当前位置:文档之家› 悬架减振器的选择与校核

悬架减振器的选择与校核

悬架减振器的选择与校核
悬架减振器的选择与校核

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参 数的选取、计算、验证等作出较详细的工作模板。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的 修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究 是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991汽车钢板弹簧技术条件 QC/T 517-1999汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984汽车悬挂系统的固有频率和阻尼比测定方法 3符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013汽车操纵稳定性术语及其定义 GB 7258-2017机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999汽车操纵稳定性指标限值与评价方法 QC/T 474-2011客车平顺性评价指标及限值 GB/T 12428-2005客车装载质量计算方法 GB 1589-2016道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置 (减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的 振动,保证汽车的正常行驶。悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济性、通过性等多种

电子设备的隔振技术及减振器选型

电子设备的隔振技术及减振器选型 1、概述 电子设备受到的机械力的形式有多种,其中危害最大的是振动和冲击,它们引起的故障约占80%。它们造成的破坏主要有两种形式,其一是强度破坏:设备在某一激振频率下产生振幅很大的共振,最终振动加速度所引起的应力超过设备所能承受的极限强度而破坏;或者由于冲击所产生的冲击应力超过设备的极限强度而破坏。其二是疲劳破坏:振动或冲击引起的应力虽远低于材料的强度,但由于长时间振动或多次冲击而产生的应力超过其疲劳极限,使材料发生疲劳损坏。系统的振动特性受三个参数的影响,即质量、刚度和阻尼。对于电子设备的振动和冲击隔离来说,隔振系统的质量一般是指电子设备的质量,而刚度和阻尼则由设备的支撑装置提供。在机械环境的作用下,尤其是在舰船、坦克、越野车辆、飞机等运载工具中,设备及其内部的电子器件、机械结构等都难以承受振动冲击的干扰。 表1各种运载工具振动、冲击和离心加速度参数 2

为了减少或防止振动与冲击对电子设备的影响,通常采取两种措施:a) 通过材料选用和合理的结构设计,增强设备及元器件的耐振动耐冲击能力;b) 在设备或元器件上安装减振器,通过隔离振动与冲击,有效地减少振动与冲击对电子设备的影响。 2、隔振技术 2.1 隔振 隔振就是通过在设备或器件上安装减振装置,隔离或减少它们与外界间的机械振动传递。 在电子设备与基础之间安装弹性支承即减振器,以减少基础的振动对电子设备的影响程度,使电子设备能正常工作或不受损坏;这种对电子设备采取隔离的措施,称为被动隔振。一般情况下,仪器及精密设备的隔振都是被动隔振。 被动隔振系数: 振动来自基础,其运动用U=U o Si n(? t)表示,也是周期振动。被动隔振也可用隔振系数n表示其隔振效果,它的含义是被隔离的物体振幅与基础振幅之比(或是振动速度幅值、加速度幅值的比值) ,可用下式计算: n = X。/ U O ={[1+4 E 2(f / f o) 2 f / f o) 2 ] 2 + 4 2(f/f o) 2} °'5 (1) 式中X O——物体的垂向振幅(m); U o——基础的垂向振幅(m)。 式中f――振动力的频率(H z); f o――隔振系统的固有频率(H Z); k——隔振器的刚度(N/ m);

悬架运动校核报告编写规范标准

目录 1.概述.......................................... 错误!未定义书签。 2.1号标杆车轿车前悬架跳动校核.................... 错误!未定义书签。 2.1前悬架运动校核的有关参数 .................................... 错误!未定义书签。 2.2 前悬架跳动包络图.................................................. 错误!未定义书签。 2.3 前悬架包络与轮罩等的间隙校核............................. 错误!未定义书签。 2.4 前悬架摆臂与副车架间隙校核 ................................ 错误!未定义书签。 3.1号标杆车轿车后悬架跳动校核.................... 错误!未定义书签。 3.1 1号标杆车轿车后悬架跳动量 ................................. 错误!未定义书签。 3.2 1号标杆车轿车后悬架跳动包络图 .......................... 错误!未定义书签。 3.3 1号标杆车轿车后悬架跳动包络与周边间隙............ 错误!未定义书签。 4.前后悬架螺旋弹簧长度校核....................... 错误!未定义书签。 5.前、后减振器长度校核........................... 错误!未定义书签。 5.1 前减振器校核......................................................... 错误!未定义书签。 5.2 后减振器校核......................................................... 错误!未定义书签。 6.总结 ......................................... 错误!未定义书签。 参考文献 .................................. 错误!未定义书签。 1.概述 悬架是汽车上的重要总成,在汽车行驶过程中,悬架系统因载荷及路面变化 总是处于不断的变化之中,因此在进行总布置设计时,必须对悬架的运动进行校核,防止发生运动干涉。此校核的目的是确定悬架运动至极限位置时占用的空间(对于前悬架应同时考虑上跳、下跳及转向至极限位置时的情况),从而检查悬架 与轮罩、纵梁、副车架等之间的间隙是否足够,同时检查悬架系统内部在变化过 程中是否存在干涉现象。 下面分别对1号标杆车轿车前、后悬架跳动情况进行分析,对其空间布置情 况进行校核。 2.1号标杆车前悬架跳动校核 1号标杆车轿车前悬架为麦弗逊式独立悬架,驱动方式为发动机前横置、前 驱动,前轮既是转向轮,又是驱动轮。因此,在进行前悬架运动校核时,必须同 时考虑转向、悬架变形两个方面的综合作用。 2.1前悬架运动校核的有关参数 根据前悬架的空间位置及转向器的设计行程(设计行程为152mm),可得1 号标杆车轿车的悬架运动包络图。前悬架的上跳极限按橡胶限位块压缩1/2计算,得出1号标杆车轿车前悬架上跳最大行程38.7mm,即前悬架从满载状态向上最

阻尼器,一手资源,网上很难找到

6.1 测试抽样个数 《行业标准》对出厂检验7.2 中C)中的出厂力学性能检测抽样规定“每批应按不低于20%的要求进行抽检,且每批不应少于3件”,要求合格率100%。这类产品检验,在美国ASSHTO等规范中均要求每个出厂的阻尼器都要作严格的静、动力两方面检验。这是因为,阻尼器的生产工艺和数据调整十分复杂困难,很容易控制不好。不能保证各项指标的产品就不能保证它的正常工作。也更是使用了阻尼器的结构在未来地震中不因阻尼器的失效而导致破坏的起码保证。 6.2 地震循环测试 行业标准中6.2.4.2阻尼器耐久测试中的疲劳性能试验方法提出:当以地震荷载控制为主时,施加1HZ的正弦力,选择加载60个循环。我们不得不非常遗憾地说,作为一个行业标准最重要的部分,阻尼器的测试部分,编制者和审查者自己似乎并没有完整的做过一遍,也没有仔细地推敲过别人试验的情况和结果。阻尼器的动力和疲劳测试主要有两种:一种为地震荷载的测试,也就是大地震荷载下的低周疲劳测试。另一种是最大风荷载下的高周疲劳测试。 实际阻尼器在大部分地震下达到最大振幅的情况都不到一个循环[13]。保守地说,如果有3-5次这种满负荷的循环试验,阻尼器在地震中的表现应该是可以保证的。因此,这种达到最大受力荷载的动力测试在一定周期下的循环次数并不需太多。美国土木工程协会HIETC中最多做过10次这样的循环,美国ASCE-7-05规范中要求作5次。再多,对于普通抗震用阻尼器没有必要。现在世界上生产的这种抗震阻尼器循环的次数多了,也会因阻尼器过热而受不了破坏。美国Enidine公司就在HITEC的10周循环试验中破坏了。破产的法国Jarret 阻尼器在三个动力循环后阻尼力就急速衰减达不到要求。据我们所知,目前世界上要想让阻尼器达到60次以上的产品只有美国泰勒公司设计生产的无摩擦金属密封阻尼器。它是一种阻尼器内部热量高度平衡的装置,价格昂贵[12]。 忽略了这一点就会产生错误。我国2001年“建筑设计规范”中对阻尼器的测试要求“阻尼器在最大设计允许位移情况下往复循环60圈后消能器性能衰减量不应小于10%”。这里没有说明循环振动的周期,是其含糊不清之处。新规范也应一并考虑。 美国ASCE-7-05抗震规范中对于该项最大地震荷载下的循环测试要求测试的频率按结构第一周期的倒数,循环次数取为5次。 6.3 风荷载循环试验 同是《行业标准》6.2.4.2阻尼器耐久测试中当以风振控制为主时的疲劳性能试验方法提出:输入位移风荷载疲劳循环测试,每次200次,累计10000次。该项试验主要是检验阻尼器 在连续循环试验中的散热能力和抗疲劳性能。间断多了就失去试验的目的。 6.4 频率相关测试 为了检测阻尼器在不同频率荷载的作用下的工作能力。阻尼器要作不同频率下的最大阻尼力的动力试验。《行业标准》6.2.4.3 中规定加载频率分别为0.1Hz ~ 2.5 Hz 中6个选项。这是没有反映结构自身的动力特性。我们知道,结构无论在风振和地震中主要的振动周期应该是结构的基本周期T1 。阻尼器的振动也主要按基本周期振动。国际规范中频率测试范围取在1/T1 ~ 2.5/T1,当然就科学多了。 况且,像《行业标准》的取值办法就很可能进入无法试验甚至无法生产的区域。如:云南昆明某重要建筑工程,设计的阻尼器是1500kN,±400mm,这样的参数,对一个大型隔震结构,是在合理的范围内。可是,如果我们按《行业标准》取2.5Hz 的频率测试,其测试速度V应该是: (2) 其中f为振动频率,A为振动幅值。 要知道,目前世界上最大能力的美国圣地亚哥大学动力测试设备也仅可达到1800mm/s[11],也足够用了。这种测试要求出在我们的国标中不是太离谱了吗? 下面我们还介绍阻尼器最重要的三个关键测试。《行业标准》中均未提到。 6.5 基本性能测试

钢板弹簧悬架系统设计规范--完整版

1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

4-1汽车减振器的选型设计.

汽车减振器的选型设计 东风汽车工程研究院陈耀明 2010年11月12日

目录 一、汽车减振器的作用和功能---------------------------4 1、减振器的作用--------------------------------------4 2、减振器的功能--------------------------------------4 (1)对自然振动--------------------------------------4 (2)对强迫振动--------------------------------------6 二、汽车减振器选型设计的任务-------------------------8 三、汽车减振器额定阻力和工作缸直径的选择-------------9 1、线性减振器的阻尼特性------------------------------9 2、实际减振器的非线性--------------------------------9 3、减振器示功试验的标准规范-------------------------10 4、悬架系统相对阻尼系数与减振器阻尼系数的关系-------11 5、计算额定阻力-------------------------------------12 6、选择减振器工作缸直径-----------------------------13 四、验算悬架系统在各种工况下的振动特性--------------14 五、减振器行程和长度的确定--------------------------14 1、减振器最大压缩(上跳)行程-----------------------14

大学生方程式赛车悬架系统设计

大学生方程式赛车悬架系统设计 中国大学生方程式汽车大赛,在XX年开始举办,至XX 年已举办三届,大赛目的是为了提高大学生汽车设计与团队协作等能力,而华南农业大学XX年才组队设计赛车,现在还没有派队参加比赛,本文初步探讨SAE赛车悬架设计的方案,为日后华南农业大学参赛打下基础。 本课题的重点和难点 1、根据整车的布置对FSAE赛车悬架的结构形式进行的选择。 2、对前后悬架的主要参数和导向机构进行初步的设计。 3、用Catia或Proe建立悬架三维实体模型。 4、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 5、悬架设计方案确定后的优化改良。优化的方案一:用ADAMS/Insight进行优化,以车轮的定位参数优化目标,以上下横臂与车架的铰接点为设计变量进行优化。优化的方案二:轻量化,使用Ansys软件进行模拟悬架工作状况,进行受力分析,强度校核,优化个部件结构,受力情况。 1、查阅FSAE悬架的设计。 2、运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。 3、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 4、用ADAMS/Insight进行优化,改善操纵稳定性。

5、使用Ansys软件进行模拟悬架工作状况,进行受力分析,优化个部件结构及轻量化。 悬架设计流程如下: 首先要确定赛车主要框架参数,包括:外形尺寸、重量、发动机马力等等。 确定悬架系统类型,一般都会选用双横臂式,主要是决定选用拉杆还是推杆。 确定赛车的偏频和赛车前后偏频比。 估计簧上质量和簧下质量的四个车轮独立负重。 根据上面几个参数推算出赛车的悬架刚度和弹簧的弹性系数。 推算出赛车在没有安装防侧倾杆之前的悬架刚度初值,并计算车轮在最大负重情况下的轮胎变形。 计算没安装防侧倾杆时赛车的横向负载转移分布。 根据上面计算数值,选择防侧倾杆以获得预想的侧倾刚度和 LLTD。最后确定减振器阻尼率。 上面计算和选型完成后,再重新对初值进行校核。 运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能,并用ADAMS/Insight进行优化分析。 使用Ansys软件进行模拟悬架工作状况,进行受力分析,

悬架设计作业指导书

悬架系统设计作业指导书 编制:日期: 审核:日期: 批准:日期: 发布日期:年 月 日 实施日期:年 月 日

前言 为使本中心悬架系统设计规范化,参考国内外汽车设计的技术规范,结合公司标准和已开发车型的经验,编制本作业指导书。意在对本公司设计人员在设计过程中起到一种指导操作的作用,让一些相关设计经验不够丰富的员工有所依据,提高设计的效率和成效。本作业指导书将在本中心所有车型开发设计中贯彻,并在实践中进一步提高完善。 本标准于201X年XX月XX日起实施。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院提出。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院负责归 口管理。 本标准主要起草人:蔡礼刚

目录 1 悬架系统概述 (1) 1.1悬架系统功能 (1) 1.2悬架系统构成 (1) 1.2.1独立悬架结构型式 (1) 1.2.2复合式悬架结构型式 (3) 1.3悬架的发展趋势 (4) 1.3.1液压调控悬架系统 (4) 1.3.2空气悬架系统 (5) 1.3.3电控磁性液体悬架系统 (6) 1.4主要零部件介绍 (7) 1.4.1弹性元件 (7) 1.4.2减振器 (8) 1.4.3缓冲块 (10) 1.4.4横向稳定杆 (11) 1.4.5控制臂和推力杆 (12) 2 悬架系统的主要设计流程及要求 (13) 2.1悬架系统的主要设计流程 (13) 2.2悬架系统设计要求 (16) 2.3相关设计标准 (16) 3 悬架系统设计过程 (17) 3.1设计输入及标杆车对比分析 (17) 3.1.1设计输入 (17) 3.1.2标杆车对比分析 (17) 3.1.3设计构想 (24) 3.1.4相关试验 (25) 3.2匹配计算 (27) 3.3开发方案确认 (27)

汽车减振器的选型设计

汽车减振器的选型设计

目录 一、汽车减振器的作用和功能---------------------------4 1、减振器的作用--------------------------------------4 2、减振器的功能--------------------------------------4 (1)对自然振动--------------------------------------4 (2)对强迫振动--------------------------------------6 二、汽车减振器选型设计的任务-------------------------8 三、汽车减振器额定阻力和工作缸直径的选择-------------9 1、线性减振器的阻尼特性------------------------------9 2、实际减振器的非线性--------------------------------9 3、减振器示功试验的标准规范-------------------------10 4、悬架系统相对阻尼系数与减振器阻尼系数的关系-------11 5、计算额定阻力-------------------------------------12 6、选择减振器工作缸直径-----------------------------13 四、验算悬架系统在各种工况下的振动特性--------------14 五、减振器行程和长度的确定--------------------------14 1、减振器最大压缩(上跳)行程-----------------------14

悬架系统运动校核

第一章悬架系统运动校核 第一节概述 悬架是现代汽车上的重要的大总成之一,他把车身(或车架)与车轮(或车轴)弹性的连接起来。它的主要作用是传递作用在车轮和车身(或车架)之间的力和力矩;缓和路面传递给车身(或车架)的冲击载荷。衰减由此给乘员或货物的震动,提高汽车的平顺性;保证汽车在不平路面上或载荷变化时有良好的运动特性,保证汽车操纵稳定性,使汽车有良好的高速行驶能力。 发动机前置前轮驱动的乘用车(轿车或MPV),常采用麦弗逊式前悬架和拖曳臂或扭力梁后悬架。 发动机中置后轮驱动的微型客车或微型货车,常采用麦弗逊式前悬架,钢板弹簧和整体车桥式后悬架。 第二节悬架运动校核 在汽车的行驶过程中,在车辆跳动极限和转向极限范围内,悬架运动件之间不能产生干涉,且保持一定的间隙,以保证汽车行驶的安全性及操纵稳定性。 悬架运动校核术语的定义: 1、前悬架上跳极限 前悬架上跳极限是指前限位块压缩1/2~2/3时的状态为准。轿车、小型客车推荐取1/2,SUV推荐取2/3。 2、前悬架下跳极限 前悬架下跳极限是指前减震器活塞杆拉出最长长度0~1mm位置时的状态,其中所加的0~1mm为减震器活塞杆固定橡胶块在非悬挂质量作用下向下的变形量。 3、后悬架上跳极限 后悬架上跳极限是指后限位块压缩1/2~2/3时的状态为准。轿车、小型客车推荐取1/2,SUV推荐取2/3。 4、后悬架下跳极限 后悬架下跳极限是指后减震器活塞杆拉出最长长度0~2mm位置时的状态,其中所加的0~2mm为减震器活塞杆固定橡胶块在非悬挂质量作用下向下的变形量。 5、左转极限 左转极限是指方向盘逆时针旋转至极限位置时,悬架所在位置。 6、右转极限 右转极限是指方向盘顺时针旋转至极限位置时,悬架所在位置。 下面已某轿车为例说明悬架运动校核的方法: 麦弗逊式前悬架(如图1所示)运动校核主要是分析悬架在上跳左转极限、上跳右转极

汽车悬置系统设计规范指南.doc

悬置系统设计指南 编制: 审核: 批准: 主题与适用范围 1、主题

本指南介绍了动力总成悬置系统开发的基本知识和基本过程,以及所涉及到的基本流程文件核技术文件。 2、适用范围 本指南适用于奇瑞所有装汽油或柴油发动机的M1类车动力总成悬置系统的设计。

目录 一、悬置系统中的基本概念 (4) 1.1 悬置系统设计时的基本概念 (4) 1.2动力总成振动激励简介 (6) 二、悬置系统的作用 (8) 2.1 悬置系统的设计意义及目标简介 (8) 2.2 动力总成悬置系统对整车NVH性能的影响 (8) 三、悬置系统的概念设计 (10) 3.1 悬置系统的布置方式选择 (10) 3.2 悬置点的数目及其位置选择 (11) 3.3 悬置系统设计的频率参数 (13) 四、悬置系统相关设计参数 (14) 4.1动力总成参数 (14) 4.2 制约条件 (15) 五、悬置系统设计过程中的相关技术文件 (16) 5.1 悬置系统VTS (16) 5.2 悬置系统DFMEA (17) 5.3 悬置系统DVP&R (17) 5.4 其它技术及流程文件 (17)

一、悬置系统中的基本概念 1.1 悬置系统设计时的基本概念 1:整车坐标系:原点在车身前方,正X方向从前到后,正Y方向指向右侧(从驾驶员到副驾驶),正Z方向朝上如图(1-1)。 (图1-1)整车坐标系 2:发动机坐标系:原点在曲轴中心线与发动机和变速箱结合面的交点处;正X方向从变速箱到发动机,沿着曲轴中心线,正Y方向指向右侧如果沿着正X方向看,正Z方向朝下如图(1-2)。 (图1-2)发动机坐标系 3:主惯性矩坐标系:原点在动力总成的质心位置,正X方向从变速箱到发动机,沿着最小主惯性矩轴线,正Y方向通常沿着最大主惯性矩轴线,正Z方向朝下并且沿着中等主惯性矩轴线如图(1-3)。

减振器机构类型及主要参数的选择计算

4.7减振器机构类型及主要参数的选择计算 4.7.1分类 悬架中用得最多的减振器是内部充有液体的液力式减振器。汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦和液体的粘性摩擦形成了振动阻力,将振动能量转变为热能,并散发到周围空气中去,达到迅速衰减振动的目的。如果能量的耗散仅仅是在压缩行程或者是在伸张行程进行,则把这种减振器称之为单向作用式减振器,反之称之为双向作用式减振器。后者因减振作用比前者好而得到广泛应用。 根据结构形式不同,减振器分为摇臂式和筒式两种。虽然摇臂式减振器能够在比较大的工作压力(10—20MPa)条件下工作,但由于它的工作特性受活塞磨损和工作温度变化的影响大而遭淘汰。筒式减振器工作压力虽然仅为2.5~5MPa ,但是因为工作性能稳定而在现代汽车上得到广泛应用。筒式减振器又分为单筒式、双筒式和充气筒式三种。双筒充气液力减振器具有工作性能稳定、干摩擦阻力小、噪声低、总长度短等优点,在轿车上得到越来越多的应用。 设计减振器时应当满足的基本要求是,在使用期间保证汽车行驶平顺性的性能稳定。 4.7.2相对阻尼系数ψ 减振器在卸荷阀打开前,减振器中的阻力F 与减振器振动速度v 之间有如下关系 v F δ= (4-51) 式中,δ为减振器阻尼系数。 图4—37b 示出减振器的阻力-速度特性图。该图具有如下特点:阻力-速度特性由四段近似直线线段组成,其中压缩行程和伸张行程的阻力-速度特性各占两段;各段特性线的斜率是减振器的阻尼系数v F /=δ,所以减振器有四个阻尼系数。在没有特别指明时,减振器的阻尼系数是指卸荷阀开启前的阻尼系数而言。通常压缩行程的阻尼系数Y Y Y v F /=δ与伸张行程的阻尼系数S S S v F /=δ不等。 图4—37 减振器的特性 a) 阻力一位移特性 b)阻力一速度特性 汽车悬架有阻尼以后,簧上质量的振动是周期衰减振动,用相对阻尼系数ψ的大小来评定振动衰减的快慢程度。ψ的表达式为 s cm 2δ ψ= (4-52)

乘用车悬架系统台架试验标准规范

乘用车悬架系统台架试验规范 1 范围 本标准规定了乘用车悬架系统台架试验规范。 本标准适用于基础(新)底盘平台结构乘用车前、后悬架系统台架试验。对于在基础平台上延伸车型(如油改电),若轴荷增加<10%,悬架系统的强度及耐久性可视同原基础平台车,若轴荷增加≥10%,悬架系统的强度及耐久性可参照使用。 2 规范性引用文件 无 3 术语和定义 下列术语和定义适用于本标准。 3.1 麦弗逊悬架 mcPherson suspension 汽车独立悬架的一种结构类型,普遍应用于前悬架。由滑柱、控制臂、副车架及稳定杆等部件组成。 3.2 双叉臂悬架 double wishbone suspension 汽车独立悬架的一种结构类型,适应于前后悬架。由滑柱、上控制臂、下控制臂、副车架及稳定杆等部件组成。 3.3 多连杆悬架 multilink rear suspension 汽车独立悬架的一种结构类型,适应于后悬架。是指单边由三根或三根以上连接拉杆构成,能够提供多个方向的控制力,使轮胎具有更加可靠的行驶轨迹的悬架机构。 3.4 扭力梁后悬架 torsion beam rear suspension 汽车半独立悬架的一种结构类型,适应于后悬架。是通过一个扭力梁来平衡左右车轮的上下跳动,以减小车辆的摇晃,保持车辆的平稳性。 3.5 整体桥式非独立悬架 integral axle non independent suspension 汽车非独立悬架一种结构类型,在乘用车领域多用于偏重越野的SUV车型。通过一根硬轴将左右两个车轮相连。

3.6 验证样件 validation sample 试验过程中需要验证的工程样件,应是正式工装制造的样件。验证样件经过一项台架耐久试验循环后不可重复使用。 3.7 非验证样件 nonvalidation sample 试验过程中不需要验证的样件,在试验中可重复使用。 4 符号(代号、缩略语) 下列符号(代号、缩略语)适用于本文件。 g——重力加速度,单位为m/s2。 G——满载条件下车轮轮荷。 5 试验设备及工装要求 试验设备采用双通道柔性耐久试验台。试验设备载荷传感器应第三方校准,符合试验要求。试验过程中加载方向应与试验要求保持一致;耐久性试验中加载方式应采用连续加载方式,最大载荷的误差范围应在±5%以内;试验中连接部位所用的工装的刚度应不小于样件刚度的10倍。 6 耐久性能要求 6.1 纵向力耐久 按照8.1进行试验,悬架系统各验证零部件(除胶套外)在20万次试验后,不允许出现裂纹;紧固件不允许出现松动,松脱力矩大于初始拧紧力矩70%;40万次不允许出现严重塑性变形或断裂现象(裂纹超过10mm)。 6.2 侧向力耐久 按照8.2进行试验,悬架系统各验证零部件(除胶套外)在20万次试验后,不允许出现裂纹;紧固件不允许出现松动,松脱力矩大于初始拧紧力矩70%;40万次不允许出现严重塑性变形或断裂现象(裂纹超过10mm)。 6.3 同向垂直力耐久 按照8.3进行试验,悬架系统各验证零部件(除胶套外)在20万次试验后,不允许出现裂纹;紧固件不允许出现松动,松脱力矩大于初始拧紧力矩70%;40万次不允许出现严重塑性变形或断裂现象(裂纹超过10mm)。 6.4 异向垂直耐久 对于独立悬架结构如麦弗逊前悬架、双叉臂悬架及多连杆后悬架等:按照8.4进行试验,悬架系统各验证零部件(除胶套外)在20万次试验后,不允许出现裂纹;紧固件不允许出现松动,松脱力矩大于初始拧紧力矩70%。

减振器选型设计计算书原

减振器选型设计计算书 一、减振器阻力的计算 1. 相对阻尼系数Ψ的选择 对于空气悬架,取Ψ=0.25~0.35,取Ψ=0.3 2. 减振器阻力系数γ的计算 CM ψ=2γ= 14181 式中:C 悬架系统垂直刚度(为: 139667 N/m ) M 悬架的簧载质量(为: 4000 Kg ) 3. 减振器阻力F 的计算 n v F ?=γ= 7374 N 式中:v=0.52m/s 减振器活塞运动速度,(通常在v=0~1.0m/s 的范围内取n=1) 为了减小路面不平传递给车身的冲击,减振器拉伸行程和压缩行程的阻力Fr 和Fc 取值有所不同,一般按下式计算: F F F c r =+ 拉伸行程阻力F Fr 8.0~7.0==0.8F = 5899 N , 压缩行程阻力F Fc 2.0== 1475 N 减振器的复原阻力P f =5899±1160 N ,压缩P y =1475±276N 二、减振器结构参数的计算 1、缸筒的设计计算 根据拉伸行程的最大阻力Fr 计算工作缸直径D []) 1(42λπ-=p F D r = 47~57 (1.1) 式中,[]p 为工作缸最大允许压力,取3~4Mpa ;λ为连杆直径与缸筒直径之比,双筒式减振器取λ=0.40~0.50; 减振器的工作缸直径D 有20、30、40、(45)、50、65mm 等几种。选取时应按标准选用。取D=Φ50mm ,壁厚取为,2.5mm ,工作缸外径为Φ55mm, 材料选35#冷拔精密无缝钢管 贮油缸直径c D =(1.35~1.50)D ,壁厚取为3mm ,材料选Q235直缝焊管。 c D =Φ70mm ,贮油缸外径取Φ76mm

汽车设计运动校核

1.2 运动校核计算

1.2.1风窗玻璃刮水器运动学校合 根据国标《汽车风窗玻璃刮水器、洗涤器的性能要求及试验方法》(GB 15085-1994)对汽车设计后的风窗玻璃刮水器及洗涤器的实际情况进行校核。但由于尚未制造样车, 因此主要校合舒适, 雨刷区域和视野。 (1)引用标准 GB 11556 汽车风窗玻璃除霜系统的性能要求及其试验方法,按这标准进行三维CAD建模和运动学仿真,以便确定正确的转轴设计硬点. (2)性能要求 a 刮水器的刮刷面积应覆盖A区域的98%以上,B区域的80%以上。 b 如果刮水器的绝大部分零配件在无实际样品的情况下无法校核各个物理指标,可以模拟某刮水器,或略去该标准(GB 15085-1994)对刮水器的各个物理指标(刮水器工作频率、强度及极端温度下工况等)的校核, 略去对风窗玻璃洗涤系统的校核,只对刮刷面积进行校核。 (3)风窗玻璃刮水器的刮刷面积校核

下面以一个例子说明,校合方法: a 相关参数的简要说明: A区域:A区域是下述从V点(即指V1和V2点,V1点和V2点分别为眼椭圆的上下边界点, 向前延伸的4个平面与风窗玻璃外表面相交的交线所封闭的面积。这4个平面是:(1)通过V1和V2点且在X轴的左侧与X轴成13°角的铅垂平面。 (2)通过V1点,与X轴成3°仰角且与Y轴平行的平面。 (3)通过V2点,与X轴成1°俯角且与Y轴平行的平面。 (4)通过V1和V2向X轴的右侧与X轴成20°角的铅垂平面。 B区域:B区域是指由下述4个平面所围成的风窗外表面的面积,且距风窗玻璃透明部分面积边缘向内至少25mm,以较小面积为准。 (1)通过V1点,与X轴成7°仰角且与Y轴平行的平面 (2)通过V2点,与X轴成5°俯角且与Y轴平行的平面。 (3)通过V1和V2点且在X轴的左侧与

大中型客车空气悬架设计规范讲解

大中型客车空气悬架设计规范

大中型客车空气悬架设计规范 1 范围 本规范规定了空气悬架设计过程中涉及到的符号、代号、术语及其定义,设计准则,布置要求,结构设计要求,材料选用要求,性能设计要求,设计计算方法,设计评审要求,装车质量特性,设计输出图样和文件的明细,制图要求等。 本规范适用于空气悬架系统产品设计过程控制,同时检验、制造可参考使用。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 GB/T 13061 汽车悬架用空气弹簧橡胶气囊 GB/T 11612 客车空气悬架用高度控制阀 QC/T 491 汽车筒式减振器尺寸系列及技术条件 QCn 29035 汽车钢板弹簧技术条件 QC/T 517 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2 道路车辆质量词汇和代码 GB/T 3730.3 汽车和挂车的术语及其定义车辆尺寸 GB/T 13061 汽车悬架用空气弹簧橡胶气囊 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549- 1990 汽车操纵稳定性术语及其定义 GB 7258-2004 机动车运行安全技术条件 GB 13094-2007 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-1999 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2004 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-89 道路车辆分类与代码机动车 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 设计准则 4.1应满足的安全、环保和其它法规要求及国际惯例 4.1.1 安全技术条件应符合GB 7258-2004中有关要求。 4.1.2 操纵稳定性符合QC/T 480-1999中有关要求。

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的振动,保证汽车的正常行驶。悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济

悬架运动校核标准

上海同济同捷科技有限公司企业标准 TJI/YJY 悬架运动校核 2005-XX-XX发布2005-XX-XX实施上海同济同捷科技有限公司发布 TJI/YJY

前言 本标准由上海同济同捷科技有限公司提出。 本标准由上海同济同捷科技有限公司质量与项目管理中心负责归口管理。本标准主要起草人:

TJI/YJY 悬架运动校核 1、范围 本标准适用于上海同济同捷科技股份有限公司总布置分院,使用于悬架系统零部件运动校核的规定。 2、引用标准 无 3、悬架系统零部件运动校核内容及要求

3. 悬架系统零部件运动校核内容及要求 3.1前悬架运动校核 3.1.1前悬架的上跳极限为前限位块压缩1/2~2/3时的状态为准,轿车、小型客车推荐取1/2,SUV推荐取2/3 3.1.2前悬架的下跳极限为前减振器活塞杆拉出最长长度+0~1mm 位置时的状态,其中所加的0~1mm为减振器活塞杆固定橡胶块在非悬挂质量作用下向下的变形量。 3.1.3在前悬架的跳动范围内及转向状态检查减振器、弹簧和弹簧座与车身轮包、纵梁、制动油管等的间隙,间隙值不小于12mm,推荐以15~20mm以上为宜。 3.1.4在前悬架的跳动范围内检查摆臂与副车架的运动间隙,摆臂与副车架不允许有干涉现象。 3.1.5在前悬架的跳动范围内检查摆臂球头销的摆动范围,球头销与球头座碗不允许有干涉现象。 3.1.6在前悬架的跳动范围内检查稳定杆的运动范围和与周边零部件的间隙:稳定杆与副车架间隙不小于6mm;稳定杆与转向拉杆间隙

不小于8mm;稳定杆与前围板间隙不小于20mm;稳定杆与纵梁间隙不小于10mm。 3.1.7在前悬架的跳动范围内及转向状态下检查稳定杆连杆运动范围及连杆球头销的摆角:稳定杆连杆不得与周边零件干涉,球头销的摆角在球碗的允许范围内。 3.1.8在前悬架的跳动范围内及转向状态下检查稳定杆与连杆是否存在失稳现象:稳定杆不允许出现翻转现象。 3.2后悬架运动校核 3.2.1后悬架的上跳极限为后限位块压缩1/2~2/3时的状态为准,轿车、小型客车推荐取1/2,SUV推荐取2/3 3.2.2后悬架的下跳极限为后减振器活塞杆拉出最长长度+0~2mm 位置时的状态,其中所加的0~2mm为减振器活塞杆固定橡胶块在非悬挂质量作用下向下的变形量。 3.2.3在后悬架的跳动范围内检查减振器、弹簧和弹簧座与车身轮包、纵梁、制动油管等的间隙,间隙值不小于12mm,推荐以15~20mm 以上为宜。 3.2.4在后悬架的跳动范围内检查稳定杆的运动范围和与周边零部件的间隙:稳定杆与副车架间隙不小于6mm. 3.2.5在后悬架的跳动范围内检查稳定杆连杆运动范围及连杆球头销的摆角:稳定杆连杆不得与周边零件干涉,球头销的摆角在球碗的允许范围内。 3.1.8在后悬架的跳动范围内检查稳定杆与连杆是否存在失稳现象:

相关主题
文本预览
相关文档 最新文档