裂。 镦粗时轴向虽受压应力,但与轴线成45°方向有最大剪应力。低塑性材料镦粗时常易产生近45°方向的斜裂(见图片8-355)。塑性好的材料镦粗时则产生纵裂,这主要是附加应力引起的。 工件的几何形状对应力分布有明显影响。例如,拉伸试棒在缩颈形成前各处可以视为受均匀的单向拉应力,一旦形成缩颈后,缩颈表面就受三向拉应力;镦粗时也有类似的情况,只是应力的符号相反。 工件在冷却过程中所形成的热应力及组织应力在不断变化,其分布方向恰好相反,但从数量上并不能正好抵消;热应力早在高温冷却初期即产生,而淬火组织应力则在较低的温度(Ms以下)时才开始出现;冷至室温后的最终残余内应力,其大小与分布情况取决于热应力与组织应力在每一瞬时相互叠加作用的结果。 对于无同素异构转变的锻件,在锻后空冷或其它缓慢的冷却过程中,热应力通常并不引起严重后果。虽然冷却初期温差较大,表层为拉应力(中心部分受压应力),但因温度较高,塑性较好,不致引起开裂;冷却后期温差不太大,且表层受压应力,所以也不引起开裂。奥氏体(如、50Mn18Cr4WN)的任何大断面锻件都可以直接空冷而不需缓冷,甚至水淬时也不产生裂纹。 组织应力在较低温度下才开始发生,这时材料塑性较低,这是造成冷却时开裂的主要原因。高速钢冷却裂纹及马氏体不锈钢冷却裂纹附近没有氧化脱碳现象也证明了这一点。对于马氏体不锈钢即使采取一些缓冷措施,仍必须退火后才能进行酸洗,否则在腐蚀时易出现应力腐蚀开裂。 W18Cr4V钢锻件一侧因锻后激冷形成的裂纹。加热时温度分布及其变化情况与冷却时正相反,升温过程中表层温度超过心部温度,并且导热性越差,断面越大,温差也越大。 对于热应力,这时表层受压内层受拉,在受拉应力区由于温度低,塑性差有可能形成开裂。在加热初期金属尚处于弹性状态的时候,在加热速度不变的条件下,根据计算,在圆柱体坯料轴心区沿轴向的拉应力是沿径向和切向拉应力值的两倍。因此,加热时坯料一般是横向开裂。 加热过程中由于相变不同时进行也有组织应力发生,但这时由于温度较高,材料塑性较好,其危险程度远较冷锭快速加热时为小。

火车车轮锻造工艺分析(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 火车车轮锻造工艺分析(最新 版) Safety management is an important part of production management. Safety and production are in the implementation process

火车车轮锻造工艺分析(最新版) 铁路交通是我国运输系统的重要组成部分,在国民经济和社会发展过程中,铁路运输扮演着不可替代的重要角色。我国一直以来都十分重视铁路运输的发展。最近几年以来,随着以高铁为代表的新型铁路运输技术的应用,我国铁路运输朝着高速、重载方向发展,车轮在复杂的运行工况和恶劣的工作条件下,受到来自于速度效应和制动方式的双重影响,对其耐磨性、强韧性以及抗疲劳性提出了更高的要求。但是我国现有的车轮锻压生产技术,还不能完全满足铁路运输发展对火车车轮质量的要求。尤其是我国高速列车的车轮,在车轮的制造中,还存在废品率较高的现象。因此,笔者认为,研究火车车轮锻压生产工艺,提高我国火车车轮锻压生产技术水平,制造优质火车车轮,对于降低我国火车整车生产成本,促进铁路运输的发展,有十分重要的现实意义。 1.火车车轮概述。

1.1.我国火车车轮形制特征简析 火车车轮是火车整车零件中的一个关键组成部分,是火车机车生产中技术较高的环节之一。由于火车的种类繁多,工作环境和机车构造也不尽相同,所以火车车轮的结构形式和形制特征也多种多样。一般由轮毂、轮辋、辐板三个部分组成。 火车车轮属于典型的金属塑性成形产品,常常会出现多种内部和外部缺陷。比较常见的有偏心缺陷、组织和填充不完全等缺陷。所以车轮生产中对锻压技术要求较高。 1.2.我国现行车轮生产工艺。 当前包括我国在内的世界各国普遍采用模锻——轧制法(又称整体辗钢车轮生产法)进行火车车轮锻造生产,这一方法主要采用模锻和轧制扩径两个主要步骤来完成车轮主体的成形。和铸造法相比较,该法所生产的车轮内在质量要好很多,与全模锻制造法相比,该法的优点在于对模锻设备的要求较低。全世界有20多个生产厂家,虽然各自的生产工艺有其独有特点,但是总体来说从流程来讲可以分为三个主要步骤:预成型及成型、轧制扩径和压弯冲孔。通过初

混流式水轮机转轮裂纹原因分析及预防措施

混流式水轮机转轮裂纹原因分析及预防措施 混流式水轮机转轮裂纹原因分析及预防措施 水轮机转轮,尤其是中、高比速混流式水轮机转轮中的裂纹现象,在世界各地普遍存在。国外的例子有埃及的阿斯旺高坝、美国的大古力700 MW机,俄罗斯的布拉茨克等。国内有岩滩、李家峡、小浪底、五强溪、二滩等大型水电站,在投运后水轮机转轮都不同程度的出现了裂纹。转轮裂纹严重影响电站的安全运行和经济效益,引起人们的极大关注。 1转轮裂纹的产生原因 转轮为什么会产生裂纹,人们对此做过许多研究,不时地提出一些假设。笔者把转轮裂纹分为规律性裂纹和非规律性裂纹两类。规律性裂纹是指不同叶片上的裂纹具有大体一致的规律,所有叶片都开裂,裂纹的部位和走向也大致相同。非规律性裂纹或者只在个别叶片上发生,或者不同叶片上裂纹的部位、走向和其他特征各不相同。其产生的一般原因分述如下。 1.1规律性裂纹 失效分析结果表明-绝大多数规律性裂纹是疲劳裂纹,断口呈现明显的贝壳纹。叶片疲劳来源于作用其上的交变载荷,而交变载荷又由转轮的水力自激振动引发,这可能是卡门涡列、水力弹性振动或水压力脉动所诱发。 1.1.1卡门涡列 (1)黄坛口水电站1958年投运的4台HL310-LJ-230水轮机,运行不久转轮叶片出水边根部即发生总计67条裂纹。后来查明,在某些水头下,当机组出力在5~8 MW时,叶片出水边卡门涡列频率与叶片自振频率耦合而引起共振,动应力急剧增加,使叶片疲劳开裂。采取修整叶片出水边厚度和形状,提高卡门涡列频率,避开了共振,转轮安全运行多年,再没有发生问题。(2)小浪底水电站水头范围68~141 m,额定出力306 MW。水轮机转轮上冠和下环为13.5不锈钢铸件,叶片由13.5不锈钢热模压后数控加工,再用309 L奥氏体不锈钢焊丝焊成整体。由于是异种钢焊接,转轮焊后不进行消除应力处理。为适应电站水头变幅大和多泥沙的运行条件,水轮机供应商采取了低比转速,小的出口直径(D 2/D 1=0.88),较大的导叶相对高度(b 0/D 1= 0.236),肥大的叶片头部,较厚的叶片出水边(δ=38 mm),喷涂碳化钨和设置筒形阀等技术措施。结果在机组停机过程中,当导叶全关后,由于叶片出水边太厚,转轮中再循环水流所感生的卡门涡与叶片一、二阶弯曲自振频率耦合发生共振,引起巨大动应力并伴生异常声响。在机组大负荷工况下,叶片后的卡门涡列与叶片高阶(五阶)自振频率耦合而引发水轮机固定部件的振动和噪音,

裂纹原因分析

裂纹 裂纹是锻压生产中常见的主要缺陷之一,通常是先形成微观裂纹,再扩展成宏观裂纹。锻造工艺过程(包括加热和冷却)中裂纹的产生与受力情况、变形金属的组织结构、变形温度和变形速度等有关。锻造工艺过程中除了工具给予工件的作用力之外,还有由于变形不均匀和变形速度不同引起的附加应力、由温度不均匀引起的热应力和由组织转变不同时进行而产生的组织应力。 应力状态、变形温度和变形速度是裂纹产生和扩展的外部条件;金属的组织结构是裂纹产生和扩展的内部依据。前者是通过对金属组织及对微观机制的影响而对裂纹的发生和扩展发生作用的。全面分析裂纹的成因应当综合地进行力学和组织的分析。 (一)形成裂纹的力学分析 在外力作用下物体内各点处于一定应力状态,在不同的方位将作用不同的正应力及切应力。裂纹的形式一般有两种:一是切断,断裂面是平行于最大切应力或最大切应变;另一种是正断,断裂面垂直于最大正应力或正应变方向。 至于材料产生何种破坏形式,主要取决于应力状态,即正应力σ与剪应力τ之比值。也与材料所能承受的极限变形程度εmax 及γmax有关。例如,①对于塑性材料的扭转,由于最大正应力与切应力之比σ/τ=1是剪断破坏;②对于低塑性材料,由于不能承受大的拉应变,扭转时产生45°方向开裂。由于断面形状突然变化或试件上有尖锐缺口,将引起应力集中,应力的比值σ/τ有很大变化,例

如带缺口试件拉伸σ/τ=4,这时多发生正断。 下面分析不同外力引起开裂的情况。 1.由外力直接引起的裂纹 压力加工生产中,在下列一些情况,由外力作用可能引起裂纹:弯曲和校直、脆性材料镦粗、冲头扩孔、扭转、拉拔、拉伸、胀形和内翻边等,现结合几个工序说明如下。 弯曲件在校正工序中(见图3-34)由于一侧受拉应力常易引起开裂。例如某厂锻高速钢拉刀时,工具的断面是边长相差较大的矩形,沿窄边压缩时易产生弯曲,当弯曲比较严重,随后校正时常常开裂。 镦粗时轴向虽受压应力,但与轴线成45°方向有最大剪应力。低塑性材料镦粗时常易产生近45°方向的斜裂(见图片8-355)。塑性好的材料镦粗时则产生纵裂,这主要是附加应力引起的。 工件的几何形状对应力分布有明显影响。例如,拉伸试棒在缩颈形成前各处可以视为受均匀的单向拉应力,一旦形成缩颈后,缩颈表面就受三向拉应力;镦粗时也有类似的情况,只是应力的符号相反。

混凝土表面裂缝产生的原因及处理方法

1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz’no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混凝土浇筑完毕后立即将表面覆盖并及时洒水养生。 对于体积过大的混凝土,应分层浇筑。在上层混凝土浇筑的过程中,会在混凝土在自重作用下产生沉降。当混凝土初凝到未终凝前这段时间内,如果遇到钢筋或模板的连接螺栓等物体时,这种沉降现象就会受到阻挠产生裂缝。特别是当模板存在不平整或粉刷的脱膜剂不均匀时,模板的摩擦力也会阻止沉降,以至在混凝土的垂直表面产生裂缝。水泥混凝土在硬化过程中会产生并释放大量的水化热,使混凝土内部温度不断升高,在大体积混凝土内,水化热使温度升高的现象更加明显,致使在混凝土表面与内部形成很高的温差,特别是在桥梁大体积承台混凝土浇筑中,

现场实测内外温差有时会达到50℃以上。当表层混凝土收缩时受到阻碍,混凝土的受拉一旦超过混凝土的应变力将产生裂缝。为尽量减少收缩约束以使混凝土能有足够强度抵抗所引起的应力反应,就必须采取措施控制混凝土内部温度升温的速率。在混凝土中掺加适量的矿粉及煤灰,能使水化热释放速度减缓;控制原材料的温度,即在混凝土内部采用冷却管道以循环水也能阻止混凝土内部升温的速率。 在拌制水泥混凝土时,同一混凝土使用不同品牌的水泥也会使昆凝土产生裂缝。在混凝土施工时,应严禁不同品牌、不同标高的水泥混在一起使用。碱性骨料也会引起混凝土表面产生裂缝。由于硅酸盐水泥中会有碱性金属成份(钠和钾),因此,混凝土内的孔隙液体中氢氧根离子的含量较高,这种高碱溶液和某些骨料中的活性二氧化硅发生反应,产生碱硅胶,碱硅胶吸收水份膨胀后产生的膨胀力会使混凝土产生裂缝。 对于混凝土浅层裂缝的修补通常是采用涂刷水泥浆或低粘度聚合物封堵以防止水份侵入;对于较深或较宽的裂缝,就必须采用压力灌浆技术修补,修补工作要及时,使混凝土达到内实外光的质量要求。 2 混凝土表面产生破损的原因及处理方法 混凝土表面破损包括:表面产生蜂窝,麻面、表面产生气孔,表面冲蚀等。对于表面蜂窝,主要原因是振捣不到位引起,在施工中只要加强责任心,振捣到位就能避免,现针对表面麻面,气

制造工艺详解——铸造

制造工艺详解——铸造 铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。 一、铸造的定义和分类 铸造的定义:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。 常见的铸造方法有砂型铸造和精密铸造,详细的分类方法如下表所示。 砂型铸造:砂型铸造——在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 精密铸造:精密铸造是用精密的造型方法获得精确铸件工艺的总称。它的产品精密、复杂、接近于零件最后形状,可不加工或很少加工就直接使用,是一种近净形成形的先进工艺。 铸造方法分类 二、常用的铸造方法及其优缺点 1. 普通砂型铸造

制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用的铸造砂是硅质砂,硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。 砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分 为粘土湿砂型、粘土干砂型和化学硬化砂型3种。 砂型铸造用的是最流行和最简单类型的铸件已延用几个世纪.砂型铸造是用来制造大型部件,如灰铸铁,球墨铸铁,不锈钢和其它类型钢材等工序的砂型铸造。其中主要步骤包括绘画,模具,制芯,造型,熔化及浇注,清洁等。 工艺参数的选择 加工余量:所谓加工余量,就是铸件上需要切削加工的表面,应预先留出一定的加工余量,其大小取决于铸造合金的种类、造型方法、铸件大小及加工面在铸型中的位置等诸多因素。 起模斜度:为了使模样便于从铸型中取出,垂直于分型面的立壁上所加的斜度称为起模斜度。 铸造圆角:为了防止铸件在壁的连接和拐角处产生应力和裂纹,防止铸型的尖角损坏和产生砂眼,在设计铸件时,铸件壁的连接和拐角部分应设计成圆角。 型芯头:为了保证型芯在铸型中的定位、固定和排气,模样和型芯都要设计出型芯头。 收缩余量:由于铸件在浇注后的冷却收缩,制作模样时要加上这部分收缩尺

房屋裂缝产生的原因及分析

> 房屋裂缝产生的原因及分析 > > > 提要:通过对房屋裂缝表现特征的分析,推断裂缝产生的原因,进而推断房屋的安全性,认 定事故的责任方。 > > 关键词:房屋裂缝原因安全性 > > 人的生活与房屋休戚相关,而房屋裂缝又严重影响人们的身心健康。在建筑业蓬勃发展的今天,也不断有大批新建房屋出现裂缝的现象。 > > 为减轻房屋开裂,防止倒塌,应针对不同的原因采取相应措施。 > > 材质,材性和砌筑质量主要在施工阶段控制,荷载,温度变形,地基不均匀沉降主要由设计 控制。下面就几种外力方面原因所致裂缝的不同现象,原因进行探讨。 > > 1 荷载作用引起的开裂和倒塌 > > 了解不同类型和砌体的这些裂缝特征,对正确分析处理工程中墙体的裂缝有重要意义。一般 来说,墙体在受压状态下产生较大的影响。如果裂缝贯穿若干皮砖,裂缝在荷载持续作用下将 进一步发展,使砌体形成独立小柱而破坏。此外,由荷载引起的裂缝和破坏还有:梁下墙体由 竖向裂缝发展形成的局压破坏,在砌体结构中墙体应避免这些荷载裂缝的出现和开展,一旦发 现这种裂缝,应及时采取措施,以免发生房屋倒塌事故,这类缺陷产生的原因来自三个方面 > > 1.1 设计方面 > > 1.1.1 结构选型和布置不和理。如;房屋的跨度,层高,荷载较大,且轴向偏心距超过限值时,仍采用无筋砌体结构;房屋较长未设横墙,或横墙间距过大,且无抵抗水平荷载的可靠性 措施;位于池塘,湖泊中的基础采用砖柱基础,且在柱顶用简支构件连接的处理方式等。1.1.2 计算简图与实际受力不符。如;连续梁按多跨简支梁传力,造成部分墙柱超载;弹性方案房屋 按刚性方案的简图分析内力,使墙柱的内力低于实际值等。 1.1.3 漏算荷载。如;漏算梁上墙体结构自重以及上人的屋顶荷载等。1.1.4 盲目套用图纸,不经计算或计算错误,使砌体结构 构件的承载力不满足设计规范的要求: 1.1.5 忽视构造要求。如;大梁支承长度短,梁下未设钢筋混凝土垫块;墙柱高厚不满足规范要求;地震区房屋未设构造柱及未采取其他构造措施等。> > 1..2 施工方面 > > 1.2.1 砌块和砂浆强度等级远远达不到设计要求,如粘土砖与粉煤灰混用等。 > > 1.2.2 砌筑方法错误。如;砌体内外不搭接,上下不错缝,砖柱采用包心砌法等。 > > 1.2.3 干砖上墙,沙浆因严重失水而导致与砂浆之间未粘结成一体。 > > 1.2.4 水平灰缝砂浆不饱满,厚薄不均匀,且偏离规范要求的灰缝厚度过多。 > > 1.2.5 在承重墙柱上留孔,墙与柱,纵墙与横墙拉结不牢,竖向留直槎连接,且未采取加强 连接的措施等。 > > 1.2.6 软弱地基未经验槽处理,填土地基未进行分层夯实便施工基础。 >

相关主题
文本预览
相关文档 最新文档