当前位置:文档之家› 酶抑制剂筛选模型研究进展

酶抑制剂筛选模型研究进展

酶抑制剂筛选模型研究进展
酶抑制剂筛选模型研究进展

血管紧张素转换酶抑制剂

血管紧张素转换酶抑制剂 (ACEI) 【适应症】 ⑴各期慢性高血压,尤其是合并冠心病、糖尿病、心功能不全、肾功能不全与蛋白尿的高血压患者。 ⑵慢性充血性心力衰竭、无症状性心功能不全患者可改善症状、缩小心脏、延长生命。 ⑶急性心肌梗死特别是合并心功能不全的患者,可改善心肌重构、预防心肌梗死复发、改善生存率。 ⑷慢性肾病合并蛋白尿者,可延缓肾功能不全进展,减轻蛋白尿。 ⑸主动脉关闭不全的患者可降低心脏后负荷,延缓心力衰竭的发生。 ⑹肺动脉高压的患者,可降低肺动脉压力。 ⑺对确诊冠心病或心脑血管疾病的高危患者,长期使用ACEI可减少各种心脑血管事件的发生率与死亡率。 【禁忌症】 ⑴严重双侧肾动脉狭窄:可使肾血流急剧下降,导致急性肾衰竭。 ⑵严重主动脉狭窄。 ⑶肥厚型或限制型心肌病。 ⑷严重颈动脉狭窄。 ⑸缩窄性心包炎。 ⑹严重肾功能不全,可诱发急性肾功能不全与高钾血症。 ⑺严重贫血。

⑻中性粒细胞减少症,可诱发骨髓抑制。⑼妊娠、哺乳妇女严禁使用。 ⑽高尿酸性肾结石。 【副作用】 ⑴低血压。 ⑵肾功能衰竭。 ⑶高钾血症。 ⑷干咳。 ⑸味觉减退,口腔溃疡。 ⑹血管神经性水肿:罕见,易出现在用药的早期,部分患者可有先兆表现即眼睑水肿或面部单侧或双侧水肿,一旦出现立即停药。 ⑺发疹。 ⑻蛋白尿,多见于大量使用卡托普利后。 ⑼中性粒细胞减少或缺乏症。 ⑽轻度呼吸困难和(或)哮喘。 ⑾其他:偶有头痛、眩晕、疲乏、恶心、脱发、急性胰腺炎、抗核抗体阳性等。 【血管紧张素转换酶抑制剂代表药物】 1.卡托普利(Captopril,开博通) 【药理与机制】 ①能竞争性抑制血管紧张素转换酶,减少血管紧张素Ⅱ的生成,从而抑制血管收缩,并减少醛固酮的分泌、水钠潴留作用减轻。交感神经系统活性受抑制、心血管重构改善

酶分类之不可逆抑制剂

不可逆抑制剂 酶的不可逆抑制是指酶抑制剂与酶的活性中心发生了化学反应抑制剂共价地连接在酶分子的必需基团上,阻碍了底物的结合或破坏了酶的催化基团。这种抑制不能用透析或稀释的方法使酶恢复活性。 通常将其分为非专一性不可逆抑制剂和专一性不可逆抑制剂。 抑制剂与酶分子上不同类型的基团都能发生化学修饰反应,这类抑制称为非专一性的不可逆抑制。虽然缺乏基团专一性,但在一定条件下,也有助于鉴别酶分子上的必需基团。由于非专一性的不可逆抑制剂通常可作用于酶分子中的几类基团。但不同基团与抑制剂的反应性不同,故某一类基团常首先或主要地受到修饰。如被修饰的基团中包括必需基团,则可导致酶的不可逆抑制。随着蛋白质一级结构和功能的研究,目前已发现或合成了氨基酸侧链基团的修饰剂。这些化学试剂主要作用于某类特定的侧链基团,如氨基、巯基、胍基和酚基等。但绝大多数试剂都不是专一性的,可借副反应而同时修饰其他类型的基团。 专一性的不可逆抑制作用有KS型和Kcat型两类。KS型不可逆抑制又称亲和标记试剂,结构与底物类似,但同时携带一个活泼的化学基团,对酶分子必需基团的某个侧链进行共价修饰,从而抑制活性。Kcat型不可逆抑制剂又称酶的自杀性底物。这类抑制剂也是底物的类似物,但其结构中潜在着一种活性基团,在酶的作用下,潜在的化学活性基团被激活,与酶的活性中心发生共价结合,不能再分解,酶因此失活。 KS型不可逆抑制剂是根据底物的化学结构设计的: 1、它具有和底物类似的结构, 2、可以和靶酶结合, 3、同时还带有一个活泼的化学基团可以和靶酶分子中的必需基团起反应, 4、该活泼化学基团能对靶酶的必需基团进行化学修饰,从而抑制酶的活性。 卤酮是使用最早也是最经典的亲和标记试剂。其中以溴酮及氯酮较佳。例:胰蛋白酶和胰凝乳蛋白酶是两种专一性不同的内肽酶,分别水解碱性氨基酸或芳香氨基酸的羧基所形成的肽键,也可以分别水解这两类氨基酸的酯类,但其氨基酸必须被阻断而成非游离状态。 Kcat型不可逆抑制剂即酶的自杀性底物,也是底物的类似物,但其结构中潜在着一种活性基团,在酶的作用下被激活,与酶的活性中心发生共价结合,使酶失活。每一种自杀底物都是酶的作用对象,这是一种专一性很高的不可逆抑制剂。下面介绍几种自杀性底物(如图所示):

HIV整合酶抑制剂的研究进展

2010年第30卷 有 机 化 学 V ol. 30, 2010 * E-mail: hliu@https://www.doczj.com/doc/756110601.html, Received April 16, 2009; revised August 6, 2009; accepted September 7, 2009. 国家高技术研究发展计划(“863”计划)(No. Grant 2006AA020602)资助项目. ·综述与进展· HIV 整合酶抑制剂的研究进展 郭涤亮a ,b 刘冠男a 周 宇a 李 建a 徐进宜b 蒋华良a 陈凯先a 柳 红*,a ,b (a 中国科学院上海药物研究所 新药研究国家重点实验室药物设计和发现中心 上海 201203) (b 中国药科大学药学院 南京210009) 摘要 HIV 整合酶是病毒DNA 复制所必需的3个基本酶之一, 是新批准上市的抗艾滋病药物Raltegravir (MK-0518, Isentress)的分子靶标. HIV 整合酶抑制剂已经成为新一类治疗获得性免疫缺陷综合症的药物. 对HIV 整合酶抑制剂的研究进展进行了综述, 为研究新型人类免疫缺陷病毒整合酶抑制剂提供参考. 关键词 人类免疫缺陷病毒; 整合酶抑制剂; 二酮酸类; Raltegravir Research Progress in HIV Integrase Inhibitors Guo, Diliang a ,b Liu, Guannan a Zhou, Yu a Li, Jian a Xu, Jinyi b Jiang, Hualiang a Chen, Kaixian a Liu, Hong *,a ,b (a Drug Discovery and Design Centre , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203) (b School of Pharmacy , China Pharmaceutical University , Nanjing 210009) Abstract HIV integrase is one of the three essential enzymes for viral DNA replication and the molecular target of the newly approved anti-AIDS drug raltegravir (MK-0518, Isentress). HIV integrase inhibitors have emerged as a new class of drugs for the treatment of AIDS. In this article, the recent progress of HIV inte-grase inhibitors is reviewed to provide some useful information for the further research and development of HIV integrase inhibitors. Keywords HIV; integrase inhibitor; diketoacid; Raltegravir 人类免疫缺陷病毒(HIV)感染引起的艾滋病(AIDS)是目前人类所经历的最严重的疾病之一, 截止2004年底, 全球已有4000万艾滋病毒携带者和艾滋病患者, 已有310万人死于艾滋病, 新感染艾滋病病毒的人数约为490万, 艾滋病在全球范围内的传播速度惊人. 鉴于此, 研究和开发抗艾滋病的新药显得日益紧迫和重要. 随着人类对HIV 病毒及其感染过程的研究不断深入, 以及各国药物研发人员的不断努力, 抗HIV 药物有了突飞猛进的发展, 尤其是全新作用机制的HIV 进入抑制剂和HIV 整合酶抑制剂的出现, 为抗HIV 药物的研制带来了新的 发展方向, 也为艾滋病治疗带来了新的希望. 1 抗艾滋病药物的作用机制和分类 抗艾滋病药物的作用机制是通过影响HIV 复制周期的某个环节, 从而抑制病毒的复制和感染. 根据HIV-1的生命周期, 目前抗艾滋病药物主要针对病毒复制过程的8个重要环节, 即HIV 对宿主细胞的依附(viral attachment)-进入抑制剂(entry inhibitor); 辅受体相互作用(coreceptor interaction)-进入抑制剂; HIV 与

谷胱甘肽转移酶抑制剂筛选方法一

谷胱甘肽转移酶(GST) 还原型谷胱甘肽占绝大多数。 谷胱甘肽转移酶 (GST) 是广泛分布于哺乳动物、植物、鸟类、昆虫、寄生虫及微生物体内的一组多功能同工酶。GST是由23-29KDa的不同亚基构成的同源二聚体,每一类GST同工酶中组成的亚基种类有多种,因此编码GST同工酶的基因是一个巨大的超基因家族。 GST主要功能是催化某些内源性或外来有害物质(过氧化物、α, β2不饱和醛酮、烷基或芳香基化合物)的亲电子基团与还原型谷胱甘肽的巯基偶联,增加其疏水性使其易于穿越细胞膜,分解后排出体外,从而达到解毒的目的,有抑制细胞癌变的功能。 通常认为,谷胱甘肽转移酶的作用是催化谷胱甘肽与外来的或内在的有害物质亲电结合排出体外而起到解毒的作用,但是对于治疗癌症药物的研究主要是针对能够抑制谷胱甘肽转移酶(GST)活性的酶抑制剂,而不是GST催化解毒作用。 研究表明,GST的酶活性水平与肿瘤的耐药性密切相关心。因此,GST可能是治疗耐药肿瘤的潜在药物作用靶点。 与GSTs相关疾病有:人类癌症包括胃癌,结肠癌,胰腺癌和肺癌动脉粥样硬化和冠心病。 近年来对GST抑制剂的研究越来越多,研究报道的GST抑制剂主要有:依他尼酸(EA)及其类似物、TLK199及其类似物、黄酮类化合物、双功能基化合物,还有其他一些抗虐药物如乙嘧啶和奎尼丁等等。 抗肿瘤药物与GSH作用模式图:

图中GST-∏是人体内一种Ⅱ相代谢酶,其对肿瘤的耐药作用主要由其解毒功能引起, 其作用机制:①催化谷胱苷肽(GSH)与亲电子药物如各种烷化剂结合,增加其水溶性,加速其排泄而使药效减低;②清除葸环类药物等产生的自由基,减轻药物自由基对细胞的损伤; ③通过直接与药物结合的形式降低药物活性等。 机理解释:图中是一个肿瘤细胞,当治疗肿瘤的药物顺铂进入细胞时,GST就会催化谷胱甘肽GSH与顺铂结合而将其排出体外,所以为了加强药效,就需要使GST的功能受到抑制,GST 抑制剂占据GST酶活性位点,使GST无法催化GSH与顺铂结合,这样就会降低抗肿瘤药物的耐药性。 筛选方法: 方法一:比色法 在该酶的抑制剂筛选中,采用比色法直接测定底物浓度,主要依据产物有紫外或可见光的特征吸收,通过测定反应体系的OD值变化,测定酶和抑制剂的活性。 实验原理:1-氯-2,4-二硝基苯(CDNB)与谷胱甘肽(GSH)在谷胱甘肽转移酶(GST)的作用下生成复合物CDNB-SG,该化合物在340nm 下呈现最大的光吸收值,根据加入样品前后酶活性的变化情况测定样品对GST的抑制活性。 实验材料: 试剂:还原型谷胱甘肽;1-氯-2,4-二硝基苯(CDNB);次氯酸钠溶液;待筛选样品。 仪器:SpectraMax M5 型连续光谱酶标测试仪;Costar 384孔微板。

蛋白酶抑制剂的研究进展

蛋白酶抑制剂的研究进展 郭川 微生物专业,200326031 摘要:自然界共发现四大类蛋白酶抑制剂:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、金属蛋白酶抑制剂和酸性蛋白酶抑制剂,本文就各大类蛋白酶抑制剂的结构特点,活性部位的研究概况及其在各领域应用的原理及进展。 关键词:蛋白酶抑制剂;结构;应用 天然的蛋白酶抑制剂(PI)是对蛋白水解酶有抑制活性的一种小分子蛋白质,由于其分子量较小,所以在生物中普遍存在。它能与蛋白酶的活性部位和变构部位结合,抑制酶的催化活性或阻止酶原转化有活性的酶。在一系列重要的生理、病理过程中:如凝血、纤溶、补体活化、感染、细胞迁移等,PI发挥着关键性的调控作用,是生物体内免疫系统的重要组成部分。从Kunitz等最早分离纯化出一种PI至今,已有多种PI被发现,根据其作用的蛋白酶主要分以下几类:抑制胰蛋白酶、胰凝乳蛋白酶等的丝氨酸蛋白酶抑制剂,抑制木瓜蛋白酶、菠萝蛋白酶等的巯基蛋白酶抑制剂,抑制胃蛋白酶、组织蛋白酶D等的羧基蛋白酶抑制剂、抑制胶原酶、氨肽酶等的金属蛋白酶抑制剂等。而根据作用于酶的活性基团不同及其氨基酸序列的同源性,可将自然界发现的PI分为四大类:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂(半胱氨酸蛋白酶抑制剂)、金属蛋白酶抑制剂和酸性蛋白酶抑制剂[1]。 1 结构与功能 1.1丝氨酸蛋白酶抑制剂(Serine Protease Inhibitor,Serpin) 丝氨酸蛋白酶抑制剂是一族由古代抑制剂趋异进化5亿年演变而来的结构序列同源的蛋白酶抑制剂。Sepin为单一肽链蛋白质。各种serpin大约有30%的同源序列,疏水区同源性高达70%。血浆中的serpin多被糖基化,糖链经天东酰胺的酰胺基与主链相连。位于抑制性serpin表面、距C端30~40个氨基酸处的环状结构区RSL(reactive site loop)中,存在能被靶酶的底物识别位点识别的氨基酸P1[2];近C端与P1相邻的氨基酸为P1’,依此类推,即肽链结构表示为N端-P15~P9~P1-P1’~P9’~P15’-C端。在对靶酶的抑制中。Serpin 以RSL中的类底物反应活性位点与靶酶形成紧密的不易解离的酶-抑制剂复合物,同时P1-P1’间的反应活性位点断裂。几种perpin氨基酸序列比较发现,serpins各成员的抑制专一性是由P1决定的,且被抑制的酶特异性切点一致。如抗凝血酶,抑制以Arg羧基端为敏感部位的丝氨酸蛋白酶,其中P1为Arg[2]。 1.2巯基蛋白酶抑制剂(Cytsteine Proteinase Inhiitor,CPI) 对于丝氨酸蛋白酶抑制剂(SPI)已有大量研究,巯基蛋白酶抑制剂(CPI)的研究则相对要晚一些。而动物和微生物来源的CPI已有一些研究,发现它们在结构上具有同源性,Barrett等将CPI统称为胱蛋白超家族,并按分子内二硫键的有无与数量,分子量大小等将此家族分为3个成员(F1、F2、F3)。在3个家族中,大多数F1和F3的CPI中都有Glu53-Val54-Val55-Ala56-Gly57保守序列,其同源序列在其它CPI中也被发现,如F2中的Gln-X-Val-Y-Gly和CHα-ras基因产物中的Gln-Val-Val肽段。人工合成的Glu-Val-Val-Ala-Gly 短肽也显示对木瓜蛋白酶有抑制活性,因此可以认为这一保守区段在抑制活性中起着全部或部分的关键作用[3]。对植物来源的CPI研究的不多,已有报道的有水稻、鳄梨和大豆。水稻巯基蛋白酶抑制剂(Oryzacystatin,OC) 具有102个氨基酸残基,有典型的Glu-Val-Val-Ala-Gly保守序列,应与动物CPI同源进化而来。从OCI没有二硫键来看,它应归为F1成员,但从序列比较看,则更接近F3。对OCIGlu---Gly保守序列进行点突变试验表明,突变使其抑制活性大幅度下降,其中当Glu被Pro替代时则活性全无,由此说明,这一段保守序列在OCI的抑制活性中,同动物CPI一样必不可少。除Glu---Gly保守区域外,OCI序列中其

神经氨酸酶抑制剂的研究进展解析

上海应用技术学院 研究生课程(论文类)试卷 2 014 / 2 015学年第二学期 课程名称:新药研发与申报 课程代码:NX0702016 论文题目:神经氨酸酶抑制剂的研究进展 学生姓名:王震 专业﹑学号:化工1班,146061114 学院:化学与环境工程学院 课程(论文)成绩: 课程(论文)评分依据(必填): 1.论文结构规范,检索的文献资料经认真的综合分析整理,选材精简得当,条理清晰,语言流畅, 版面整洁美观。得分为90-100分。 2.论文结构较规范,检索的文献资料经分析整理,材料组织得当,条理清晰,语言流畅。得分为 80-89分。 3.论文结构基本规范,内容有小问题,检索的文献资料经一般性分类整理,条理较清晰,得分为 70-79分。 4.论文结构基本规范,内容未经认真整理,一般性罗列所检索的文献资料。得分为60-69分。 5.达不到上述第4点要求的论文,得分为0-59分。 任课教师签字: 日期:年月日

神经氨酸酶抑制剂的研究进展 摘要:2009年高致病性的H1N1流感大爆发,再次向人们敲响了警钟:随着毒株变异性的加强,流感疫苗已无力完全遏制疫情的传播[1]。我们知道,流感病毒在感染和传播过程中,作为其四大活性位点之一(其他三个是血凝素、M2离子通道和部分RNA聚合酶)的神经氨酸酶(NA)起到了重要作用。因此,抗流感病毒神经氨酸酶抑制剂的设计与合成势在必行。本文综述了抗流感病毒神经氨酸酶抑制剂(NAIs)的研究进展。 关键词:神经氨酸酶;变异;抑制剂;合成

The development of neuraminidase inhibitors Abstract: The pandemic of influenza virus in 2009 to human beings sounded the alarm: the influenza vaccine was feeling powerless to suppress the transmission of epidemic with the strengthening of strain’s variability. As we know, in the process of influenza virus’ infection and propagation, the neuraminidase, one of four neuraminiric active site (another active site,ie,Hemagglutinin,M2 ion channels and RNA polymerase), played a important role. Therefore, the designing and synthesis of anti-influenza virus neuramnidase inhibitors are imperative. And this paper reviewed the development of influenza-resistant virus neuraminidase inhibitors. Keywords: neuraminidase; variation; inhibitors; synthesis

血管紧张素转化酶抑制剂

血管紧张素转化酶(ACE)抑制剂 一.发展历史 ACEI 是20世纪80年代发展起来的一类新型抗高血压和抗充血性心力衰竭药,并在抗高血压药作用途径方面取得了突破,WHO 于1993年建议将其作为治疗轻度高血压的首选药物。 1970年,巴西科学家从涉毒中分离出多种可抑制血管紧张素转换酶(ACE)的物质,同年研制出首个ACEI并命名为卡托普利,于1981年在美国上市;1976年,日本药物学家从酞嗓系列诱导体中筛选出第2代ACEI药物依那普利,并于1984年在德国上市。之后ACEI的研究发展迅速,上市新药近百种,用于临床达20种。 二.作用机制与结构特点 1、肾素-血管紧张素(RAS)是人体调节血压的重要激素系统。当血压降低时,肾脏分泌肾素,血管紧张素原在肾素催化作用下水解产生血管紧张素I(AngI),AngI经ACE作用而形成血管紧张素Ⅱ(Ang Ⅱ)。Ang Ⅱ具有很强的收缩血管活性,使血压升高;Ang Ⅱ也能刺激肾上腺皮质分泌醛固酮(ALD),ALD 能促进肾脏对水和钠离子的重吸收,增加体液容量,升高血压。 2、ACEI通过与ACE活性部分的锌匹配体结合而发挥作用,根据其结合基团可分为三类①以巯基结合,如卡托普利;②以膦酸基结合,如福辛普利;③以羧基结合,如依那普利。ACEI能竞争性阻断AngⅠ转化为Ang Ⅱ,从而降低循环和局部AngⅡ的

水平。ACEI可增加缓激肽水平,同时可增加一氧化氮(NO)和有血管活性的前列腺素(前列环素和前列腺素E2)的释放。ACEI 还能阻断Ang1~7的降解,使其水平增加,通过加强刺激Ang1~7受体来进一步起到扩张血管及抗增生的作用。 三、药理作用及临床用途 降低血压 1、抑制RAS:ACEI对血浆中的RAS有直接抑制作用,通过抑制血管紧张素转化酶(ACE)的活性,使血浆中的AngⅡ浓度降低,对抗AngⅡ的缩血管作用。在人体的肾脏、脑、心脏扥局部组织中也存在血管紧张素受体,局部组织的RAS对血管紧张度的调控起重要作用,ACEI对组织中的ACE也有抑制作用,是血压平稳下降的重要环节。 2、降低交感神经兴奋性:AngⅡ可促进肾上腺素能神经末梢释放去甲肾上腺素(NE),ACEI通过降低AngⅡ水平,使交感神经兴奋性下降,减少NE的合成和释放,使血管舒张,血压下降。抑制缓激肽的降解:ACE是一种激肽酶,可降解缓激肽,缓激肽具有较强的扩血管作用。ACEI抑制ACE活性,使缓激肽降解减少,从而保留其扩长血管作用。 3、减少ALD分泌:ACEI通过减少AngⅡ对靶器官的作用,使ALD释放减少,减轻水钠潴留,有利于降低血压,减轻心脏负荷。因为ACEI在扩张血管、减少外周阻力、调节体液平衡方面的明显效果,使其成为临床一线抗高血压药物。ACEI可用于轻、

酶抑制剂类抗糖尿病药物的分子水平筛选方法研究进展

酶抑制剂类抗糖尿病药物的分子水平筛选方法研究进展 张海枝,刘鹏,李川,刘长鹰 天津药物研究院天津市新药设计与发现重点实验室,天津 300193 摘 要:酶抑制剂类抗糖尿病药物是目前药物研究的热点,而药物筛选技术是制约此类抗糖尿病新药研发速度的关键步骤。主要从分子水平总结近年来报道的与糖尿病相关的酶抑制剂类候选药物的筛选方法,包括传统方法和前沿方法,着重介绍极具潜力的毛细管电泳法、质谱法、生物传感法和微通道筛选方法等。 关键词:抗糖尿病药物;酶抑制剂;分子水平;药物筛选方法 中图分类号:R977.3 文献标志码:A 文章编号:1674 - 5515(2014)08 - 0947 - 06 DOI: 10.7501/j.issn.1674-5515.2014.08.028 Research progress on drug screening methods at the molecular level for enzyme inhibitors used as anti-diabetic drugs ZHANG Hai-zhi, LIU Peng, LI Chuan, LIU Chang-ying Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China Abstract: Various enzyme inhibitors have been demonstrated to be a hotspot in the research area of anti-diabetic drugs, whose development has been greatly limited by the efficiency of diverse drug screening methods. This paper concerns on different types of drug screening methods in the molecular level for enzyme inhibitors used in diabete treatment, including both traditional and advanced methods. Importantly, several screening methods with great potential have been emphasized here, such as capillary electrophoresis, mass spectrometry, biosensors, screening methods based on microchannel and so on. Key words: anti-diabetic drugs; enzyme inhibitors; molecular level; drug screening methods 糖尿病是全世界发病率最高的疾病之一,是一种与胰岛素产生和作用异常相关、以高血糖为主要特征的代谢性疾病。现有报道证实,体内参与血糖调节的多种酶已经成为抗糖尿病药物作用的关键靶点,可为研制治疗糖尿病的药物提供新途径。以靶标酶为作用对象的酶抑制剂可有效抑制血糖的升高,减缓糖尿病并发症的发生和发展,是抗糖尿病药物研发的希望所在[1-2]。目前报道的可用于治疗糖尿病的酶抑制剂包括α-葡萄糖苷酶抑制剂、醛糖还原酶(AR)抑制剂、一氧化氮合酶(NOS)抑制剂、血管紧张素转换酶(ACE)抑制剂、基质金属蛋白酶(MMPs)抑制剂、蛋白质酪氨酸磷酸酶1B (PTP-1B)抑制剂、果糖-1,6-二磷酸酶抑制剂、磷酸二酯酶(PDE)抑制剂、环氧酶-2(COX-2)抑制剂、二肽基肽酶-Ⅳ(DPP-Ⅳ)抑制剂等[3]。 近年来,组合化学的快速发展已经解决了酶抑制剂类候选药物的大批量合成问题,而如何快速高效准确地筛选出此类抗糖尿病新药是药物研发中的关键难题。现有报道中关于酶抑制剂类候选药物的筛选方法较多,根据所选用的材料和药物作用的对象以及操作特点,可将这些方法大致分为4个水平:整体动物水平、组织器官水平、细胞水平和分子水平。其中,基于分子水平的酶抑制剂类药物筛选方法具有反应体积小、筛选速度快、药物作用机制明确,可实现大规模筛选等优点,在药物筛选方面具有广阔的应用前景。基于此,本文详细综述了酶抑制剂类抗糖尿病药物的分子水平筛选方法,力图为此类药物的高通量筛选提供借鉴和参考,以期提高抗糖尿病新药的研发速度。目前文献中报道的与糖尿病相关的酶抑制剂类药物分子水平筛选方法主要 收稿日期:2014-06-28 作者简介:张海枝(1985—),女,湖北黄冈市人,博士,助理研究员,研究方向为分析化学。Tel: (022)23006859 E-mail: zhanghz@https://www.doczj.com/doc/756110601.html,

血管紧张素转换酶抑制剂专家共识

血管紧张素转换酶抑制剂(ACEI)通过抑制血管紧张素n生成、阻断肾素一血管紧张素·醛固酮系统作用,及抑制缓激肤降解、增强缓激肚效应,而广泛应用于肾脏病治疗。为了更合理、安全地应用这类药物,全国部分肾病专家于2004年4月24日在北京进行了专题研讨,对《血管紧张素转换酶抑制剂在肾脏病中正确应用的专家建议》进行了第2次修订,经充分讨论,会议达成如下共识。 一、适应证 1.降低系统高血压:持续性高血压促进肾损害进展,引起严重心、脑血管并发症。对肾脏病患者合并的高血压(包括原发性高血压及肾实质性高血压)应积极治疗,并力争达标。尿蛋白<1 g/d时,血压应降达130/80 mmHg(平均动脉压97 mmHg );尿蛋白>1 g/d时,血压应降达125/75 mmHg(平均动脉压92 mmHg ),其中收缩压治疗达标尤其重要。此时,ACEI(或血管紧张素11受体拮抗剂,ARB)应为首选降压药。 2.减少尿蛋白排泄:蛋白尿、尤其大量蛋白尿有不少危害,并能促进肾损害进展,应积极治疗。ACEI能通过多种机制如改善肾小球内高压、高灌注及高滤过,及改善肾小球滤过膜选择通透性而减少尿蛋白排泄。蛋白尿较重时ACEI降尿蛋白效果往往更显著,应尽量将尿蛋白减少至正常或最低水平。 3.延缓肾损害进展:ACEI除能通过上述作用保护肾脏外,还能通过减少肾脏细胞外基质蓄积(减少产生,促进降解),拮抗肾小球硬化及肾间质纤维化而延缓肾损害进展。 ACEI针对上述第2,3适应症发挥的疗效,部分为非血压依赖性效应,因此,这两个适应症对无高血压的肾脏病患者也适用。 糖尿病患者(包括1型及2型)应从尿白蛋白排泄率增高开始即应用ACEI 上述各适应症疗效已被许多临床循证医学试验验证。 二、使用方法 ACEI类药均需从低剂量开始应用,然后逐渐加量至起效,老年人尤应如此,避免降血压过度。 1.降低高血压:若非血压极高需迅速降压,一般宜首选长效ACEI治疗。 为了有效降压,ACEI常需与其它降压药物配伍应用,一般常需3种或更多种降压药联合应用才能有效控制血压。联合用药常首选用小剂量利尿剂(肌醉清除率>25ml/min时可用唆嗦类利尿药,<25 ml/min时用拌利尿剂,排钠利尿可提高AC降压疗效,但必须小量使用,勿导致脱水)。若降压效果不满意,可再加钙通道阻滞剂(包括双氢毗陡及非双氢毗r}类)、p受体阻断剂或a及p受体阻断剂(心率慢者不用),以及其它种类降压药。血管紧张素n受体拮抗剂也可与ACEI联合应用。 用ACEI降血压时,需限制食盐人量。 2.减少尿蛋白及延缓肾损害进展:为有效减少尿蛋白排泄及延缓肾损害进展,ACEI常需较大剂量(比降血压 所需用量大),或联合应用血管紧张素11受体拮抗剂,且 用药时间要久(常需数年),同时应限制饮食中蛋白质及 盐摄人量。 三、副作用 1.咳嗽:此可能与激肤酶被抑制相关,血中缓激肚、前列腺素及P物质浓度增高引发咳嗽。严重者应停ACEI,改用血管紧张素11受体拮抗剂。 2.血清肌醉增高:用药头两个月血清肌醉( Scr)可轻度上升(升幅<30% ),为正常反应,勿停药;但是,如果用药过程中Sc:上升过高(升幅>30%.-50% ),则为异常反应,提示肾缺血。出现后一情况时应停用ACEI,并努力寻找肾缺血病因设法解除,假若肾缺血能被纠正且Scr恢复正常,则可再用ACEI,否则,不宜再用。

SortaseA酶抑制剂的进展

提 要:Sortase A 酶是一种介导革兰氏阳性细菌细胞壁与表面蛋白共价结合的蛋白酶。近年来研究表明Sortase A 酶在变形链球菌黏附于牙面的过程中起到关键作用,而口腔变形链球菌是主要致龋菌之一,通过对Sortase A 酶的研究有望开辟新型抗菌药物的筛选途径和新的治疗方法。目前,有关用Sortase A 酶作为靶蛋白的研究主要集中在抑制剂的方面,尤其集中在对天然产物及其来源衍生物的研究,本文就该方面作一综述。 关键词:SrtA ;抑制剂;变形链球菌;天然产物;综述文献 中图分类号:R 780.2 文献标识码:A 文章编号:1005-4057(2012)02-0208-03DOI: 10.3969/j.issn.1005-4057.2012.02..037 Sortase A 酶抑制剂的研究进展 王敬雯(综述),陈 坤、姜 颖(审校) (广东医学院附属医院口腔科,广东湛江 524001) 基金项目:广东省自然科学基金博士启动项目 (No.9452402301002065) 收稿日期:2012-01-16;修订日期:2010-03-23作者简介:王敬雯(1985-),女,在读硕士研究生。 变形链球菌(Streptococcus mutans, S. mutans)是人类龋病肽,C 末端信号肽部分被称之为细胞壁锚定信号(cell wall 的主要致病菌之一,其在牙面黏附定植是致龋的首要条件。sorting signal, cwss),由35个氨基酸残基组成,包括一个保守在变形链球菌中,作为细菌黏结素的表面蛋白通过转肽酶的SrtA 酶识别序列,通常称为LPXTGX 基因序列区,为一段[1] Sortase A 酶(SrtA) 的羧基末端共价结合于细胞表面,因此疏水氨基酸区域和一个带正电荷的尾部。SrtA 酶催化的表[3]SrtA 酶在变形链球菌黏附、致龋中起重要作用。目前研究发面蛋白的锚定是通过以下几个步骤完成的:第一步,表面现,除分支杆菌属外所有革兰氏阳性细菌均有一个保守的转蛋白前体通过其氨基末端的信号肽进入细菌的分泌系统,肽酶SrtA 酶,SrtA 酶的编码基因srtA 基因的突变常常产生多C 末端的疏水区域和正电荷尾部使蛋白保留在胞膜内,这就种影响,包括细菌表面连接蛋白变化和细菌毒力改变。近年使得膜内的SrtA 酶可识别蛋白前体的LPXTG 结构域。第二来,关于用SrtA 酶作为靶蛋白的研究主要集中在天然产物中步:SrtA 酶催化LPXTG 区的苏氨酸和甘氨酸残基之间发生蛋抑制剂的研究,本文就这方面做一综述。白水解反应,释放C 末端的疏水区域和正电荷尾部,同时,SrtA 酶中保守的半胱氨酸与LPXT 基序的苏氨酸形成硫醚连1 SrtA 酶与变形链球菌的关系及致龋的作用机制 接。第三步苏氨酸的羟基端与细胞壁前体(脂质Ⅱ)交联桥结[1] 口腔变形链球菌是龋病重要的致病菌之一,Igarashi 等 构上的甘氨酸基团形成酰胺连接。第四步:脂质Ⅱ与蛋白前首先发现变形链球菌中的SrtA 酶并对其编码基因srtA 的序列体连接后,经过转糖基反应和转肽反应形成成熟的肽聚糖,进行测定。在这项研究中,确定srtA 基因存在于变形链球菌细胞壁达到成熟,表面蛋白即被共价连接到细胞壁上。 细胞壁中,同时完成了其完整的核苷酸序列测序。结果发SrtA 酶在变形链球菌致龋作用中起重要作用。近年研究现,变形链球菌的srtA 基因由741 bp 组成,该基因编码分子表明,无论是在有无唾液与蔗糖的环境下,SrtA 酶在牙面生[4] [5]量为27 489,由246个氨基酸组成的转肽酶蛋白,即SrtA 酶,物膜的形成中均起到关键性的作用。Lee 等通过动物实验它可以介导细菌表面蛋白的锚定。SrtA 酶的三维结构显示其发现,变形链球菌SrtA 酶的基因突变株的致龋性要明显低于由8条β-折叠、1条α-螺旋卷曲形成,其中有2条带有3个转亲代株,这提示srtA 基因与变形链球菌的致龋性密切相关。角的螺旋连接到β-折叠上,Cys184、Arg197和His120为2 以SrtA 酶作为靶点的抑制剂研究 SrtA 酶活性中心。此后,他们发现SrtA 中含有一种Cbz-近年来随着抗生素的大量滥用,细菌越来越易产生耐药LPAT 的氨基酸序列,其中Cbz 是一种苄氧羰基的保护组,性,传统的微生物来源的抗生素或其衍生物逐渐失效,而植T 部分是一种苏氨酸衍生物,可以替换羰基群-CH2-SH ,该物来源以及天然产物来源的抗生素越来越被医药界所接受,酶通过T 部分形成一种双硫键连接于活性位点Cys184的硫醇因此天然产物药物将成为抗菌药物的重要来源。由于SrtA 酶基,形成一种共价的SrtA ΔN59-LPAT 复合物,即苏氨酸介导[2] 在革兰氏阳性菌感染中有着至关重要的作用,因此对以产生催化作用的结构模型。 SrtA 酶作为靶点的抑制剂研究也被广泛关注。 变形链球菌表面蛋白A 的N 末端和C 末端都含有特征信号[6] 汉城国立大学的Kim 等最先在80种植物中筛选出SrtA 酶的抑制剂。SrtA 酶在pH 7.5条件下活性最强,在20~45℃时活性最稳定。在此pH 值与温度下测试80种植物对SrtA 酶裂解抑制活性,其中木防己、漆树、阔叶麦冬和黄花贝母,尤其是这些植物的根茎提取物乙酸乙酯,显示出较好的抑制活 208 第 30 卷第 2 期2012 年 4 月广东医学院学报 JOURNAL OF GUANGDONG MEDICAL COLLEGE V ol. 30 No. 2Apr. 2012

葡萄糖苷酶抑制剂筛选方法

葡萄糖苷酶抑制剂筛选方法 α-葡萄糖苷酶抑制剂是一类以延缓肠道碳水化合物吸收而达到治疗糖尿病的口服降糖药物。其作用机制为:竞争性抑制位于小肠的各种α-葡萄糖苷酶,使淀粉类分解为葡萄糖的速度减慢,从而减缓肠道内葡萄糖的吸收,降低餐后高血糖。 α-葡萄糖苷酶抑制活性筛选的原理是:对-硝基苯酚-α-D-葡萄糖苷(pNPG)作反应底物;该底物是无色的。经α-葡萄糖苷酶水解后可以释放出对-硝基苯酚(pNP),pNP在碱性条件下是黄色的,因此可以通过测定410nm处的吸光度反应出pNP的浓度(吸光度与pNP浓度成正比关系)。吸光度越小,说明pNP的浓度越小,即酶被抑制的程度越大。 设不加样品时,测得的吸光度为c0, 加样品后测的吸光度为c1. 那么酶的抑制率可通过1-c1/c0计算出来。 一实验试剂: α-Glucosidase(α-葡萄糖苷酶)、4Nitrphtnylα-D-glucopyranoside(4-硝基苯-α-D-吡喃葡萄糖苷)(PNPG)、Acarbose(阿卡波糖) 均购自Sigma公司,无水Na2CO3、Na2HPO4、KH2PO4等, 均为分析纯。水为超纯水。苦瓜提取物。 二实验器材: Bio Tek酶标仪、电子天平、Eppendorf的移液器、pH计、酶标板、恒温水浴器 三实验方法: (一) 试剂配制 (1)pH值6.8的0.1 mol/L磷酸缓冲液 分别配制0.1 mol/L Na2HPO4和KH2PO4(13.6 g配成1L),用这两种溶液混匀互调pH 值至6.8即得0.1 mol/L磷酸缓冲液 (2)用pH值6.8的0.1 mol/L磷酸缓冲液配制0.26 U/mlα-Glucosidase (3)底物(PNPG)用pH值6.8的0.1 mol/L磷酸缓冲液配制成浓度为5 mmol/L (1.505mg/ml) (4)反应终止液:0.2 mol/L Na2CO3。 (5)阳性药的配制:精密称取阿波卡糖样品,以磷酸缓冲液为溶剂溶解,配成10 mg/ml 的浓度。 (二) 实验方法 1. 各浓度药液按每孔50 μL加入酶标板,每浓度设三复孔。另设一药物对照孔、空白反应孔及空白对照孔。然后向药物反应孔和空白反应孔加入50 μL 0.26 U/mL的 -葡萄糖苷酶,其他组加50 μL 磷酸缓冲液,经此步骤后,各孔的组成为: 药物反应孔:50 μL药液+ 50 μL酶 药物对照孔:50 μL药液+ 50 μL磷酸缓冲液 空白反应孔:50 μL磷酸缓冲液+ 50 μL酶 空白对照孔:50 μL磷酸缓冲液+ 50 μL磷酸缓冲液 上述反应体系在微型振荡器上震荡30秒,置于恒温37 o C水浴中孵育10min。

整合酶抑制剂临床应用专家共识(最全版)

整合酶抑制剂临床应用专家共识(最全版) 抗反转录病毒治疗(antiretroviral therapy,ART)的出现和应用将艾滋病从一种致死性疾病转变为一种可以治疗但尚难以彻底治愈的慢性疾病。ART是治疗艾滋病最重要的措施,目前共有7大类超过50种抗反转录病毒药物(antiretroviral drug,ARV)获得美国食品及药物管理局(food and drug administration,FDA)批准用于艾滋病临床治疗[1]。随着ART在临床的广泛应用,HIV的耐药问题已经成为影响疗效的重要原因。奈韦拉平(nevirapine,NVP)和依非韦伦(efavirenz,EFV)等非核苷类反转录酶抑制剂(non-nucleoside reverse transcriptase inhibitors,NNRTI)曾是应用广泛的一线治疗药物,但近年来HIV对NNRTI的耐药率明显升高,部分地区甚至出现较高的传播性耐药,使得基于NNRTI的一线治疗方案受到巨大挑战[2]。此外,不良反应也是影响ART疗效的重要因素。因此,优化ART方案是近年来人们关注的焦点。 全新作用靶点的整合酶抑制剂(integrase inhibitors,INI)因其高效低毒,自上市后引起人们的广泛关注,其在临床广泛应用后表现出了良好的疗效和安全性,已成为国际艾滋病治疗诸多指南中的首选推荐[3,4,5,6]。INI目前尚未纳入我国免费抗病毒治疗药物目录,但临床上使用INI的患者越来越多,为规范其在临床上的应用,中华医学会热带病与寄生虫学分会艾滋病学组和中华医学会感染病学分会艾滋病学组共同制订了《整合酶抑制剂临床应用专家共识》(以下简称共识)。本共识为临床应用INI提供参考,在具体的临床实践中,临床医师应结合患者具体情况合理选用,且

磷脂酶抑制剂新进展

具有抗炎、抗过敏活性磷脂酶 抑制剂的研究进展* 王寅朱再明 (辽宁师范大学化学系大连116029) 刘彦 (大连医科大学生化教研室大连116027) 摘要磷脂酶参与细胞跨膜信息传递,磷脂酶A2还是机体炎症、过敏介质产生的关键酶。因此,磷脂酶抑制剂的合成研究对研究细胞表达某种功能的信息传递机制及与磷脂酶A2激活相关的疾病治疗机制和药物研究具有重要意义。本文主要综述了近期有关磷脂酶A2抑制剂的合成、结构、抑效性能、构效关系及应用前景等,对磷脂酶C和磷脂酶D的抑制剂作了简要介绍。 关键词磷脂酶A2磷脂酶C磷脂酶D磷脂酶抑制剂 Recent Advances in Phospholipase Inhibitors Wang Yin Zhu Zaiming (Department of Chemistry, Liaoning Normal University, Dalian 116029, China) Liu Yan (Department of Biochemistry,Dalian Medical University, Dalian 116027, China) Abstract Phospholipase A2,C,D are involved in the pathways of cell transmembrane signal transduction,and phospholipase A2(PLA2)is also a critical enzyme which catalyzes the specific hydrolysis of membrane phospholipids and causes the release of inflammatory and allergic mediators.The studies on phospholipase inhibitors are of significance in investigating the mechanism of the signal transduction of cell functional expression and the mechanism of some diseases related with PLA2 activation,and also in the development of some antiinflammatory and antiallergic drugs.A brief review on phospholipase inhibitors including their structures,properties, structure-effect relationship and application prospects is given. Key words phospholipase A2; phospholipase C; phospholipase D; phospholipase inhibitors 磷脂酶(phospholipase)是指水解甘油磷脂的酶,依水解甘油磷脂的位点不同,将磷脂酶分为磷脂酶A1(PLA1)、磷脂酶A2(PLA2)、磷脂酶C(PLC)和磷脂酶D(PLD),如下图所示。甘油磷脂是构成细胞膜的主要成分,也称膜磷脂。近年来发现其一项重要功能是作为细胞应答外界

相关主题
文本预览
相关文档 最新文档