当前位置:文档之家› 参数方程学案

参数方程学案

参数方程学案
参数方程学案

参数方程

班级 姓名 小组

【学习目标】

1通过阅读课本.理解直线的参数方程的建立过程,并会与普通方程进行互化。

2.掌握参数方程的不同表示形式,理解参数的含义。

3.通过认真思维会运用参数方程解决距离,弦长与最值问题,并感受参数方程的优越性。

【联系高考】

考纲解读:主要考查参数方程与普通方程的互化,利用直线标参中t 的几何意义求值,利用圆、椭圆的参数方程求最值是高考考查的热点;

考点提示:利用参数方程求弦长与函数的思想求最值;

考情预测:主要以大题形式出现,分值10分,难度中等。

【学习重点难点】

重点:会把参数方程化为普通方程,并能灵活应用参数方程解决有关问题;

难点:利用参数方程求弦长与最值。

【基础感知】

快速阅读课本 35--39页,回答下面问题:

(1)直线的标准参数方程有什么显著特征?标参中t 的几何意义是什么?

(2)相交弦的弦长如何求?弦中点对应的参数t 如何表示?21t t +借助什么判断是21t t +还是21t -t ?

(3)参数方程与普通方程互化时应注意什么?一般借助什么思想求最值?

【深入学习】

热点一:参数几何意义的应用

例1 (2019·沈阳调研)在平面直角坐标系xOy 中,直线l 的参数方程为?????x =1-32t ,

y =12t

(t 为参数),曲线C 的极坐标方程为ρ=4cos θ.

(1)求直线l 的普通方程及曲线C 的直角坐标方程;

(2)设点P (1,0),直线l 与曲线C 相交于A ,B ,求1|P A |+1|PB |的值.

注意:借助什么判断是:21t t +还是21t -t ?

热点二 参数方程及其应用

【例2】 (2017·全国Ⅰ卷)在直角坐标系xOy 中,曲线C

的参数方程为?????x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为?????x =a +4t ,y =1-t (t 为参数).

(1)若a =-1,求C 与l 的交点坐标;

(2)若C 上的点到l 距离的最大值为17,求a .

热点三 利用参数方程求最值

【例3】(2014·新课标卷Ⅰ)已知曲线C :x 24+y 29

=1,直线l :??? x =2+t ,y =2-2t (t 为参数).

(1)写出曲线C 的参数方程,直线l 的普通方程;

(2)过曲线C 上任一点P 作与l 夹角为30°的直线,交l

于点A ,求|P A |的最大值与最小值.

课堂检测:把下列参数方程化为普通方程,并说明它们各表示什么曲线?

【我有问题要问】

1. 2. 3. 4.

【课堂小结】

1.参数方程化为普通方程时,注意取值范围。

2.应用直线参数方程中参数t的几何意义解题时,必须保证直线参数方程为标准方程。

3.圆和椭圆的参数方程在计算最值问题和取值范围问题中有广泛应用,利用参数方程可以将问题转化为三角函数的最值问题。

【下节预告】极坐标方程

人教A版 参 数 方 程 学案

第二节参数方程 知识体系 必备知识 1.参数方程与普通方程 参数方程普通方程 变量间 的关系 曲线上任意点的坐标x,y都是某个 变数t的函数,t简称参数 曲线上任意点坐标x,y 间的关系 方程 表达式 F错误!未找到引用源。 =0 曲线的 方程、方 程的曲 线 (1)曲线上任意点的坐标x,y都是 参数t的函数 (2)对于t的每一个允许值确定的 点错误!未找到引用源。都在曲线 上 (1)曲线上点的坐标都 是方程的解 (2)以方程的解为坐标 的点都在曲线上 2.参数方程和普通方程的互化 (1)参数方程化普通方程:主要利用两个方程相加、减、乘、除或者代入法消去参数.

(2)普通方程化参数方程:如果x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),则得曲线的参数方程错误!未找到引用源。 3.直线、圆与椭圆的普通方程和参数方程 轨迹普通方程参数方程 直线 y-y0=tan α(x-x0) (t为参数) 圆(x-a)2+(y-b)2=r2 (θ为参数) 椭圆错误!未找到引用 源。+错误!未找到 引用源。=1 (a>b>0) (φ为参数) 基础小题 1.已知直线错误!未找到引用源。(t为参数),下列说法中正确的有 ( ) ①直线经过点(7,-1);②直线的斜率为错误!未找到引用源。;③直线不过第二象限;④|t|是定点M0(3,-4)到该直线上对应点M的距离. A.①② B.②③ C.①②④ D.①②③

【解析】选D.根据题意,直线错误!未找到引用源。(t为参数),其普通方程为y+4= 错误!未找到引用源。(x-3),对于①,(-1)+4=错误!未找到引用源。(7-3),即直线经过点(7,-1),①正确;对于②,直线的普通方程为y+4=错误!未找到引用源。(x-3),其斜率k=错误!未找到引用源。,②正确;对于③,直线的普通方程为y+4=错误!未找到引用源。(x-3),不经过第二象限,③正确;对于④,直线错误!未找到引用源。(t为参数),|5t|表示定点M0(3,-4)到该直线上对应点M的距离,④错误. 2.过点A(2,3)的直线的参数方程为错误!未找到引用源。(t为参数),若此直线与直线x-y+3=0相交于点B,则|AB|=________. 【解析】把错误!未找到引用源。代入直线x-y+3=0得t=2, 则交点为(4,7), 所以|AB|=错误!未找到引用源。=2错误!未找到引用源。. 答案:2错误!未找到引用源。 3.直线l的参数方程为错误!未找到引用源。(t为参数),求直线l的斜率. 【解析】将直线l的参数方程化为普通方程为 y-2=-3(x-1),因此直线l的斜率为-3. 4.已知直线l1:错误!未找到引用源。(t为参数)与直线 l2:错误!未找到引用源。(s为参数)垂直,求k的值. 【解析】直线l1的方程为y=-错误!未找到引用源。x+错误!未找到引用源。,斜率为-错误!未找到引用源。;

曲线的参数方程(教案)

曲线的参数方程 教材 上海教育出版社高中二年级(理科)第十七章第一节 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。 已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处? 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 1、圆的参数方程的推导 (1)一般的,设⊙的圆心为原点,半径为,0OP 所在直线 为轴,如图,以0OP 为始边绕着点按逆时针方向绕原点以匀角 速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢? (其中与为常数,为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

高三数学一轮复习 专题 直线的参数方程导学案

第三课时 直线的参数方程 一、教学目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二重难点:教学重点:曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程 (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 圆222r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆22020)\()(r y y x x =+-参数方程为:???+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆参数方程. 3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程? (二)、讲解新课: 1、问题的提出:一条直线L 的倾斜角是0 30 ,并且经过点P (2,3),如何描述直线L 上任意点的位置呢? 如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢? 2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的 参数方程

?? ?+=+=α α sin cos 00t y y t x x (t 为参数) 【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t 的几何意义是指从点P 到点M 的位移,可以用有向线段PM 数量来表示。带符号. (2)、经过两个定点Q 1 1 ( ,)y x ,P 2 2 (,)y x (其中12x x ≠)的直线的参数方程为 12112 1(1){ x X y y x y λλ λλλλ++++= =≠-为参数,。其中点M(X,Y)为直线上的任意一点。这里 参数λ的几何意义与参数方程(1)中的t 显然不同,它所反映的是动点M 分有向线段QP 的 数量比QM MP 。当o λ >时,M 为内分点;当o λ<且1λ≠-时,M 为外分点;当o λ=时, 点M 与Q 重合。 例题演练: 例1、 已知直线l :10x y +-=与抛物线2 y x =相交于A,B 两点,求线段AB 的长和点 M (1,2)-到A,B 两点的距离之积。 例2、 经过点M(2,1)作直线l ,交椭圆 22 1164 x y +=于A,B 两点,如果点M 恰好为线段AB 的中点,求直线l 的方程。

沪教版高二学案——专题2.2(2)椭圆的参数方程

2.2(2)椭圆的参数方程 一.填空 1.椭圆的标准方程: 22221x y a b +=的一个参数方程为:______________________; 2.已知椭圆的参数方程2cos 4sin x t y t =??=?( t 为参数),点M 、N 在椭圆上,对应参数分别为3 π,6 π,则直线MN 的斜率为_________ 3.圆的参数方程为? ??x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),若圆上一点P 对应参数θ=43π,则P 点的坐标是________. 4.在平面直角坐标系xOy 中,若直线l: x t y t a =??=-? (t 为参数)过椭圆C: 3cos 2sin x y ? ?=??=? (φ为参数)的右顶点,则常数a 的值为 5.设22 y t =,则将直线x+y -1=0用参数 t 表示的一个参数方程是______________; 6.动点P(x,y)在曲线22 y 1169 x +=上变化 ,则3x+4y 的最大值为__________ 二.选择 7.点P (x ,y )在椭圆x -224 +(y -1)2=1上,则x +y 的最大值为( ) A . 3+ 5 B .5+ 5 C .5 D .6 8.过点(3,-2)且与曲线????? x =3cos θ,y =2sin θ(θ为参数)有相同焦点的椭圆方程是( ) A.x 215+y 210 =1 B.x 2152+y 2102=1 C.x 210+y 215 =1 D.x 2102+y 215 2=1 一.解答

9.已知椭圆???==θ θsin 2cos 3y x (θ为参数)求 (1)6πθ=时对应的点P 的坐标 (2)直线OP 的倾斜角 10.已知直线L 的参数方程为1212 x t y t =+???=-??,曲线C 的参数方程为2cos sin x y θθ=??=?,设直线L 与曲线C 交于两点,A B (1 (2)设P 为曲线C 上的一点,当ABP ?的面积取最大值时,求点P 的坐标.

2019高考数学考点突破——选考系列参数方程学案

参数方程 【考点梳理】 1.曲线的参数方程 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数 ? ?? ?? x =f t ,y =g t 并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲 线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化 通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例 如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么? ?? ?? x =f t ,y =g t 就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程 直线 y -y 0=tan α(x -x 0) ? ?? ?? x =x 0+t cos α, y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2 ? ?? ?? x =r cos θ,y =r sin θ(θ为参数) 椭圆 x 2a 2+y 2 b 2 =1(a >b >0) ? ?? ?? x =a cos φ,y =b sin φ(φ为参数) 考点一、参数方程与普通方程的互化 【例1】已知曲线C 1:?????x =-4+cos t ,y =3+sin t (t 为参数),C 2:? ????x =8cos θ,y =3sin θ(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t =π 2 ,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

《参数方程和普通方程的互化》导学案3

《参数方程和普通方程的互化》导学案3 1. 了解参数方程化为普通方程的意义. 2 ?理解参数方程与普通方程的互相转化与应用. 课标解读 3 .掌握参数方程化为普通方程的方法 知识梳理 参数方程与普通方程的互化 (1) 曲线的参数方程和普通方程是曲线方程的不同形式?一般地,可以通过消去参数从参数方程得到普通方程. (2) 如果知道变数x, y中的一个与参数t的关系,例如x =f(t),把它代入普通方程, |x= f t 求出另一个变数与参数的关系y= g(t),那么就是曲线的参数方程.在参数 i y= g t 方程与普通方程的互化中,必须使x, y的取值范围保持一致. 思考探究 普通方程化为参数方程,参数方程的形式是否惟一? 【提示】不一定惟一.普通方程化为参数方程,关键在于适当选择参数,如果选择的参 数不同,那么所得的参数方程的形式也不同 课堂互动 |x= a+1 cos 0 , 例题1在方程y= ?+ t sin 0, (a,b为正常数)中, (1) 当t为参数,0为常数时,方程表示何种曲线?

(2) 当t为常数,0为参数时,方程表示何种曲线?

非零常数时,利用平方关系消参数 0,化成普通方程,进而判定曲线形状. x = a + t cos 0 , ① 【自主解答】 方程* (a , b 是正常数), |y = b + t sin 0 , ② (1) ①x sin 0 —②x cos 0 得 x sin 0 — y cos 0 — a sin 0 + b cos 0 = 0. ■/ cos 0、sin 0不同时为零, ???方程表示一条直线. (2) ( i )当t 为非零常数时, 即(x — a )2+ (y — b )2= t 2,它表示一个圆. (ii)当t = 0时,表示点(a , b ). 1?消去参数的常用方法 将参数方程化为普通方程, 关键是消去参数,如果参数方程是整式方程, 常用的消元法 有代入消元法、加减消元法.如果参数方程是分式方程, 在运用代入消元或加减消元之前要 做必要的变形?另外,熟悉一些常见的恒等式至关重要,如 sin 2a+ cos 2a = 1,(e X + e — x )2 2 x —x 2 1 — k 2 2k 2 -(e -e ) =4,("+ E=1 等. 2?把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普 通方程中x 及y 的取值范围的影响.本题启示我们,形式相同的方程,由于选择参数的不同, 可表示不同的曲线. 将下列参数方程分别化为普通方程,并判断方程所表示曲线的形状: x = 2cos 0 ⑴彳 (0为参数,0W 0 < n ); |y = 2s in 0 r 4 4 x = sin 0 + cos 0 ⑵f . 2 2 ( 0为参数); |y = 1 — 2sin 0 cos 0 2 2 x — a ③2+④得 —cos 0, —sin 0 . 2 y — b 2 ■=1, ④ 「X — a I t 原方程组为\ ¥

人教版数学高一必修2学案4.1.2圆的一般方程

4.1.2圆的一般方程 基础梳理 1.圆的一般方程的定义. 当D2+E2-4F>0时,二元二次方程x2+y2+Dx+Ey+F=0称为圆的一般方程. 2.方程x2+y2+Dx+Ey+F=0表示的图形. 3.由圆的一般方程判断点与圆的位置关系. 已知点M(x0,y0)和圆的方程x2+y2+Dx+Ey+F=0.则其位置关系如下表:

练习1:二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0在什么条件下表示圆的方程? 答案:A=C≠0,B=0且D2+E2-4AF>0 练习2:圆x2+y2-2x+10y-24=0的圆心为(1,-5),半径为 ?思考应用 1.圆的标准方程与圆的一般方程各有什么特点? 解析:圆的标准方程(x-a)2+(y-b)2=r2明确了圆心和半径,方程左边为平方和,右边为一个正数,且未知数的系数为1;一般方程体现了二元二次方程的特点,但未明确圆心和半径,需计算得到.当二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0中的系数A=C≠0,B=0,D2+E2-4AF>0时,二元二次方程就是圆的一般方程. 2.求圆的方程常用“待定系数法”,“待定系数法”的一般步骤是什么? 解析:(1)根据题意选择方程的形式——标准方程或一般方程; (2)根据条件列出关于a、b、r或D、E、F的方程组; (3)解出a、b、r或D、E、F,代入标准方程或一般方程.

自测自评 1.圆x 2+y 2+4x -6y -3=0的圆心和半径分别为(C ) A .(4,-6),r =16 B .(2,-3),r =4 C .(-2,3),r =4 D .(2,-3),r =16 解析:由圆的一般方程可知圆心坐标为(-2,3), 半径r =1242+(-6)2+12=4. 2.如果方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F>0)所表示的曲线关于y =x 对称,则必有(A ) A .D =E B .D =F C .F =E D .D = E = F 解析:由题知圆心? ?? ??-D 2,-E 2在直线y =x 上,即-E 2=-D 2,∴D =E. 3.若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是(B ) A .R B .(-∞,1) C .(-∞,1] D .[1,+∞) 解析:由D 2+E 2-4F =(-4)2+22-4×5k =20-20k >0得k <1. 4.圆心是(-3,4),经过点M (5,1)的圆的一般方程为x 2+y 2+6x -8y -48=0. 解析:圆的半径r =(-3-5)2+(4-1)2=73, ∴圆的标准方程为(x +3)2+(y -4)2=73,

直线的参数方程和应用(学案)

直线的参数方程及应用 目标点击: 1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2.熟悉直线的参数方程与普通方程之间的互化; 3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 基础知识点击: 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, x

《双曲线的参数方程》教学案2

《双曲线的参数方程》教学案2 一、教学目标 (1). 双曲线、抛物线的参数方程. (2). 双曲线、抛物线的参数方程与普通方程的关系。 (3).通过学习双曲线、抛物线的参数方程,进一步完善对双曲线、抛物线的认识,理解参数方程与普通方程的相互联系.并能相互转化.提高综合运用能力 二、教学重难点 学习重点:双曲线、抛物线参数方程的推导 学习难点:(1) 双曲线、抛物线参数方程的建立及应用.(2) 双曲线、抛物线的参数方程与普通方程的互化 三、教学指导: 认真阅读教材,按照导学案的导引进行自主合作探究式学习 四、知识链接: 焦点在x 上的椭圆的参数方程________________________________________ 焦点在y 上的椭圆的参数方程________________________________________ 五、教学过程 (阅读教材29-34完成) (一)双曲线的参数方程 1双曲线)0,0(122 22>>=-b a b y a x 的参数方程___________________________ 注:(1)?的范围__________________________ (2)?的几何意义___________________________ 2双曲线)0,0(122 22>>=-b a b x a y 的参数方程___________________________ (二)抛物线的参数方程

抛物线)0(22>=p px y 的参数方程___________________________ (三)典型例题 、 的轨迹方程。 ,求点相交于点并于点,且上异于顶点的两动是抛物线是直角坐标原点,、如图例M M AB AB OM OB OA p px y B A O ⊥⊥>=,)0(2,12 B x y o A M

极坐标参数方程导学案(一)

极坐标参数方程复习学案(一) 【高考要求】:(1)坐标系 ①理解坐标系的作用②了解在平面直角坐标系伸缩变换作用下平面图形的变 化情况③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角 坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化④能在极坐标 中给出简单图形的方程,通过比较这些图形在极坐标系和平面直角坐标系中的 方程。理解用方程表示平面图形时选择适合坐标系的意义 (2)参数方程 ①了解参数方程,了解参数的意义 ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程 【教学目标】: 1、知识与技能:理解极坐标的概念,会正确进行点的极坐标与直角坐标的互化,会正确将 极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极 坐标方程,不要求利用曲线方程或极坐标方程求两条曲线的交点。 } 2、过程与方法:在坐标系的教学中,可以引导学生自己尝试建立坐标系,说明建立坐标系 的原则,激励学生的发散思维和创新思维,并通过具体实例说明这样建立 坐标系有哪些方便之处。 3、情感、态度与价值观:体会从实际问题中抽象出数学问题的过程,培养探究数学问题的 兴趣和能力,体会数学在实际中的应用价值,提高应 用意识和实 践能力。 【自主探究】 已知直线l 的极坐标方程为sin()63πρθ-=,圆C 的参数方程为10cos 10sin x y θθ =??=?. (1)化直线l 的方程为直角坐标方程; (2)化圆的方程为普通方程; (3)求直线l 被圆截得的弦长. )

【巩固练习】 1、已知直线l 经过点(1,1)P ,倾斜角6πα=,设l 与曲线2cos 2sin x y θθ=??=?(θ为参数)交于两点,A B ,求(1)|PA||PB|,|PA|+|PB|的值; (2)弦长|AB|; (3) 弦AB 中点M 与点P 的距离。 , 、

参数方程的概念学案

参数方程的概念学案 第八大周 年级:高二 学科:数学(文) 主备人:张淑娜 审核人:王静 【学习目标】1.理解曲线参数方程的概念,体会实际问题中参数的意义; 2.能选取适当的参数,求简单曲线的参数方程。 【学习重点】曲线参数方程的定义及求法 【学习难点】曲线参数方程的探求。 一、【课前预习】 引例: 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?救援物资做何运动?你能用物理知识解决这个问题吗? 思考交流:把引例中求出的物资运动轨迹的参数方程消去参数t 后,再将所得方程与原方 程进行比较,体会参数方程的作用。 二、【新知探究】 1、参数方程的概念 一般地, 在平面直角坐标系中,如果曲线上任意一点的坐标(x, y )都是某个变数t 的函数 ??? ,并且对于t 的每一个允许值, 由方程组(1) 所确定的点M(x,y)都在这条曲线上, 那么方程(1) 就叫做这条曲线的_______________, 联系变数x,y 的变数t 叫做____________,简称________。 相对于参数方程而言,直接给出点的坐标间关系的方程叫做_______________。 2、关于参数几点说明: (1)一般来说,参数的变化范围是有限制的。 (2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。 3、求曲线的参数方程的一般步骤。 (1)建立直角坐标系,设曲线上任一点P 坐标为),(y x (2)选取适当的参数 (3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式 (4)证明这个参数方程就是所由于的曲线的方程 三、【预习检测】 1、曲线2 1,(43x t t y t ?=+?=-? 为参数)与x 轴的交点坐标是( ) A 、(1,4) B 、25(,0)16± C 、25(,0)16 D 、(1,3)- 2、方程sin ,(cos x y θθθ=??=? 为参数)所表示的曲线上一点的坐标是( ) A 、(2,7) B 、12(,)33 C 、11(,)22 D 、(1,0)

导学案:参数方程与普通方程的互化(可编辑修改word版)

? + = 2 课题:参数方程与普通方程的互化 【学习目标】 1. 进一步理解参数方程的概念及参数的意义。 2. 能通过消去参数将参数方程化为普通方程,由普通方程识别曲线的类型 3. 能选择适当的参数将普通方程化成参数方程 【重点、难点】 参数方程和普通方程的等价互化。 自主学习案 【问题导学】阅读课本 P24—P26,然后完成下列问题: 1. 参数方程的概念 (1) 在平面直角坐标系中,如果曲线上任意一点的坐标 x 、 y 都是某个变数t ? x = f (t ) 的函数? y = g (t ) (t ∈ D ) , 并且对于 t 的每一个允许值,由方程组所确定的点 M (x,y )都在这条曲线上,那么方程就叫这条曲线的 ,联系变数 x 、 y 的变数 t 叫做 ,简称 。相对于参数方程而言,直接给出点的坐标间关系的方程 F (x , y ) = 0 叫做 。 (2) 是联系变数 x,y 的桥梁,可以是一个有 意义或 意义的 变数,也可以是 的变数。 2、 ( 1) 圆 心 在 原 点 O , 半 径 为 r 的 圆 的 一 个 参 数 方 程 是 ; (2)圆(x - a )2 + ( y - b )2 = r 2 的一个参数方程是 . 3、指出下面的方程各表示什么样的曲线: (1)2x+y+1=0 表示 (2) y = 3x 2 + 2x +1 表示 2 (3) x y 1表示 9 4

t ? (4) ?x = cos + 3(为参数) 表示 ? y = sin 【预习自测】把下列参数方程化为普通方程,并说明它们各表示什么曲线? ?x = t +1 ?x = 2 c os 1、? y = 1- 2t (t 为参数) 2、? y = sin (为参数) ? ? 思考: 1、通过什么样的途径,能从参数方程得到普通方程? 2、在参数方程与普通方程互化中,要注意哪些方面? 合作探究案 考向一、参数方程化普通方程 例 1.把下列参数方程化为普通方程,并说明它们各表示什么曲线 (1) ??x = ? + 1 ?x = sin + cos (t 为参数) (2) ? y = 1 + sin 2 (为参数) ?? y = 1 - 2 ? 小结: t

2017参数方程学案.doc

第2讲 参数方程 【考情分析】 考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 基础梳理 1.参数方程的意义 在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数??? x =f (t ),y =f (t ), 并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式 (1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为??? x =x 0+t cos α, y =y 0+t sin α(t 为参 数). 设P 是直线上的任一点,则t 表示有向线段P 0P → 的数量. (2)圆的参数方程??? x =r cos θ, y =r sin θ(θ为参数). (3)圆锥曲线的参数方程 椭圆x 2a 2+y 2 b 2=1的参数方程为??? x =a cos θ,y =b sin θ(θ为参数). 双曲线x 2a 2-y 2 b 2=1的参数方程为??? x =a sec φ,y =tan φ(φ为参数). 抛物线y 2=2px 的参数方程为??? x =2pt 2,y =2pt (t 为参数). 双基自测 1.极坐标方程ρ=cos θ和参数方程??? x =-1-t , y =2+t (t 为参数)所表示的图形分别 是( ).

A .直线、直线 B .直线、圆 C .圆、圆 D .圆、直线 解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=x ρ,∴ρ2=x ,∴x 2+y 2=x 表示圆. 又∵??? x =-1-t ,y =2+t ,相加得x +y =1,表示直线. 答案 D 2.若直线??? x =1-2t , y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________. 解析 参数方程??? x =1-2t , y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线 4x +ky =1垂直可得-32×? ???? -4k =-1,解得k =-6. 答案 -6 3.二次曲线??? x =5cos θ, y =3sin θ(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为x 225+y 2 9=1左焦点为(-4,0). 答案 (-4,0) 4.(2011·广州调研)已知直线l 的参数方程为:??? x =2t , y =1+4t (t 为参数),圆C 的极 坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________. 解析 将直线l 的参数方程:??? x =2t , y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22 sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为 2-1 1+4 ,因为该距离小于圆的半径,所以直线l 与圆C 相交. 答案 相交

直线的参数方程导学案

《直线的参数方程》导学案 紫云民族高级中学高二数学组 学习目标: 1、了解直线的参数方程及参数的的意义 2、能选取适当的参数,求直线的参数方程 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t (数轴上的点坐标)与点在直角坐标系中的坐标,x y 之间的联系. 一、回忆旧知,做好铺垫 1.→a 与→b 共线向量的充要条件是什么?________________________ 2.直线l 的方向向量怎样表示?________________________ 3.什么是单位向量?________________________ 4.斜率存在且为k 的直线l 的方向向量怎样表示?________________________ 5.倾斜角为α的直线l 的单位方向向量怎样表示?________________________ 6直线方程的有几种形式? 二直线参数方程探究 问题1:经过点M(x0,y0),倾斜角为 ??? ??≠2παα 的直线l 的 普通方程是________________________; 合作探究:过定点0M ),(00y x ,倾斜角为α的直线l 的参数方程如何建立?

得出结论:定点 ) ,(000y x M 倾斜角 α直线的参数方程为 观察直线的参数方程,知道那些量可以把直线的参数方程写出来? 练一练 1.写出满足下列条件直线的参数方程: (1)过点(2,3)倾斜角为4π (2)过点(4,0)倾斜角为32π

知识探究一: 由 t M 0 ,你能得到直线l 的参数方程中参数t 的几何 意义吗? 知识探究二: 如图所示:请讨论参数t 的符号; 利用t 的几何意义,如何求过M0直线上两点AB 的距离? 点A,点B 在M0同侧点A,点B 在M0异侧 e

高中数学《圆的标准方程》导学案

2.1 圆的标准方程 [学习目标] 1.会用定义推导圆的标准方程;掌握圆的标准方程的特点. 2.会根据已知条件求圆的标准方程. 3.能准确判断点与圆的位置关系. 【主干自填】 1.确定圆的条件 (1)几何特征:圆上任一点到圆心的距离等于□01定长. (2)确定圆的条件:□02圆心和□03半径. 2.圆的标准方程 (1)以C (a ,b )为圆心,半径为r □ 04(x -a )+(y -b )=r . (2)当圆心在坐标原点时,半径为r 的圆的标准方程为□05x +y =r . 3.中点坐标 A (x 1,y 1), B (x 2,y 2)的中点坐标为□06? ????x 1+x 22,y 1+y 22. 4.点与圆的位置关系 点与圆有三种位置关系,即点在圆外、点在圆上、点在圆内,判断点与圆的位置关系有两种方法: (1)几何法:将所给的点M 与圆心C 的距离跟半径r 比较: 若|CM |=r ,则点M 在□07圆上; 若|CM |>r ,则点M 在□08圆外; 若|CM |

(2)代数法:可利用圆C的标准方程(x-a)2+(y-b)2=r2来确定: 点M(m,n)在□10圆上?(m-a)2+(n-b)2=r2; 点M(m,n)在□11圆外?(m-a)2+(n-b)2>r2; 点M(m,n)在□12圆内?(m-a)2+(n-b)2

2017参数方程学案

第2讲 参数方程 【考情分析】 考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 基础梳理 1.参数方程的意义 在平面直角坐标系中,如果曲线上的任意一点的坐标x,y都是某个变量的函数并且对于t的每个允许值,由方程组所确定的点M(x,y)都在这条曲线上,则该方程叫曲线的参数方程,联系变数x,y的变数t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式 (1)经过点P0(x0,y0),倾斜角为α的直线的参数方程为(t为参数). 设P是直线上的任一点,则t表示有向线段的数量. (2)圆的参数方程(θ为参数). (3)圆锥曲线的参数方程 椭圆+=1的参数方程为(θ为参数). 双曲线-=1的参数方程为(φ为参数). 抛物线y2=2px的参数方程为(t为参数). 双基自测 1. 极坐标方程ρ=cos θ和参数方程(t为参数)所表示的图形分别是( ). A.直线、直线 B.直线、圆 C.圆、圆 D.圆、直线 解析 ∵ρcos θ=x,∴cos θ=代入到ρ=cos θ,得ρ=,∴ρ2=x,∴x2+y2=x表示圆. 又∵相加得x+y=1,表示直线. 答案 D

2.若直线(t为实数)与直线4x+ky=1垂直,则常数k=________. 解析 参数方程所表示的直线方程为3x+2y=7,由此直线与直线4x +ky=1垂直可得-×=-1,解得k=-6. 答案 -6 3.二次曲线(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为+=1左焦点为(-4,0). 答案 (-4,0) 4.(2011·广州调研)已知直线l的参数方程为:(t为参数),圆C的极坐标方程为ρ=2sin θ,则直线l与圆C的位置关系为________. 解析 将直线l的参数方程:化为普通方程得,y=1+2x,圆ρ=2sin θ的直角坐标方程为x2+(y-)2=2,圆心(0,)到直线y=1+2x的距离为,因为该距离小于圆的半径,所以直线l与圆C相交. 答案 相交 5.(2011·广东)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为________. 解析 由(0≤θ<π)得,+y2=1(y≥0)由(t∈R)得,x=y2,∴5y4+16y2-16=0. 解得:y2=或y2=-4(舍去). 则x=y2=1又θ≥0,得交点坐标为. 答案  考向一 参数方程与普通方程的互化 【例1】?把下列参数方程化为普通方程: (1) (2) [审题视点] (1)利用平方关系消参数θ; (2)代入消元法消去t. 解 (1)由已知由三角恒等式cos2θ+sin2θ=1,

高中数学第二章参数方程2.4一些常见曲线的参数方程学案新人教B版选修4_4

2.4一些常见曲线的参数方程 [对应学生用书P37] [读教材·填要点] 1.摆线的概念 一圆周沿一直线无滑动滚动时,圆周上的一定点的轨迹称为摆线,摆线又叫旋轮线. 2.渐开线的概念 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. 3.圆的渐开线和摆线的参数方程 (1)摆线的参数方程:??? ?? x =a t -sin t , y =a -cos t . (2)圆的渐开线方程: ? ?? ?? x =a t +t sin t ,y =a t -t cos t . [小问题·大思维] 1.摆线的参数方程中,字母a 和参数t 的几何意义是什么? 提示:字母a 是指定圆的半径,参数t 是指圆滚动时转过的角度. 2.渐开线方程中,字母a 和参数t 的几何意义是什么? 提示:字母a 是指基圆的半径,参数t 是指OA ―→和x 轴正向所成的角(A 是绳拉直时和圆的切点). [对应学生用书P38] [例1] 已知一个圆的摆线过一定点(2,0),请写出该圆的半径最大时该摆线的参数方程. [思路点拨] 本题考查圆的摆线的参数方程的求法.解答本题需要搞清圆的摆线的参数方程的一般形式,然后将相关数据代入即可.

[精解详析] 令y =0,可得a (1-cos t )=0, 由于a >0, 即得cos t =1,所以t =2k π(k ∈Z ). 代入x =a (t -sin t ),得x =a (2k π-sin 2k π). 又因为x =2,所以a (2k π-sin 2k π)=2, 即得a = 1 k π (k ∈Z ). 又a >0,所以a = 1 k π (k ∈N +). 易知,当k =1时,a 取最大值为1 π. 代入即可得圆的摆线的参数方程为 ????? x =1πt -sin t , y =1π -cos t (t 为参数). 由圆的摆线的参数方程的形式可知,只要确定了摆线生成圆的半径,就能确定摆线的参数方程.要确定圆的半径,通常的做法有:①根据圆的性质或参数方程(普通方程)确定其半径;②利用待定系数法,将摆线上的已知点代入参数方程,从而确定半径. 1.圆的半径为r ,沿x 轴正向滚动,圆与x 轴相切于原点O .圆上点M 起始处沿顺时针已偏转φ角.试求点M 的轨迹方程. 解:x M =r ·θ-r ·cos(φ+θ)-π 2=r [θ-sin(φ+θ)], y M =r +r ·sin ? ?? ??φ+θ-π2=r [1-cos(φ+θ)].

相关主题
文本预览
相关文档 最新文档