当前位置:文档之家› 35CrMo钢钻头锻造开裂原因分析

35CrMo钢钻头锻造开裂原因分析

35CrMo钢钻头锻造开裂原因分析
35CrMo钢钻头锻造开裂原因分析

齿轮断裂原因分析

齿轮轴断齿原因分析 概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 C Si Mn S P Cr Mo Al 大0.39 0.31 0.52 0.002 0.06 1.5 0.17 0.85 小0.15 0.25 0.55 0.016 0.013 0.75 0.15 从成份上看,大有材料为38CrMoAl,小的材料为20CrMnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示)

3、金相组织分析 (1)大的金相组织 100X 40X 0.30m m

200X 齿轮表面的渗氮层厚:0.30mm,渗层组织不均匀,渗层硬度801HV1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌 200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。

(2)小的金相组织 200X 40X 渗层深1.5mm 齿轮渗碳层厚1.5mm,有效硬化层厚0.8mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,

往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。 小的渗碳淬火后心部组织为粗大(?)的板条马氏体组织,综合性能比较好,(为热处理过程中温度失控?),渗碳后表面的碳含量很高,在淬火过程中由于应力过大(是有可能)产生裂纹或微裂纹。出现在粗针马氏体针叶上,与马氏体的惯析面成一定的角度,且相互平行。这种淬火后出现的小裂纹在没有及时回火的情况下,就没法弥补,使疲劳强度和使用寿命降低。表面的这些微小的细裂纹的缺陷的存在致使齿轮在使用的过程中受到拉应力的作用而导致断裂。 5、结论 大:预处理组织不合格导致后序的氮化处理过程中组织应力的作用而产生的裂纹是崩齿的主要原因。

正确的模具焊接修复工艺

正确的模具焊接修复工艺 锻造企业需要必要的设备和正确的培训来保证焊接修复工艺的正确,其中包括具备正确的焊接材料、焊接电源、焊接辅助设备、天车、电炉。在此基础上,正确的焊接工艺包括以下9点: 1、模具清理及检查 待修模具的清理及检查是确定正确焊接修复工艺的基础,清理后根据检查结果,确定焊接修复工艺,包括使用焊材的型号及数量,根据模具情况,通过焊材的组合,达到修复目的。 2、清理型腔 焊接前必须彻底清理型腔中的裂纹、鳞片、疲劳层及一切杂质材料,并清理出足够的开放度,一般来说需要40-60°的角度,以确保焊条或焊丝可以正常沉积。 3、焊前加热 焊前加热时成功修复模具的重要步骤,加热温度为800-900℉,按每英寸厚度用时计算并保温,焊件在加热炉或加热火焰中的总时数取决于绝缘材料的质量及加热火焰的热值。 4、焊件的位置 焊件必须确保在待焊区域便于焊工操作,有时焊接过程中需要不断调整焊件的位置,但待焊型腔的中线必须垂直于地面。焊接时使用短弧,以确保焊壁与焊材紧密融合,焊壁必须在焊工视线以内。 5、焊后敲击 每次焊道结束后,必须使用风镐或机械方式加以敲击,使熔覆层达到最佳的晶相结构并防止焊件冷却过程中沿中心线收缩。 6、焊后加热与常化 焊后加热与常化的为800-900℉,按每英寸厚度用时1h计算,目的是防止工件与熔覆层冷却速度过快。

7、缓冷 缓冷即让焊件在空气静止的环境下缓冷至室温,缓冷目的是达到平衡的微观晶相结构和韧性,从而在锻造过程中达到最佳效果。 8、回火去应力 目的是去除焊接中产生的应力,并最终达到模具要求的韧性和熔覆层的硬度,回火时间以每英寸厚度1h来计算。 9、最终冷却 焊接的最后一步即让焊件在空气静止的环境下缓冷至室温,可使用绝热材料包覆焊件以加强缓冷效果。

齿轮断裂原因分析

概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 从成份上看,大有材料为38 Cr Mo Al ,小的材料为20 Cr MnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示) 3、金相组织分析 (1)大的金相组织 100X 40X 200X 齿轮表面的渗氮层厚:0.30mm ,渗层硬度801HV 1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌

200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。 (2)小的金相组织 200X 40X 齿轮渗碳层厚1.5 mm,有效硬化层厚0.8 mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。

铸造模具的维护保养

铸造模具的维护保养 工厂应建立铸造工艺装备的维护保养制度,其范围应包括型板(含模样)、模板框、芯盒、砂箱、夹具等,内容则应包括预防性维护和修复性维护。 预防性维护一般只需通过外观检查或测量检查,采用专用或简易工具,即可使工装保持或恢复良好技术状态。它包括保养和点检。 1、保养 保养一般由操作工实施,分为日常保养和定期保养。日常保养在每天停机后进行,定期保养则一般利用节假日和停产检修期间开展。 清除模样、模板工作表面的积砂、杂物、污垢;清除模样上标识符号表面沾敷的积砂和污垢,检查浇注系统、是否脱落,铸造模具表面是否有磕碰伤,通气针(片)、字牌是否松动、脱落,定位销是否凸起或凹缩等。 清除芯盒分盒面、芯腔内表面及销套上的积砂污垢,清除通气塞、排气槽内的污垢垫砂,检查各部位紧固件是否牢固,有无缺损,检查芯盒滑块、镶块、定位块等是否有松动或位移。在清除干净后的型板和芯盒表面喷涂分型剂。 检查砂箱的销、套是否有磨损、松动、弯曲、断裂、清除砂箱和定位销、套配合面上沾敷的积砂和污垢以及小铁块、残渣、铁屑等。 检查夹具的各部件是否完整,定位、夹紧机构是否松动,并对各润滑点进行加油润滑。 2、点检 点检一般由操作工实施,也分为日常点检和定期检查。 日常点检在每次模具生产使用前进行, 定期检查则是模具使用一定次数后,送模具部门进行划线检查,内容有: 1) 检查上、下(或前、后)模型和上、下(或动、静)芯盒的外形错边偏差; 2) 检查铸造模具和芯盒芯头位置的准确及尺寸精度; 3) 检查铸造模具和芯盒工作面和分型面磨损程度; 4) 检查铸造模具和芯盒工作面的几何形状和尺寸精度; 5) 检查铸造模具定位点、定位面的位置准确度和尺寸精度; 6) 检查芯盒、型板(框)销、套的磨损程度及型板(框)、芯盒本体的变形程度; 7) 检查各紧固件、定位销、套是否松动、缺件、下沉; 8) 检查通气塞是否有破损或下机现象: 9) 检查通气针(片)是否弯曲、橙动、缺件: 10) 其他部件如抽块、导轨、斜杠、滚轮等件是否完好; 11) 检查备件是否齐全,外观有无缺陷、标志牌是否清晰。 铸造模具的清洗技术 树脂砂芯盒的结垢与清洗是我国许多企业多年来一直未能有效解决的难题。芯盒的结垢不仅造成铸造模具表面粗糙。严重影响砂芯的外观质量,导致铸件粘砂、尺寸精度降低、严重时则会造成铸件批量废品和铸造模具报废。 树脂砂芯盒中垢物的形成机理,主要是由于芯砂表面的树脂在射砂过程中受到射砂气流的冲击,部分树脂破裂,少量的树脂被挤压粘附于芯盒表面,日积月累逐渐在芯盒表面形成一层坚硬、致密的硬化树脂垢。因此,射砂压力过大,树脂质量差,芯砂中树脂加入量过高,脱模剂与所用树脂不匹配;芯盒表面粗糙都将促使芯盒结垢。

二级齿轮轴齿面裂纹原因分析报告

二级齿轮轴齿面开裂原因分析报告 一、 情况简述:二级齿轮轴经试机运行后开箱检查发现齿面上存在裂纹缺陷,如1图所示:裂纹出现在分度圆与齿根之间沿着轴向伸长,其外观已呈开放型并以相同的形式分布在多个轮齿的同一侧齿面上。 该零件采用20CrMnTiH材料制造、模数m n=12,滚齿后经渗碳淬火热处理要求为:⑴ 磨齿 前硬化层深度 2.5~2.8mm(界限值550HV1),齿面经磨削加工后成品有效硬化层深度2.0~2.2mm(界限值550HV1);⑵ 齿表面硬度58~62HRC,心部硬度33~48HRC;⑶ 金相按JB/T6141.3《重载 齿轮渗碳金相检 验》,表层组织:马 氏体、残留奥氏体 1~4级合格,碳化 物1~3级合格;心 部组织1~4级合 格。为分析齿面裂 纹形成原因,在图 1所示多个白色印 记处割取试样检 查,结果报告如下: 二、金相分析及显 微硬度检查:从多 处切割试样观察裂 纹断面均呈现如图 2所示弧线形态, 图示裂纹环绕经过 齿面表层 1.60mm 深度范围,裂隙内 部及附近无夹杂 物、无疏松等材料 缺陷,浸蚀检查:⑴ 表层组织:多段查看裂纹及附近最表面层显现出断面为月牙状白色区域,如图3所示为其中较小的一处可窥见其全貌,是典型的磨削产生二次淬火组织,图4显示一条裂纹穿过二次淬火层的情形,图5为二次淬火层较深的部位:白色区域深度达到0.27mm,紧邻的次表层为深色过度回火组织(测得该处最低显微硬度值仅451HV1),此处测得复合型总变质层

深度接近1.6mm;检查渗碳淬火表层金相组织,马氏体及残留奥氏体2级,如图6所示为齿顶部位同时存在断续点状和细条状碳化物,呈不均匀的网状分布综合评定为4级;经磨削后的齿面表面碳化物级别为3级。⑵ 心部组织:如图7所示心部铁素体评为5级。 三、宏观硬度及硬化层深度检查:⑴ 表面硬度:从齿顶测量59.5,60.5,60HRC;⑵ 硬度梯度及硬化层深度:在齿分度圆处测量数据见表1,绘制硬度梯度曲线如图7,由此测得该齿轮轴成品齿面分度圆处有效硬化层深度:1.93mm (界限值550HV 1);由图可见因磨削烧伤从0.7mm 深度起,向 外硬度呈下降状态最表层硬度值低于400HV 1;⑶心部硬度:26.5,28,27HRC。 四、分析与结论:(1)以上检查显示齿轮轴齿面开裂处无原材料缺陷,齿面裂纹的产生明显由磨削引起。因磨削工艺控制不当使磨齿加工表面温度急剧上升,形成较深的二次淬火层和过度回火组织,随着组织改变材料的硬度、强度下降并带来表面比容变化产生较大应力,以及瞬间激烈热胀冷缩应力和切削加工力结合,超过此处材料仅有的强度极限,形成了与热处理淬火开裂状态相似的表面裂纹。(2)从检查中发现该零件自身存在热处理质量缺陷:a、表面碳化物呈网状分布,会加大材料开裂倾向;b、心部硬度偏低与心部组织不符合要求,降低轮齿抗弯曲疲劳能力。 五、改进措施与建议:(1)磨削烧伤区分布在分度圆下近齿根1/3带上,客观上表明该处磨削加工余量最大,使之成为磨削缺陷易产生部位,应考虑适当减少此处热后磨削量;(2)查找磨削工序上的原因,从机器、磨具、操作、冷却效果等方面降低磨削发热现象、抑制磨削热的过多产生;(3)加强对热处理零件内在质量的监察,同时加强对产品外观缺陷的检查,防止不合格品甚至废品混入最后工序。 XXXX有限公司 生产中心 工艺组 钢 件 部 质量组 2009-10-10 表1 齿面裂纹处硬度梯度测量数据 至表面距离mm 0.05 0.1 0.2 0.3 0.40.50.60.8 1.0 1.2 1.6 1.9 2.0 2.2 心部硬化层深度硬度值 HV 1 347 458 507 546 583 602 652 699 699 675 647 559 531 505 287 1.93mm

模具研配液压机

模具研配液压机 模具研配液压机是对冲压模具、冲裁模具、腔形模具、锻造模具、塑料成型模具及橡胶成型模具等进行精加工、调整和修复的精密设备。根据结构和所具备的功能又可分为模具研配液压机和研配试冲液压机。 模具研配液压机 主要适用于制造大、中型汽车覆盖件的冲压模和冲裁模的精加工和装配。这种模具平面尺寸很大,价格十分昂贵,他们一般是先在仿形铣床上粗加工,然后将粗加工后的模具坯料在研配液压机上进行研配。研配的过程是把标准凸模安装在研配液压机活动横梁的下平面上,粗加工后的凹模坯料装在下横梁上的活动工作台上,将红丹粉涂在标准凸模的型面上,活动横梁慢慢平行下降,将标准凸模的型面与粗加工后的凹模面轻轻接触,使凹模的粗加工面着上红色,用以检查凸、凹模型腔面贴合是否均匀。活动横梁回升到上极限位置,根据凹模粗加工面上着色红点的分布,将着红色处打磨或研刮掉。活动横梁再次下落,轻轻接触着色,再次回程打磨,如此反复,直至标准凸模型面与凹模型面贴合率达到要求时为止。 这种类型的研配液压机,具有工作台面大、最大封闭高度大、作业空间大、公称工作压力小、回程力大等特点。动梁在动态和静态有较高的平行度,活动横梁的停止位置精度要高,一般可达0.02mm,并能在操作台屏幕上显示。活动横梁应有可靠的自动锁紧装置,以防动梁的突然下落。

序号项目单位 THP 98—50 YT 98—100 THP 98—100 THP 98—100A THP 98—160 THP 98—200 THP 98—200A 1公称力kN500100010001000160020002000 2回程力kN200~3005007005007001000720 3液体最大工作压力MPa16172121252025 4滑块行程mm1000150015002700130023001300 5最大开口mm1300230021002800150025001300 6翻转机构翻转能力kN152******** 7翻转机构翻转角度°180180180180180 8滑块速度快速下行mm/s60606060605554微速下行mm/s0.5~210103~103~8104~8微动mm/s0.5~2 工作mm/s10~3 慢速上行mm/s1022 回程mm/s60606060604050 9工作台有 效尺寸 左右mm1000320040004600140022001600 前后mm700240022002500120020001200 10移动工作台承重kg30003000040000500008000200008000 11移动工作台行程mm1650260024005700260022002600 12电动机总功率kW21474757222022 13机器占地 尺寸 左右mm3472704172757124395049004150 前后mm33457375737510675629563706295 地面以上mm4400667067108470521564005015 地面以下mm0200016002600800720800 14机架形式整体框架组合框架组合框架组合框架组合框架四柱组合框架

毕业设计锻造工艺分析与模具设计

锻造模具设计 摘要 模具是机械制造业中技术先进、影响深远的重要工艺装备,具有生产效率高、材料利用率高、制件质量优良、工艺适应性好等特点,被广泛应用于汽车、机械、航天、航空、轻工、电子、电器、仪表等行业。随着我国汽车工业的迅猛发展,汽车性能不断提高,汽车零部件中对高精度、形状复杂锻件的需求量越来越大,锻造新工艺、省材、节能工艺等技术的开发对于新型汽车零件的生产尤为重要。我国冲压模具无论在数量上,还是在质量、技术和能力等方面都已有了很大发展,但与国民经济需求和世界先进水平相比,差距仍很大,一些大型、精密、复杂、长寿命的高档模具每年仍大量进口,特别是中高档轿车的覆盖件模具,目前仍主要依靠进口。 本文主要是以轴类锻件的生产,加工工艺等,设计制造了,一些模具,包括,堕轮锻件的镦粗,终锻等后期加工模具。 首先介绍了,模具的一些简单情况,模具的分类,发展现状和趋势等,其次介绍了,零件的工艺性,毛坯的制定,镦粗,终锻模膛的设计,包括飞边槽的设计。 关键词:模具,终锻模膛,飞边槽,钳口,镦粗

An inert wheel forging the design specification Abstract Mold is mechanical manufacturing technology advanced, profoundly important technical equipment,High production efficiency, material with high efficiency and good quality, technology parts good adaptability etc. Characteristics.Widely used in motor vehicles, machinery, aerospace, aviation, light industry, electronics, electric appliances, instruments and other industries.With the rapid development of China's automobile industry,The car's performance to improve, Auto parts of high precision, complicated shape of forging an increasing demand for,Forging new craft, material, energy saving technology province technology development for new type of car parts production is especially important.Our country stamping die in the number no matter, or in quality, technology and ability are already has great development,But with the national economy needs and the advanced world level, compared to a gap still, Some large, sophisticated, complex, the long life of high-grade die every year in the importation of large still, Especially in high-grade car covering mould, at present still mainly rely on imports. The paper is an inert round of forging production, Processing techniques, Design and manufacturing, some mould, including, fall round of forgings upsetting, eventually forging, and trimming punching production processing mould. Firstly introduces, die some simple case, the classification of mould, development situation and trends,Secondly introduces, the technology of parts, blank the formulation, the upsetting, and the design of the chamber forging die,Including flash slots of design, Introduced again, trimming punching the design of the composite film. Key words:Mould,Finally bore, Flash tank,Clamp mouth,Upsetting,Trimming, punching

45钢齿轮开裂原因分析

45钢齿轮开裂原因分析 周维兴 (无锡宝露重工有限公司,江苏214000) 摘要:通过宏观形貌观察、低倍组织、金相检验等,分析得出45钢齿轮开裂的原因是材料组织缺陷和加热工艺不合理。 关键词:45钢齿轮;开裂;金相分析中图分类号:TG115 文献标志码:B Analysis of Fraction Cause for 45Steel Gear Zhou Weixing Abstract :By adopting means of macro appearance observation ,macro structure and metallurgical test ,fraction cause of 45steel gear has been analyzed ,which was structural defect of material and unreasonable heating process. Key words :45steel gear ;fraction ;metallurgical analysis 某公司生产的45钢齿轮出现开裂。齿轮大 致规格为 130mm ?30mm ,加工过程为:从圆钢棒上切锯坯料,经调质处理后进行机加工和滚齿,然后进行高频表面淬火(水冷,具体温度未明)和中低温回火。约有5%的齿轮在水冷淬火时出现开裂。开裂情况如图1所示。对齿轮开裂原因进行了分析。1 化学成分分析 从齿轮上取样进行化学成分检测,用Spectro MAXx 型直读光谱仪分析化学成分,检测结果见表1。 从分析结果可见,试样成分符合GB /T699中 45钢各种元素的范围要求。2金相和硬度检验2.1 夹杂物检验 在齿轮开裂处取试样,经磨制、抛光后按GB /T10561—2005进行非金属夹杂物级别评定,结果见表2。夹杂物在试样中的分布如图2所示。 图1齿轮开裂宏观形貌 Figure 1Macro appearance of cracked gear 表1试样化学成分分析(质量分数, %)Table 1 Chemical composition analysis of test specimen (mass fraction ,%) 元素C Si Mn S P Cr Ni Cu 标准值表面试样 0.42 0.50 0.47 0.17 0.37 0.28 0.50 0.80 0.61 ≤0.0300.025 ≤0.0300.020 ≤0.250.055 ≤0.250.023 ≤0.250.011 收稿日期:2013—05—23 3 4《中国重型装备》 No.4 CHINA HEAVY EQUIPMENT December 2013

20CrMnTi齿轮轴断裂原因分析(加翻译版)

20CrMnTiH 齿轮轴断裂原因分析 刘 健, 陈宏豫, 寇志贤, 李春玉 (承德建龙特殊钢有限公司技术处,河北 兴隆067201) 摘要:采取宏观形貌分析、化学成分分析、金相分析等手段对20CrMnTi 齿轮轴断裂 原因分析,结果表明,热处理后基体强度偏低和相对于承载能力而言工作应力较大是导致齿轮轴发生快速脆性断裂的主要原因。 关键词:齿轮轴、断裂分析、组织 20CrMnTiH Gear Axle Break Analysis of Causes LIUJian,CHENHongyu,KOUZhixin,LiChunyu (Chengde long special steel co., Ltd.Technical Department, Hebei Xinglong 067201) Abstract: In this article use macro-morphology analysis, chemical analysis, microstructure analysis by means of the gear shaft 20CrMnTi Failure Analysis ,Last show the matrix strength after heat treatment relative to the carrying capacity of low and work stress in terms of larger gear shaft leading to the main reason of rapid brittle fracture. Key words: Gear shaft Fracture Analysis Organization 某公司用20CrMnTiH 作为农用三轮车变速箱上的四轮曲轴齿轮主选材,安装该批齿轮轴的三轮车发生多起断轴现象,断轴时行使时间大约100小时。 齿轮轴加工工艺:圆钢(直径为φ45mm )经冷剪下料 反射炉加热模锻 正火 机加工 渗碳淬火 180-200℃回火 喷砂 磨加工(花键外圆) 尺寸检验合格发货。设计齿轮轴渗碳硬化层厚度0.6-1.0mm,齿面硬度58-64HRC ,心部组织硬度33-40HRC 。 1试样的制备及试验方法 对发生断裂的齿轮轴线切割取样,宏观检测端口表面形状,进行力学性能、化学成分和金相组织分析,找出发生断裂的原因。 2试验结果分析 2.1断裂齿轮轴成分分析 化学成分见表1 表1 材料化学成分分析结果及标准规定对照(W/%) 由表1看出:断裂齿轮轴的化学成份符合GB/T5216-2004中对20CrMnTiH 钢的规范要求。 2.2断裂齿轮轴力学性能

锻造模具的失效与延寿

锻造模具的失效与延寿 1.概述 模具在模锻件生产中占有特殊重要位置,只有高质量模具才可能生产出优质模锻件。模具与锻件的“性价比”是企业技术和管理水平的综合反映,而模具寿命在“性价比”中期关键作用,即模具寿命直接影响锻件质量、成本、生产率及市场竞争力。 1.1模具寿命对锻件生产的影响 1.1.1模具寿命对锻件的质量的影响 众所周知,锻件精度与模具精度相匹配才能生产出合格锻件,并减少不良品率和废品率。设计合理的预锻件(模具)和终锻件(模具)相对应的截面积、体积必须相匹配,否则锻件将因折叠或充不满而报废,也将加速模具磨损,而模具的磨损又直接影响锻件质量和尺寸的稳定性,从而增加后续加工的成本。 1.1.2模具寿命对锻件成本的影响 模具不仅影响锻件质量,而且影响锻件成本。一般,模具费用约占锻件成本的10%-20%,日本和德国等发达国家占7%-15%,如德国1994年统计,模具成本占锻件销售额的11%。模具价格昂贵,特别是大型模具,一整套125MN机械压力机生产线上的六拐8平衡块曲面分模曲轴模具(含辊锻、压扁、预锻、终锻、切边、热校正等工序)的总价约120万元,如果延长模具使用寿命20%,则锻件成本可降低2%-4%,为2.4万元-4.8万元。 企业实践表明,提高模具寿命是降低锻件成本的关键。 1.1.3模具寿命对锻件生产率的影响 生产中由于模具磨损和发生故障而进行模具修理、更换等损失时间约占实际生产时间的10%-15%,所以模具寿命影响生产率。据国外全年统计,锻件企业24h生产,实际有效时间平均仅为16.5h,因此,模具寿命直接关系到锻件的质量、成本和生产率。 模具寿命长是实现锻件生产机械化和自动化的必备条件。例如,世界上锻造生产率最高的日本,已有24%的锻造设备实现了机械化和自动化,生产率约185吨/人.年;德国和美国的生产率约80吨/人.年,而中国为(40-50)吨/人.年。我国锻造生产率低的重要原因就是模具寿命、机械化和自动化程度低。 1.1.4模具寿命对企业竞争力的影响 锻件的交货周期直接影响企业的市场竞争力,而锻件的交货周期直接受模具制造周期及其寿命的影响。模具寿命长则节约了更换和维修模具的时间,缩短锻件交货周期,可以按时或提前交付锻件。一方面提升了企业的信誉,另一方面可以拿到要求交货周期短、原来不能承接的订单,从而提升企业的市场竞争力。 1.2锻造模具寿命现状 所谓模具寿命是指一套新模具从安装、生产、直至失效需要翻新前所生产的锻件数量,一般称正常寿命。模具失效后经多次翻修的寿命之和为总寿命。提高模具总寿命可节约模具材料(占模具成本的15%-40%),因此提高模具总寿命也是降低锻件成本的重要措施。 1.2.1国内外锻造模具使用寿命对比 对于低合金结构钢热模锻,日本德国等发达国家,按锻件复杂程度和精度,模锻锤模具寿命为0.5万件-0.8万件,但新型程控全液压模锻锤,由于其锻击能量和程序均可设定控制,模具寿命有所提高,0.6万件1万件。机械压力机模具寿命一般可达到1万件-2.5万件,其中曲轴寿命为0.85万件0-1.8万件,连杆模具寿命为1万件-2.5万件,汽车转向节寿命为0.6万件-1.4万件,齿轮模具寿命为1.5万件-3万件。个别极复杂、高精度的锻件模具寿命也仅为0.5万件-0.7万件。螺旋压力机模具寿命比机械压力机稍低。而国内大多数锻造企业模锻锤模具寿命为0.3万件-0.5万件,摩擦螺旋压力机模具寿命约为0.2万件-0.3万件,一般仅有0.2万件左右,机械压力机模具寿命为0.5万件-0.8万件。 发达国家的冷精密模锻模具寿命约为2万件-6万件,国内约为0.8万件-2.5万件。相比之下,我国模具寿命仅相当于国外工业先进国家的1/3.

齿轮失效分析实例

齿轮失效分析实例 齿轮是传递运动和动力的一种机械零件。齿轮的类型以及特点不仅可决定齿轮的运转特性,并且也决定了它是否会过早地失效。 齿轮失效的类型可划分为四种: (1)磨损失效,是指轮齿接触表面的材料损耗; (2)表面疲劳失效,是指接触表面或表面下应力超过材料疲劳极限所引起的材料失效。进一步又可分为初始点蚀、毁坏性点蚀和剥落。 (3)塑性变形失效,是指在重载荷作用下表面金属屈服所造成的表面变形。它又可进一步分为压塌和飞边变形、波纹变形和沟条变形。 (4)折断失效,是指整个轮齿或轮齿相当大的一部分发生断裂。可以进一步分为疲劳折断、磨损折断、过载折断、淬火或磨削裂纹引起的折断等。 本章主要介绍变速箱齿轮及被动齿轮的失效分析实例,供读者参考。 变速箱齿轮失效分析 1.45号钢齿坯裂纹分析 45号钢齿坯,由φ80mm圆钢落料后直接粗车成外径为φ78mm的柱体形状。其化学成分为:C:0.49%,Mn: 0.68%,Cr<0.2%。热处理工艺过程:在X—45箱式电炉中加热,到温度(820℃)装炉,装炉量109只,保温时间为一小时(工件达到温度后计算时间),工件用盐水冷却(冷却液不循环),水温20~30℃。回火温度为520~530℃(零件淬火后隔天回火)。经车削后,发现零件内孔平面和内孔上有较多裂纹,如图1和2所示。 图1 OPI 图象说明: 零件实物经SM-3R型渗透剂着色探伤后宏观形貌。经肉眼与放大镜观察,在齿坯内孔平面与内孔中有距离大致相等的5~6处较长的裂纹,裂纹均由内孔之平面与孔交界处为起始分别向内孔壁与平面扩展;内孔平面上和内孔交界处加工纹路明显且尖锐。

图象说明: 内孔平面试样作金相观察,有 数条裂纹交叉分布,其内充满氧化皮 夹杂。其微观裂纹长度不等,分别为 0.63mm,0.29mm,0.23mm及0.19等。 图2 OMI 200× 2.汽车变速箱齿轮失效 失效齿轮为载重汽车变速箱一挡齿轮,由渗碳钢制造,在进行台架试验时,未达到设计要求就发生断齿现象。 根据断口的形貌可断定该齿轮的断裂为高应力作用下引起的快速断裂。主动齿轮心部断口基本为韧窝,被动齿轮具有准解理断裂形貌,说明主动齿轮韧性较好,但强度较低。显微硬度证实了主动齿轮硬度较被动齿轮低。两只齿轮渗碳层中均有网状渗碳体析出,这将使表层韧性较低,致使在运转过程经受不了启动冲击应力的作用。本次断裂事故是由主动齿轮先断裂,进而引起被动齿轮崩齿,故在被动齿轮上还能看到碰伤的痕迹。因此,可以认为齿轮失效的原因为渗碳工艺控制不当(热处理不当)而引起断齿。 变速箱一挡齿轮发生断齿后的宏观实物如图3所示。主动齿轮及被动齿轮断齿后的宏观断口形貌见图4所示。 图象说明: 变速箱齿轮发生断齿后的宏观 实物形貌。 图3 OPI

疲劳断裂失效分析

1 5.1疲劳断裂失效的基本形式和特征 5.2疲劳断口形貌及其特征 5.3疲劳断裂失效类型与鉴别 5.4疲劳断裂失效的原因与预防 第5章疲劳断裂失效分析 2?按应力循环次数 当Nf>105时为低应力高周疲劳(通常所指) 当Nf<10 4时为高应力低周疲劳?按服役的温度及介质条件 机械疲劳、高温疲劳、低温疲劳 冷热疲劳、腐蚀疲劳?基本形式 切断疲劳:面心立方在单向压缩、拉伸及扭转条件下多以切断形式破坏 正断疲劳:大多数的金属构件的疲劳失效都是以此形式进行的,特别是体心立方金属 3 ?疲劳断裂的突发性?疲劳断裂应力很低 ?疲劳断裂是一个损伤积累的过程?疲劳断裂对材料缺陷的敏感性?疲劳断裂对腐蚀介质的敏感性 4 典型的疲劳断口一般有三个区,即疲劳源区、疲劳裂纹扩展区和瞬时破断区。疲劳断口的宏观特征与静载破坏的脆性断口相似,无明显的宏观塑性变形。 5 ?疲劳核心是疲劳破坏的起点,它总是位于零件强度最低或应力最高的地方。 ?零件承受弯曲、扭转疲劳负荷时,最大应力区是在零件的表面。 ?零件表面的加工刀痕、凹槽、尖角、台肩等处由于应力集中往往成为疲劳源。 ?如果零件内部存在缺陷,如脆性夹杂物、白点、空洞、化学成分的偏析等,则可能在零件内部产生疲劳源。 1、疲劳核心(或称疲劳源) 6 ù疲劳源的数目可以不止一个,在名义应力较高或是应力集中较为严重时,在高应力区域就可能产生几个疲劳源。 ù疲劳源的位置用肉眼或低倍放大镜就能判断,一般在疲劳区中磨得最光亮的地方。 ù在断口表面同时存在几个疲劳源的情况下,可按疲劳线的密度来确定疲劳源产生的次序,疲劳线的密度越大,表示起源的时间越早。

7 疲劳断口上最重要的特征区域 该区域上常有疲劳断裂独特的宏观标志,如贝纹状、蛤壳状、海滩波纹等。 贝纹线以疲劳源为中心,向四周推进呈弧形线条,垂直于 裂纹扩展方向。 对于光滑试样,疲劳弧线的圆心一般指向疲劳源区。扩展到一定程度时,也可能出现疲劳弧线的转向现象 当试样表面有尖锐缺口时,疲劳弧线的圆心指向疲劳源区的相反方向。 在低周疲劳断口上一般也不常能观察到贝壳状条纹线。 8 $疲劳裂纹达到临界尺寸后发生的快速破断,它的特征与 静拉伸断口中快速破坏的放射区及剪切唇相同,但有时仅出现剪切唇而无放射区。$对于非常脆的材料,此区为结晶状断口,即使是塑性良好的合金钢或铝合金,疲劳断件断口附近通常也观察不到宏观的塑性变形。 9 10 6与静载拉伸断裂时不同,拉压疲劳断裂的疲劳核心多源于表面而不是内部。缺口试样由于缺口根部有应力集中故靠近表面裂纹扩展快,结果形成波浪形的疲劳弧线。高应力导致疲劳稳定扩展区较小,而最终断裂区所占比例较大。 6旋转弯曲的疲劳源区一般出现在表面,但无固定地点,疲劳源可 以为多个。疲劳源区和最后断裂区相对位置一般总是相对于轴的旋转方向而逆转一个角度。而高应力集中时,最终撕裂面移向中心,呈现棘轮花样。交变扭转载荷也出现这种花样 6双向弯曲的疲劳源区可能在零件的两侧表面,最后断裂区在截面内部。在高名义应力下,光滑的和有缺口的零件瞬断区的面积都大于扩展区,且位于中心部位,形状似腰鼓形。随着载荷和应力程度的提高,瞬断区的形状逐渐变形成为椭圆形。在低名义应力下,两个疲劳核心并非同时产生,扩展速度也不一样,所以断口上的疲劳断裂区一般不完全对称,瞬断区偏离中心位置。 11 D第一阶段为切向扩展阶段。在交变应力作用下,使滑移形成的裂纹源扩展形成可观察的裂纹,裂纹尖端将沿着与拉伸轴呈45°角方向的滑移面扩展。该阶段中裂纹扩展范围较 小,一般在2~5个晶粒之内。 D第二阶段为正向扩展阶段。裂纹从原来与拉伸轴呈45 °的滑移面,发展到与拉伸轴呈90 °,该阶段的断口具有引人注目的独特形态-疲劳辉纹。 D第三阶段是由于裂纹扩展到一定长度后,使构件的有效截面减少而造成的一次性快速断裂,断口特征常为韧窝型撕裂。 12疲劳辉纹的一般特点 (1)疲劳裂纹是一系列基本上相平行的条纹,略带弯曲呈波浪形,并与裂纹局部扩展方向相垂直,其凸弧面指向裂纹扩展方向。 (2)在疲劳裂纹稳定扩展阶段,所形成的每一条辉纹相当于一次载荷循环。辉纹确定了裂纹前沿线在前进时的位置。(3)疲劳辉纹的间距随应力场强度因子而变化,应力越大,间距越宽;反之应力越小,则间距越窄。 (4)疲劳断口的微观范围内,通常由许多大小不同、高低不一的小断块组成,每一小断块上的疲劳辉纹连续且平行,而相邻小断块上的疲劳辉纹不一定连续和平行。(5)断口的两匹配面上的辉纹基本对应。

传动齿轮磨削裂纹原因分析

2012年1月 内蒙古科技与经济Januar y 2012 第2期总第252期Inner Mongolia Science T echnology &Economy No .2Total No .252 传动齿轮磨削裂纹原因分析 X 蔡 红 (内蒙古第一机械集团有限公司,内蒙古包头 014030) 摘 要:本文对车辆传动齿轮开裂件进行宏观分析、硬度检测、化学成分分析、显微组织及裂纹分析,探讨裂纹形成机理,就其裂纹形成原因提出分析意见及改进措施。解剖分析结果表明,零件在磨削过程中受到了过大的磨削力作用和磨削热作用,使表层发生塑性变形及相变,造成拉应力状态,导致裂纹源产生,形成表面磨削裂纹。 关键词:齿轮;磨削;裂纹 中图分类号:T G 580.6 文献标识码:A 文章编号:1007—6921(2012)02—0140—03 齿轮是车辆传动操纵系统的关键零部件,主要 承受接触应力、摩擦力、冲击应力等,用低碳合金结 构钢制造,主要工艺流程为:原材料→渗碳淬火回火 →磨外圆、端面→装配→使用。生产中准备装配时发 现两件齿轮在右端面(靠近长轴的齿轮端面)上有细 小裂纹,造成零件失效报废,影响生产和质量。 为查明裂纹产生原因,笔者选取其中较典型的 一件开裂件解剖分析,对其进行宏观观察、化学成分 分析、硬度检测分析、金相组织及裂纹分析,探讨裂 纹形成机理,就其开裂原因提出分析意见及改进措 施。 1 实验结果 1.1 宏观分析 开裂件宏观形貌及裂纹位置见图1所示,该零 件所发现裂纹非常细小,肉眼不易分辨,在Hirox KH -3000三维视频显微系统(美国)下观察,这些细小条状裂纹均在齿轮右端面(齿轮长轴一侧)上,裂纹宏观形貌见图2,径向分布,排列较有规则,呈细小、聚集、断续串接特征,垂直于磨削方向,裂纹长度约1mm ~7mm ,多达上百条,部分裂纹已呈网状分 布。 图1  开裂齿轮宏观形貌及裂纹位置X 收稿日期5 作者简介蔡红(6—),女,内蒙古一机集团车辆工程研究院理化室工作,高级工程师,从事金相分析、失效分析及热处理工作二十余年,本项目来源于生产实际。 140:2011-11-2:198

齿轮的失效分析

潞安职业技术学院毕业论文 齿轮的失效分析 作者:李再蕾 摘要:齿轮传动是目前最重要也是应用最广泛的一种传动形式。由于齿轮在传动过程 中受到各种因素导致齿轮失效,如轮齿折断、齿面疲劳点蚀、胶合、磨损、塑性变形等。 齿轮失效直接影响着机械效能的发挥,亟待解决,本文分析了机械传动齿轮的失效形式 及失效的原因,并列举了实例进行了实例分析。采用化学成分分析、金相检验、硬度测 试等方法,对断裂齿轮进行失效分析,结果表明,失效的齿轮硬度达不到要求、设计图 样和加工工艺不符、金相组织不符合要求、存在偏载和重载现象等,这些都是导致齿轮 失效的直接原因,本文对此提出了相应的解决措施,并指出了齿轮今后的发展方向。 关键词:齿轮失效分析原因措施 第 1 页

潞安职业技术学院毕业论文引言 机械产品的失效分析是一门新的跨学科的综合性技术,在一些国家中已将它作为一门新的独立学科加以研究和发展。这是因为尽管人们所掌握的机械设计、材料、工艺、管理等的知识不断地丰富与深化,所运用的技术手段不断地更新与完善,但机械产品的失效事故仍经常发生,一些重大的失效事件往往会导致生命和财产的巨大损失。所以必须系统地研究机件的失效类型、鉴别失效类型的技术、预测及监控失效的方法,改进与预防失效的措施等。这方面的知识不仅对专业失效分析工作者是不可缺少的,而且对于设计工程师、材料和工艺工程师以及生产管理人员,也是十分必要的。只有对产品一切可能的失效形式、其发生的条件、控制与预防等有深刻的理解,才可以在创造优质产品方面获得成功。这里主要研究的是齿轮的失效分析。 齿轮是机动车辆、农业、矿山、石油机械和机床等多种机械产品必不可少的基础零件,应用范围极广,需用量也大。齿轮在各种机械中要求可靠且精确地传递动力,应具有高的疲劳强度、耐磨性能和加工精度,因而要求较高的制造技术。 目前我国已具有相当大的齿轮生产能力,基本上已能够满足各类机械产品的要求,但在实际使用中普遍反映使用寿命较低。这主要是由于我国的齿轮制造技术与国际先进水平相比差距较大,在齿轮设计、用材、制造以及使用等方面都还存在不少问题。如果对这些问题不作系统的分析研究,找出问题所在,从而提出相应的改进措施,齿轮产品质量就难以得到提高。 通过齿轮的失效分析,可揭示齿轮的失效形式、失效原因、失效机理。通过失效分析可较准确地揭露齿轮在设计、材质、制造工艺、装配和使用等方面而存在的不足之处。将这些信息反馈到有关部门,有助于改进齿轮质量,延长齿轮的服役寿命。 1 齿轮的损伤和失效形式 在机械工程中,齿轮传动应用甚为广泛,并且往往处于极为重要的部位,因此齿轮的损伤和失效倍受人们的关注。齿轮的失效可分为轮体失效和轮齿失效两大类。由于轮体失效在一般情况下很少出现,因此齿轮的失效通常是指轮齿失效。所谓轮齿失效,就是齿轮在运转过程中,由于某种原因,使轮齿在尺寸、形状或材料性能上发生改变而不能正常完成规定的任务。齿轮在运转中,轮齿有多种损 第 2 页

45#钢管断裂原因分析要点

45#钢管断裂原因分析 目录 1.引言 (1) 1.1 45#钢简介 (1) 1.1.1 物理参数 (1) 1.1.2 化学成分 (1) 1.1.4 钢的热处理简介 (1) 1.1.5 热处理后力学性能标准 (3) 1.2 钢管主要生产工艺 (3) 1.3材料的断裂失效 (4) 1.3.1 断裂简介 (4) 1.3.2 断裂的类型及断口特征 (4) 1.3.3 韧性断裂与脆性断裂 (4) 1.3.4穿晶(晶界)断裂与沿晶断裂 (5) 1.3.5剪切断裂和解理断裂 (5) 2 .实验内容 (7) 2.1试验样品及仪器 (7) 2.1.1试验样品 (7) 2.1.2试剂及药品 (7) 2.1.3 实验仪器 (8) 2.2 实验过程 (8) 2.2.1 金相及硬度检测 (8) 2.2.1.1金相试样的线切割制备 (8)

2.2.1.2金相试样的粗磨及抛光 (9) 2.2.1.3腐蚀 (9) 2.2.1.4金相检测 (9) 2.2.1.5硬度检测 (9) 2.2.2 断裂试样的扫描检测 (10) 2.2.2.1断面预处理 (10) 2.2.2.2试样断口扫描 (10) 3实验结果分析与讨论 (11) 3.1断口形貌分析 (11) 3.2金相组织分析 (12) 3.3硬度分析 (13) 结论 (15) 参考文献 ................................................................. 错误!未定义书签。

45#钢管断裂原因分析 1.引言 1.1 45#钢简介 45号钢,是GB中的叫法,JIS中称为:S45C,ASTM中称为1045,080M46,DIN 称为:C45 。国内常叫45号钢,也有叫“油钢”。一般,市场现货热轧居多。冷轧规格1.0至4.0mm之间 1.1.1 物理参数 1.1.2 化学成分 除Fe之外,其他元素及含量如下 1.1.4 钢的热处理简介 45#钢为优质碳素结构钢,含C量为0.45%,属中碳钢,其优点是硬度不高但易于切削加工,缺点是淬火性能不好,所以如果需要表面硬度较高,又希望发挥45#刚优越的机械性能,常将45#钢作调质(先850℃正火,再840℃淬火加600℃回火处理)加表面淬火(加

相关主题
文本预览
相关文档 最新文档