当前位置:文档之家› 聚苯胺的制备实验报告

聚苯胺的制备实验报告

聚苯胺的制备实验报告
聚苯胺的制备实验报告

聚苯胺的制备实验报告

姓名:吉武良院系:化院20系学号:PB13206270

摘要:本实验利用化学氧化聚合法制备聚苯胺,旨在了解一种新型的功能聚合物---导电聚合物,探讨电子导电聚合物的结构与机理,并掌握聚苯胺的合成方法。关键词:导电聚合物聚苯胺

Abstract:In this experiment, the chemical oxidative polymerization preparing polyaniline, aimed at understanding a novel functional polymer --- conductive polymer , to investigate the structure and mechanism of the electronically conductive polymer and grasp the polyaniline synthesis method .

Keywords:Polyaniline Conducting polymer

一、引言

导电聚合物(conducting polymer):又称导电高分子,是指通过掺杂等手段,能使得电导率在半导体和导体范围内的聚合物。通常指本征导电聚合物(intrinsic conducting polymer),这一类聚合物主链上含有交替的单键和双键,从而形成了大的共轭π体系。π电子的流动产生了导电的可能性。

1977年A. J. Heeger、A. G. MacDiarmid 和白川英树(H. Shirakawa) 发现,聚乙炔薄膜经电子受体(I,AsF5等) 掺杂后电导率增加了9个数量级,(他们为此共同获得2000年度诺贝尔化学奖) 。这一发现打破了有机聚合物都是绝缘体的传统观念,开创了导电聚合物的研究领域,诱发了世界范围内导电聚合物的研究热潮。大量的研究表明,各种共轭聚合物经掺杂后都能变为具有不同导电性能的导电聚合物,具有代表性的共轭聚合物有聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚对苯撑乙烯、聚对苯等。

导电聚合物的早期研究兴趣主要集中在掺杂导电态上。到了1990年随着聚合物发光二极管的发现,导电聚合物本征半导态的电致发光特性、激光特性和光伏打效应又引起了广泛关注,掀起了研究共轭聚合物的新一轮高潮。

导电聚合物的突出优点是既具有金属和无机半导体的电学和光学特性,又具有有机聚合物柔韧的机械性能和可加工性,还具有电化学氧化还原活性。这些特点决定了导电聚合物材料将在未来的有机光电子器件和电化学器件的开发和发展中发挥重要作用[1]。

聚苯胺(PANI):聚苯胺是导电高分子领域最具应用价值的品种,既具有金属的导电性和塑造的可加工性,同时还具有金属和塑料所欠缺的化学和电化学特性。可广泛应用于电子

化学、船舶工业、石油化工、国防等诸多领域。较高的附加值、广阔的应用领域和巨大商机,使其成为目前国际竞相研发的热门材料之一。但由于生产工艺复杂、容易造成污染、成本较高等原因,是该材料实现工业化生产十分困难。

聚苯胺的合成方法有化学氧化聚合和电化学聚合。化学氧化聚合是苯胺在酸性介质中以过硫酸盐或重铬酸钾等作为氧化剂而发生氧化偶联聚合。聚合时所用的酸通常为挥发性质子酸,浓度一般控制在0.5~4.0mol/L之间。反应介质可为水、甲基吡咯烷酮等极性溶剂,可采用乳液聚合和溶液聚合方式进行。介质酸提供反应所需的质子,同时以掺杂剂的形式进入聚苯胺主链,使聚合物具有导电性,所以盐酸为首选。电化学聚合是苯胺在电流的作用下在电极上发生聚合,它可以获得聚合物薄膜。在酸性电解质溶液中得到的蓝色产物,具有很高的导电性、电化学特性和电致变色行;在碱性电解质溶液中则得到深黄色产物[2]。

化学氧化聚合机理:化学氧化聚合法合成聚苯胺的反应大致可分为3个阶段:①链诱导和引发期;②链增长期;③链终止期。在苯胺的酸性溶液中加入氧化剂,则苯胺将被氧化为聚苯胺。在诱导阶段生成二聚物,然后聚合进入第二阶段,反应开始自加速,沉淀迅速出现,体系大量放热,进一步加速反应直至终止。聚苯胺的低聚物是可以溶于水的,因此初始时反应在水溶液中进行。苯胺的高聚物不溶于水,因此高聚物大分子链的继续增长是界面反应,反应在聚苯胺沉淀物与水溶液的两相界面上进行。

虽然苯胺的化学氧化聚合机理仍然存在一些争议,但Wei 等基于对苯胺电化学聚合动

图1 Wei等提出的聚合机理

力学研究而提出的苯胺聚合机理(见图1)得到较多的认可:苯胺先被慢速氧化为阳离子自

由基,两个阳离子自由基再按头-尾连接的方式形成二聚体。然后,该二聚体被快速氧化为醌式结构,该醌式结构的苯胺二聚体直接与苯胺单体发生聚合反应而形成三聚体。三聚体分子继续增长形成更高的聚合度,其增长方式与二聚体相似,链的增长主要按头-尾连接的方式进行。

1994 年,Wei 等对该聚合机理进行了修正,认为苯胺的聚合是一种非典型的链聚合,或者说是一种介于典型逐步增长与典型自由基链增长之间的聚合反应。他认为由于苯胺的氧化电位远高于二聚体,苯胺单体氧化形成二聚体物种(如对氨基二苯胺、N,N′-二苯肼、二胺基联苯等)是聚合反应的控制步骤;二聚体形成后,它的氧化电位比单体低,立即氧化成阳离子自由基,通过芳环亲电取代机理进攻单体,进一步氧化脱氢芳构化而生成三聚体;重复亲电取代-芳构化过程,即可使链增长持续进行,直至所生成的聚合物阳离子自由基的偶合活性消失,反应即结束[3]。

此外Gospodinova等,Nicolas-Debarnot等也提出了各自的机理(如图2、图3):

图2 Gospodinova 等提出的苯胺化学聚合链增长机理

图3 Nicolas-Debarnot 提出的类似于缩聚的苯胺化学聚合反应机理聚苯胺的导电性取决于聚合物的氧化程度和掺杂度,式(1)为聚苯胺在掺杂前后的结构变化。当PH<4时,聚苯胺为绝缘体,导电率与PH无关;当2

图4 聚苯胺在HCl中的掺杂

本实验采用溶液聚合法合成聚苯胺,经盐酸掺杂后得到导电材料。

二、实验部分

1、主要试剂及仪器

表1 主要仪器

表2 主要试剂

2、实验步骤

1)配制稀盐酸溶液:17ml 36%浓盐酸+100ml蒸馏水。

2)向三口瓶中加入4.7mL苯胺和50mL 2mol/L HCl溶液,并在冰水浴5℃下搅拌。

3)取11.4g 过硫酸铵加25ml去离子水溶解,逐滴加入三口瓶(控制25min左右滴完),保持体系温度5℃以下。

4)继续反应1h,抽滤,用水洗涤。

5)将产品用剩余HCl掺杂反应1h,过滤,干燥,称重。

三、结果与讨论

a)实验现象

苯胺加入后,体系变为黄色,过硫酸铵加入到苯胺溶液中后体系由淡黄色变为碧绿色后立即变为墨绿色最后呈现黑色,且反应放热明显。抽滤后得到黑色固体,圆底烧瓶瓶底是绿色,滤液却是紫色。

将黑色固体放在2mol/L的HCl中掺杂1h后抽滤,得到黑色固体,抽干称重

b)实验结果

抽滤后产品湿重为15.5267g,由于并未完全干燥,因此不计算产率。

c)讨论与分析

1)苯胺易被氧化,暴露于空气中或日光下变为棕色。氧化产物可能是硝基苯,氧化胺中间体等等,如果颜色过深需要蒸馏精制。

2)实验过程中颜色的变化十分明显:一开始为浅黄色,反应一段时间后颜色迅速变化,大致变化过程为:绿色→深绿色→墨绿色→黑色。对此可用物质的显色

原理来解释:物质的微观结构具有最高占有轨道(HOMO)和最低空轨道(LUMO),二者之间的能级差为,电子会特定地吸收波长为的光波而从HOMO 跃迁至LUMO,使得物质显示出相应的补色。据此,实验一开始体系中都是单体等小分子,都不会很小,体系呈现为橙黄色,随着反应的进行,聚苯胺链逐渐增长,共轭逐渐增大,使得能级差逐渐减小,从而使得吸收峰向长波方向移动,于是体系显出的就是其补色,也即短波的绿色乃至紫黑色。在含有较多水时颜色较深。

3)由于本次实验并未对聚苯胺的导电性性能进行测试,所以查阅文献得到以下结果:

A)HCl与苯胺的相对浓度:随着反应体系HCl/An浓度的增加,聚苯胺的电导率逐渐升高,当HCl/An(摩尔比)为1∶1时达到最大值;此后,随着HCl 相对量的继续增加,电导率呈下降趋势。而产率(由产物与An的质量比表征)在HCl/An(摩尔比)为1∶1达到最大之后基本保持不变。这是由于质子酸在苯胺聚合过程中的主要作用是提供质子,并且只有在适当的酸度条件下,苯胺的聚合才按1,4-偶联方式发生。当酸度过低时,聚合按1,4和1,1两种方式反应,得到大量偶氮副产物。当酸度过高时,会发生芳环上的取代反应而使得聚合产物的电导率降低。

B)氧化剂的浓度:随着氧化剂用量的增加,聚苯胺的电导率和产率均呈现先增大、后减小的趋势。当苯胺聚合反应在“氧化剂与苯胺的摩尔比”较低时,由于体系的反应活性中心较少,易于生成高分子量的PAn,因此聚合产物的电导率和产率随着氧化剂用量的增加都有所升高;而当氧化剂用量过多时,体系的活性中心相对较多,不但不利于生成高分子量的PAn,而且过量的氧化剂还会对主链进一步氧化,破坏了主链的共轭结构,从而导致产物的电导率和产率都下降。

C)反应温度:由于苯胺聚合为放热反应,低温有助于反应的进行,随着反应温度的升高,产率有所下降。同时聚苯胺的电导率也有较快的下降。这是因为温度的升高,促使过氧作用增加造成的结果。由此可见,苯胺聚合不适于在较高的温度下进行。

e)结论

本次实验通过进行聚苯胺的制备及参杂,了解了导电高分子这一类化合物的合成

及应用,掌握了低温下进行反应的实施方法。

四、参考文献

【1】李永舫. 导电聚合物[J],《化学进展》,2002,5,14(3):207-209

【2】何卫东.高分子化学实验[M]. 合肥:中国科学技术大学出版社,2009

【3】徐浩,聚苯胺的合成与聚合机理研究进展[J],《化工进展》,2008,27(10):1561-1564

聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。 目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。 目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。 聚苯胺是一种典型的共扼导电高分子,具有原料价廉易得,合成方法简便,经过质子掺杂的聚苯胺具有良好的电子导电性,可以作为电极材料应用于各种电源器件中[8]。杨红生等人[9]在酸性条件下化学法合成聚苯胺,并组装成电容器。 在过去的10年里,新混合动力系统电极的设计结合了电池和电容性能,并且由于新的电极材料的发现,尤其是纳米材料[8)使得超级电容器技术在性能方面有了卓越的提升。纳米材料不寻常的电气、机械和表面性质使其逐渐成为能量存储的重要研究对象[12,13]。相关纳米材料的优点和缺点在之前的相关文献报道中

乙酰苯胺的制备

乙酰苯胺的制备 一.实验目的 1.学习实验室制备芳香族酰胺的原理和方法。 2.训练固体有机物的热过滤、脱色、洗涤、重结晶、干燥等纯化技术。 二.实验原理 NH 2+CH 3COOH 3+H 2O 芳香族酰胺通常用伯或仲芳胺与酸酐或羧酸反应制备,因为酸酐的价格较贵,所以一般选羧酸。本反应是可逆的,为提高平衡转化率,加入了过量的冰醋酸,同时不断地把生成的水移出反应体系,可以使反应接近完成。为了让生成的水蒸出,而又仅可能地让沸点接近的醋酸少蒸出来,本实验采用较长的分馏柱进行分馏。实验加入少量的锌粉,是为了防止反应过程中苯胺被氧化。 三.试剂及物理常数 四、实验流程 5ml 苯胺 7.4ml 冰醋酸0.1g 锌粉 称重计算产率

抽滤装置 干燥装置 布氏漏斗 抽滤瓶 反应装置 六、操作要点和说明 1.合成 (1).反应物量的确定: 本实验反应是可逆的,采用乙酸过量和从反应体系中分出水的方法来提高乙酰苯胺的产率,但随之会增加副产物二乙酰基苯胺的生成量。二乙酰苯胺很容易水解成乙酰苯胺和乙酸,在产物精制过程中通过水洗、重结晶等操作,二乙酰基苯胺水解成乙酰苯胺和乙酸,经过滤可除去乙酸,不影响乙酰苯胺的产率和纯度。 苯胺极易氧化,在空气中放置会变成红色,使用时必须重新蒸馏除去其中的杂质。反应过程中加入少许锌粉。锌粉在酸性介质中可使苯胺中有色物质还原,防止苯胺继续氧化。在实验中可以看到,锌粉加得适量,反应混合物呈淡黄色或接近无色。但锌粉不能加得太多,一方面消耗乙酸,另一方面在精制过程中乙酸锌水解成氢氧化锌,很难从乙酰苯胺中分离出来。 (2).合成反应装置的设计: 水沸点为100℃,乙酸沸点为117℃,两者仅差17℃,若要分离出水而不夹带更多的乙酸,必须使用分馏反应装置,而不能用蒸馏的反应装置。本实验用分馏柱。 一般有机反应用耐压、耐液体沸腾冲出的圆形瓶作反应器。由于乙酰苯胺的熔点为114℃,稍冷即固化,不易从圆形瓶中倒出,因此用锥形瓶作反应器更方便。 分出的水量很少,分馏柱可以不连接冷凝管,在分馏柱支口上直接连尾接管,兼作空气冷凝管即可,使装置更简单。 为控制反应温度,在分馏柱顶口插温度计。 (3).操作条件的控制 保持分馏柱顶温度低于105℃的稳定操作,开始缓慢加热,使反应进行一段时间,有水生成

对硝基苯胺的制备及纯化

对硝基苯胺的制备 段东斑 (武汉大学化学与分子科学学院湖北武汉430072)

目录 一、实验目的-------------------------------------------------------3 二、实验原理-------------------------------------------------------3 2.1合成-----------------------------------------------------------3 2.2产品的分离与纯化-------------------------------------------4 三、主要试剂及产物的物理常数--------------------------------5 四、主要试剂规格、用量-----------------------------------------6 五、实验装置图-----------------------------------------------------6 六、实验步骤与现象-----------------------------------------------6 6.1苯胺的乙酰化--------------------------------------------------7 6.2乙酰苯胺的硝化---------------------------------------------7 6.3硝基乙酰苯胺的水解-----------------------------------------7 6.4柱层析与薄层层析------------------------------------------8 6.5蒸馏-----------------------------------------------------------8 七、产品的表征与纯度分析-------------------------------------9 7.1熔点的测定--------------------------------------------------9 7.2薄层色谱(TLC)---------------------------------------------10 7.3核磁共振氢谱1HNMR -------------------------------------10 八、产率计算及分析---------------------------------------------11 九、讨论------------------------------------------------------------12 十、其他合成方法------------------------------------------------13

11、肉桂酸的制备

有机化学实验报告 实验名称:肉桂酸的制备 学院:化学工程学院 专业:化学工程与工艺 班级: 姓名:学号: 指导教师: 日期:

1、了解肉桂酸制备的原理和方法; 2、掌握回流、抽滤等基本操作; 3、熟悉水蒸气蒸馏的原理和操作方法; 二、实验原理 1、肉桂酸又名β-苯丙烯酸,肉桂酸的合成方法有多种,实验室以苯甲醛和醋酐为原料,在无水碳酸钾的存在下,发生缩合反应,即得肉桂酸。 2、PerKin反应:芳醛与酸酐的缩合反应。催化剂一般为酸酐对应的羧酸钠盐或钾盐,用无水碳酸钾代替醋酸钾,可缩短反应时间,产率也有所提高。 三、主要试剂及物理性质 1、主要试剂:苯甲醛、乙酸酐、无水碳酸钾、氢氧化钠水溶液、盐酸(1:1)、活性炭、试剂水 2、试剂的物理性质 名称分子量性状熔点(℃)沸点(℃)溶解度 肉桂酸148白色单斜棱晶135-1363000.0418 苯甲醛106无色液体-26178.10.3 碳酸钾102白色结晶粉末-73.1138.6253(20℃) 乙酸酐102无色透明液体-73.1140.012(冷) 四、试剂用量规格 试剂用量 苯甲醛 5.0ml(0.05mol) 乙酸酐14.0ml(0.145mol) 碳酸钾7.00g 10%NaOH水溶液40ml 盐酸(1:1)25ml 水110ml 活性炭3小勺

主要仪器:150ml三颈烧瓶、量筒(10ml) 、量筒(100ml)、球形冷凝管、直形冷凝管、水蒸气发生器、玻璃棒、250ml锥形瓶、布氏漏斗、吸滤瓶、表面皿、电炉等 5-1 肉桂酸制备的回流装置 5-2 水蒸汽蒸馏法装置图 六、实验步骤及现象 时间步骤现象 1、取5ml苯甲醛,14ml乙 酸酐和7g碳酸钾放入 150ml三颈烧瓶。 无色透明液体。 14:00-14:06 14:07-14:502、将此混合物进行加热回 流45ml,并观察颜色。 起初冒白烟,出现大量泡沫。 泡沫完全消失(14:06),液体 变成乳黄色混浊状。 液体渐渐澄清,微沸,橙红色 慢慢加深,最后为红褐色溶液。 温度172℃。

乙酰苯胺制备实验

乙酰苯胺的制备实验 一、实验原理 酰胺可以用酰氯、酸酐或酯同浓氨水、碳酸铵或(伯或仲)胺等作用制得。同冰醋酸共热来制备。这个反应是可逆的。在实际操作中,一般加入过量的冰醋酸,同时,用分馏柱把反应中生成的水(含少量的冰醋酸)蒸出,以提高乙酰苯胺的产率。 主反应: 二、反应试剂、产物、副产物的物理常数 三、药品 四、流程图

五、实验装置图 (1)分馏装置(2)抽滤装置(3)干燥装置 六、实验内容 在60ml锥形瓶上装一个分馏柱,柱顶插一支200℃温度计,用一个小锥形瓶收集稀醋酸溶液。 在锥形瓶中放入5.0ml(0.055mol)新蒸馏过的苯胺、7.4ml(0.13mol)冰醋酸和0.1g锌粉,缓慢加热至沸腾,保持反应混合物微沸约10min,然后逐渐升温,控制温度,保持温度计读数在105℃左右。经过40~60min,反应所生成的水(含少量醋酸)可完全蒸出。当温度计的读数发生上下波动或自行下降时(有时反应容器中出现白雾),表明反应达到终点。停止加热。这时,蒸出的水和醋酸大约有4ml。

在不断搅拌下把反应混合物趁热以细流慢慢倒入盛100ml冷水的烧杯中。继续剧烈搅拌,并冷却烧杯,使粗乙酰苯胺成细粒状完全析出。用布氏漏斗抽滤析出的固体,用玻璃瓶塞把固体压碎,再用5~10ml冷水洗涤以除去残留的酸液。把粗乙酰苯胺放入150ml热水中,加热至沸腾。如果仍有未溶解的油珠,需补加热水,直到油珠完全溶解为止。稍冷后加入约0.5g粉末状活性炭,用玻璃棒搅动并煮沸5-10min。趁热用保温漏斗过滤或用预先加热好的布氏漏斗减压过滤。冷却滤液,乙酰苯胺呈无色片状晶体析出。减压过滤,尽量挤压以除去晶体中的水分。产品放在表面皿上晾干后测定其熔点。产量:约5.0g。 纯乙酰苯胺为无色片状晶体。熔点mp=114.3℃。 (一)制备阶段 1.安装分馏装置:如图(1)所示,在100ml锥形瓶上装一个分馏柱,柱顶插一支200℃温度计,用一个100ml锥形瓶收集稀醋酸溶液。 2.加药品:在100ml锥形瓶中放入5ml新蒸馏过的苯胺、7.4ml冰醋酸和0.1g 锌粉。 3.加热反应:用电热套缓慢加热至沸腾,保持反应混合物微沸约10min(注:为了让苯胺的酰化反应一段时间,暂时不要有馏分蒸出状态),然后逐渐升温,控制温度,保持温度计读数在105℃左右。经过40-60min,反应所生成的水(含少量醋酸)可完全蒸出。当温度计的读数发生上下波动或自行下降时(有时,反应容器中出现白雾),表明反应达到终点。停止加热。这时,蒸出的水和醋酸大约有4ml。 (二)后处理阶段 1.倒入冷水中析出产品:在不断搅拌下把反应混合物趁热以细流慢慢倒入盛100ml冷水的烧杯中。继续剧烈搅拌,并冷却烧杯,使粗乙酰苯胺成细粒状完全析出。 2.抽滤:用布氏漏斗抽滤析出的固体,用玻璃瓶塞把固体压碎。 3.洗涤:用5~10ml冷水洗涤以除去残留的酸液。

聚苯胺的合成及表征

聚苯胺的合成及表征 (贵州省贵阳市贵州师范学院11级化本 550018) 摘要:本实验采用氧化聚合法,以苯胺为单体,过硫酸铵为氧化剂,探究投料比、酸种类、温度对合成聚苯胺的影响,及本征态聚苯胺的溶解性影响因素。用傅里叶红外光谱仪对聚苯胺参杂前后的结构变化进行了测试,讨论了不同条件对聚合物的影响。同时探究不同条件下合成的聚苯胺的溶解性。 关键词:聚苯胺合成表征溶解性 前言:聚苯胺( PANI) 具有多样结构,独特的掺杂机,良好的稳定性和原料价廉易得等优点,一直是高分子领域的研究热点,在诸多领域都有良好的应用前景目前应用最为广泛的合成聚苯胺的方法是MacDiarm id 等提出的水溶液化学氧化聚合法。该法简便易行, 适合大批量工业生产, 但通过该法制备所得聚苯胺的分子链含有大量缺陷,产物电导率较低,因此对苯胺化学氧化法合成条件对产率的影响进行了探究。 1. 实验部分 1.1 实验试剂及仪器 苯胺(An)(分析纯,AR天津博迪化工股份有限公司)、过硫酸铵(APS)(分析纯,AR天津市科密欧化学试剂有限公司)、盐酸(HCl,优级纯)、硫酸(H2SO4)、高氯酸(HClO4)、磷酸(H3PO4)、氨水(NH3·H2O)、四氢呋喃(分析纯 AR,天津博迪化工股份有限公司)、N,N-二甲基甲酰胺(分析纯AR,广东光华科技股份有限公司)、二甲基亚砜(分析纯AR,广东光华科技股份有限公司)、恒温玻璃搅拌器、85-2恒温磁力搅拌器(金坛市城东新瑞仪器厂)、傅里叶TENSOR-27型红外光谱仪(KBr压片) 1.2 聚苯胺的合成 1.2.1 聚苯胺的性质 溶解性——聚苯胺由于其链刚性和链间强相互作用,使它的可溶性极差,在大部分常用的有机溶剂中几乎不溶,仅部分溶于N,N-二甲基甲酰胺和N-甲基吡咯烷酮,这就给表征带来一定的困难,并且极大地限制了聚苯胺的应用。通过结构修饰(衍生物、接枝、共聚)、掺杂诱导、聚合、复合和制备胶体颗粒等方法获得可溶性或水溶性的导电聚苯胺。如在聚苯胺分子链上引入磺酸基团可得到水溶性导电高分子。 导电性——聚苯胺的导电性受pH值和温度影响较大,当pH>4时,电导率与pH无关,呈绝缘体性质;当2

乙酰苯胺的制备

实验报告 课程名称合成化学实验b 实验名称乙酰苯胺的制备 二级学院化学化工学院专业化学姓名汪建红实验次数 3 实验日期: 3 月 18 日 验条件:室温℃ 相对湿度 % 大气压 mmHg 一、实验目的 1、掌握苯胺乙酰化的原理和方法, 2、进一步熟悉固体有机化合物的提纯方法——重结晶 二、实验原理 1、乙酰苯胺的用途: 乙酰苯胺,白色有光泽片状结晶或白色结晶粉末,是磺胺类药物的原料,可用作止痛剂、退热剂(俗称“退热冰”)、防腐剂和染料中间体。 2、苯胺乙酰化的必要性: (1)作为一种保护措施,将一级和二级芳胺(就是伯胺和仲胺)在合成中转化为其乙酰衍生物,降低芳胺对氧化性试剂的敏感性,使其不被反应试剂破坏, (2)氨基经酰化后,降低了氨基在亲电取代反应(特别是卤化)中的活化能力,使其由很强的第I类定位基变成中等强度的第I类定位,使反应由多元取代变为有用的一元取代。 (3)由于乙酰基的空间效应,往往选择性地生成对位取代产物。 (4)在某些情况下,酰化可以避免氨基与其它功能基或试剂(如RCOCl,-SO2Cl,HNO2等)之间发生不必要的反应。 作为氨基保护基的酰基基团可在酸或碱的催化下脱除。 3、芳胺的乙酰化试剂选择: 芳胺可用酰氯、酸酐或冰醋酸加热来进行酰化,使用冰醋酸试剂易得,价格便宜,但需要较长的反应时间,适合于规模较大的制备。 酸酐一般来说是比酰氯更好的酰化试剂,用游离苯胺与纯乙酸酐进行酰化时,常伴有二乙酰胺[ArN(COCH3)2]副产物的生成,如果在醋酸——醋酸钠缓冲溶液中酰化,由于酸酐水解速度比酰化速度慢得多,可得到高纯度产物,但此方法不适用于硝基苯胺和其它碱性很弱的芳胺的酰化。

肉桂酸的制备

肉桂酸的制备 课时数:5学时 教学目标: 了解肉桂酸制备的原理和方法,掌握回流、水蒸汽蒸馏等操作。 教学内容: 一、实验目的: ⑴掌握用珀金反应制备肉桂酸的原理和方法; ⑵掌握回流、水蒸气蒸馏等操作 二、实验试剂 【物理常数】 二、反应原理 肉桂酸又名β-苯丙烯酸,有顺式和反式两种异构体。通常以反式形式存在,为无色晶体,熔点133℃。肉桂酸是香料、化妆品、医药、塑料和感光树脂等的重要原料。肉桂酸的合成方法有多种,实验室里常用珀金(Pe-ruin)反应来合成肉桂酸。以苯甲醛和醋酐为原料,在无水醋酸钾(钠)的存在下,发生缩合反应,即得肉桂酸。 反应时,酸酐受醋酸钾(钠)的作用,生成酸酐负离子;负离子和醛发生亲核加成生成β-羧基酸酐;然后再发生失水和水解作用得到不饱和酸 PerKin反应:芳醛与酸酐的缩合反应。催化剂一般为酸酐对应的羧酸钠盐或钾盐,用无水碳酸钾代替醋酸钾,可缩短反应时间,产率也有所提高。 反应机理如下:乙酐在弱碱作用下打掉一个H,形成CH3COOCOCH2-,然后 用K2CO3代替CH3CO2K,碱性增强,因此产生碳负离子的能力增强,有利于碳负离子对醛的亲核加

成,所以反应时间短,产率高。 三、实验步骤 1.合成: ① 在100 mL干燥的圆底烧瓶中加入1.5mL (1.575 g,15 mmol) 新蒸馏 过的苯甲醛,4 mL (4.32 g,42 mmol) 新蒸馏过的醋酐以及研细的2.2 g无水 碳酸钾,2粒沸石,按装置图按好装置。 ② 加热回流(小火加热)40 min,火焰由小到大使溶液刚好回流。(也可 将烧瓶置于微波炉中,装上回流装置,在微波输出功率为450W下辐射8min)。 ③ 停止加热,待反应物冷却。 2.后处理: 待反应物冷却后,往瓶内加入20 mL热水,以溶解瓶内固体,同时改装成 水蒸气蒸馏装置(半微量装置)。开始水蒸气蒸馏,至无白色液体蒸出为止, 图1. 产物制备装置 将蒸馏瓶冷却至室温,加入10 %NaOH(约10 mL)以保证所有的肉桂酸成钠盐 而溶解。待白色晶体溶解后,滤去不溶物,滤液中加入0.2 g活性炭,煮沸5分钟左右,脱色后抽滤,滤 出活性炭,冷却至室温,倒入250 mL烧杯中,搅拌下加入浓HCl,酸化至刚果红试纸变兰色pH=2-3。冷 却抽滤得到白色晶体,粗产品置于250 mL烧杯中,用水—乙醇重结晶,先加60 mL水,等大部分固体溶 解后,稍冷,加入10 mL无水乙醇,加热至全部固体溶解后,冷却,白色晶体析出,抽滤,产品空气中晾 干后,称重。 四、实验装置: 1、回流装置 2、水汽蒸馏装置:(示范组装) 五、实验重点: 1、了解用珀金(PerKin)反应制备肉桂酸的原理和方法。 2、掌握回流操作:自下而上自左到右安装装置。冷凝水下进上出。需加沸石。控制回流蒸 气上升高度不超过2个球。 3、掌握水蒸汽蒸馏操作:水蒸气蒸馏是分离和提纯液态或固态有机物的一种方法。 水蒸气蒸馏应用范围: ⑴某些沸点高的有机物,在常压下蒸馏虽可与副产物分离,但易将其破坏。 ⑵混合物中含有大量树脂状杂质或不挥发性杂质,采用蒸馏。萃取等方法难于分离。 ⑶从较多固体反应物中分离出被吸附的液体。 被提取物应具备条件: ⑴不溶或难溶于水。 ⑵共沸腾下与水不发生化学反应。 ⑶在100℃左右时,必须具有一定蒸气压[至少666.5-1333Pa(5-10mmHg)]。 六、实验注意点: 1、装置注意点: ⑴回流装置要干燥:否则会使酸酐发生水解,使产率降低。

一 聚苯胺的合成方法

一聚苯胺的合成方法 聚苯胺的合成方法很多,但常用的合成方法有两大类:化学合成和电化学合成。 (1) 化学合成法化学合成法是利用氧化剂作为引发剂在酸性介质中使苯胺单体发生氧化聚合,具体实施方法有如下几种。 ①化学氧化聚合法聚苯胺的化学氧化聚合法,是在酸性条件下用氧化剂使苯胺单体氧化聚合。质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需要的pH值和以掺杂剂的形式进入聚苯胺骨架赋予其一定的导电性。聚合同时进行现场掺杂,聚合和掺杂同时完成。常用的氧化剂有:过氧化氢、重铬酸盐、过硫酸盐等。其合成反应主要受质子酸的种类及浓度,氧化剂的种类及浓度,单体浓度和反应温度、反应时间等因素的影响。化学氧化聚合法优点在于能大量生产聚苯胺,设备投资少,工艺简单,适合于实现工业化生产,是目前最常用的合成方法。 ②乳液聚合法乳液聚合法是将引发剂加入含有苯胺及其衍生物的酸性乳液体系内的方法。乳液聚合法具有以下优点:采用环境友好且成本低廉的水作为热载体,产物无需沉淀分离以除去溶剂;合成的聚苯胺分子量和溶解性都较高;如采用大分子磺酸为表面活性剂,则可一步完成掺杂提高导电聚苯胺电导率;可将聚苯胺制成直接使用的乳状液,后续加工过程不必再使用昂贵或有毒的有机溶剂,简化了工艺,降低了成本,还可以克服传统方法合成聚苯胺不溶不熔的缺点。 ③微乳液聚合法微乳液聚合法是在乳液法基础上发展起来的。聚合体系由水、苯胺、表面活性剂、助表面活性剂组成。微乳液分散相液滴尺寸(10~100nm)小于普通乳液(10~200nm),非常有利于合成纳米级聚苯胺。纳米聚苯胺微粒不仅可能解决其难于加工成型的缺陷,且能集聚合物导电性和纳米微粒独特理化性质于一体,因此自1997年首次报道利用此法合成了最小粒径为5nm的聚苯胺微粒以来,微乳液法己经成为该领域的研究热点。目前常规O/W型微乳液用于合成聚苯胺纳米微粒常用表面活性剂有DBSA、十二烷基磺酸钠等,粒径约为10~40nm。反相微乳液法(W/O)用于制备聚苯胺纳米微粒可获得更小的粒径(<10nm),且粒径分布更均匀。这是由于在反相微乳液水核内溶解的苯胺单体较之常规微乳液油核内的较少造成的。 ④分散聚合法苯胺分散聚合体系一般是由苯胺单体、水、分散剂、稳定剂和引发剂组成。反应前介质为均相体系,但所生成聚苯胺不溶于介质,当其达到临界链长后从介质中沉析出来,借助于稳定剂悬浮于介质中,形成类似于聚合物乳液的稳定分散体系。该法目前用于聚苯胺合成研究远不及上述三种实施方法

乙酰苯胺的制备

一.实验目的 1.学习实验室制备芳香族酰胺的原理和方法。 2.训练固体有机物的热过滤、脱色、洗涤、重结晶、干燥等纯化技术。 二.实验原理 NH 2+CH 3COOH 3+H 2O 芳香族酰胺通常用伯或仲芳胺与酸酐或羧酸反应制备,因为酸酐的价格较贵,所以一般选羧酸。本反应是可逆的,为提高平衡转化率,加入了过量的冰醋酸,同时不断地把生成的水移出反应体系,可以使反应接近完成。为了让生成的水蒸出,而又仅可能地让沸点接近的醋酸少蒸出来,本实验采用较长的分馏柱进行分馏。实验加入少量的锌粉,是为了防止反应过程中苯胺被氧化。 三.试剂及物理常数 四、实验流程 5ml 苯胺 7.4ml 冰醋酸0.1g 锌粉 称重计算产率 五、仪器装置

抽滤装置 干燥装置 布氏漏斗 抽滤瓶 反应装置 六、操作要点和说明 1.合成 (1).反应物量的确定: 本实验反应是可逆的,采用乙酸过量和从反应体系中分出水的方法来提高乙酰苯胺的产率,但随之会增加副产物二乙酰基苯胺的生成量。二乙酰苯胺很容易水解成乙酰苯胺和乙酸,在产物精制过程中通过水洗、重结晶等操作,二乙酰基苯胺水解成乙酰苯胺和乙酸,经过滤可除去乙酸,不影响乙酰苯胺的产率和纯度。 苯胺极易氧化,在空气中放置会变成红色,使用时必须重新蒸馏除去其中的杂质。反应过程中加入少许锌粉。锌粉在酸性介质中可使苯胺中有色物质还原,防止苯胺继续氧化。在实验中可以看到,锌粉加得适量,反应混合物呈淡黄色或接近无色。但锌粉不能加得太多,一方面消耗乙酸,另一方面在精制过程中乙酸锌水解成氢氧化锌,很难从乙酰苯胺中分离出来。 (2).合成反应装置的设计: 水沸点为100℃,乙酸沸点为117℃,两者仅差17℃,若要分离出水而不夹带更多的乙酸,必须使用分馏反应装置,而不能用蒸馏的反应装置。本实验用分馏柱。 一般有机反应用耐压、耐液体沸腾冲出的圆形瓶作反应器。由于乙酰苯胺的熔点为114℃,稍冷即固化,不易从圆形瓶中倒出,因此用锥形瓶作反应器更方便。 分出的水量很少,分馏柱可以不连接冷凝管,在分馏柱支口上直接连尾接管,兼作空气冷凝管即可,使装置更简单。 为控制反应温度,在分馏柱顶口插温度计。 (3).操作条件的控制 保持分馏柱顶温度低于105℃的稳定操作,开始缓慢加热,使反应进行一段时间,有水生成后,再调节反应温度使蒸汽缓慢进入分馏柱,只要生成水的速度大于或等于分出水的速度,即

肉桂酸的制备实验

肉桂酸的制备实验

————————————————————————————————作者: ————————————————————————————————日期: ?

肉桂酸的制备实验 一、实验原理 利用柏琴(Perkin)反应制备肉桂酸。一般认为脂肪酸钾盐或钠盐为催化剂,提供CH 3COO-负离子,从而使脂肪酸酐生成负碳离子,然后负碳离子和醛或羧酸衍生物(酐和酯)分子中的羰基发生亲核加成,形成中间体。 在珀金反应中,是碳酸钾夺取乙酐分子中的α-H,形成乙酸酐负碳离子。实验所用的仪器必须是干燥的。 主反应: 副反应: 在本实验中,由于乙酸酐易水解,无水碳酸钾易吸潮,反应器必须干燥。提高反应温度可以加快反应速度,但反应温度太高,易引起脱羧和聚合等副反应,所以反应温度控制在150~170℃左右。未反应的苯甲醛通过水蒸气蒸馏法分离。 机理: 【此机理中的碱为无水乙酸钾】 二、反应试剂、产物、副产物的物理常数

三、药品 四、实验流程图 五、实验装置图

(4)干燥装置 六、实验内容 在250ml三口烧瓶中放入3ml( 3.15g,0.03mol)新蒸馏过的苯甲醛、8ml(8.64g,0.084mol)新蒸馏过的乙酸酐,以及研细的4.2g无水碳酸钾。三口烧瓶的侧口插入一根200℃温度计,温度计要求插入液面以下,采用空气冷凝管缓缓回流加热45min。由于反应中二氧化碳逸出,可观察到反应初期有大量泡沫出现。 反应完毕,在搅拌下向反应液中分批加入20ml水,再慢慢加入碳酸钠中和反应液至pH等于8。然后进行水蒸汽蒸馏,蒸出未反应完的苯甲醛。待三口烧瓶中的剩余液体冷却后,加入活性炭煮沸10-15min,进行趁热过滤,将滤液冷却至室温,在搅拌下用浓盐酸酸化至刚果红试纸变蓝(或溶液pH=3)。冷却,待晶体析出后进行抽滤,用少量冷水洗涤沉淀。抽干,让粗产品在空气中晾干。产量:约3.0g(产率约65%)。 粗产品可用热水或3:1的水-乙醇重结晶。肉桂酸有顺反异构体,通常以反式存在。 纯肉桂酸为微有桂皮香气的无色针状晶体。熔点mp=133℃。 (一)制备阶段:

对氯甲苯的合成

对氯甲苯的合成 一、实验目的 1.通过本实验学习对氯苯胺的制备原理和方法以及重氮化反应操作。 2.进一步熟练掌握水蒸汽蒸馏的安装和操作。 3.熟练掌握用冰水控温法。 二、实验原理 对氯甲苯是一种有机合成原料,外观为无色透明液体,有特殊气味,能于醇、醚、苯等,微溶于水。比重:1. 0697,熔点:7. 50C,沸点162℃。用于医药、农药、染料方面。可生产对氯氯苄、对氯苯甲醇、对氯氰节、对氯苯甲醛、对二氯甲酸、2, 4-二氯甲苯、2, 4一二氯苯甲醛、氰戊菊酷、杀菌剂等。工业上有两种生产方法:一是甲苯经硝化、还原、重氮化制备;二是甲苯经氯化制备。本品有毒,对呼吸道有损伤,对眼、鼻有刺激作用,避免用手直接接触,非密闭场所要穿戴防护用品。本实验采用以对甲苯胺为原料,经重氮化合成对氯甲苯的方法。 三、试剂与仪器 试剂:对甲苯胺、五水硫酸铜、氯化钠、氢氧化钠、盐酸、亚硫酸氢钠和硝酸钠都是化学纯。 仪器:标准磨口玻璃仪器、电动搅拌器、可调功率电炉。 四、实验步骤 1.氯化亚铜溶液的制备 在400m1烧杯内,将27. 5g五水硫酸铜和10. 0g氯化钠溶解于100m1水中,加热到60一70℃,减压过滤,除去不溶的杂质,得溶液A.将6. 5g亚硫酸氢钠和3. 0g氢氧化钠溶解于50水中,也加热到60-70℃,减压过滤,除去不溶的杂质,得溶液B。在搅拌下,缓慢地把溶液B加到溶液A中,析出白色的氯化亚铜。冷却到室温,用含少量的亚硫酸氢钠的水以倾泻法洗涤氛化亚铜,然后将己

冷却到水温2℃以下的30m1浓盐酸倒入氯化亚铜中。 2.重氮盐的制备 在250m1三口圆底烧瓶中,依次放入10. 7g对甲苯胺、lOml水和40m1浓盐酸,搅拌,加热到60℃使对甲苯胺完全溶解,再用冰盐浴冷却到5℃以下。在50m1烧杯中,把7. 0g亚硝酸钠溶解于20m1水中,冷却到5℃以下后,把它放入50m1分液漏斗中.在搅拌下,把亚硝酸钠溶液慢慢地滴入三口圆底烧瓶中,保持反应温度不超过5℃,近终点时,重氮化反应速度较慢。亚硝酸钠溶液滴加速度控制在每分钟1一2滴,不时用碘化钾淀粉试纸来检验终点。如果试纸立刻变蓝色,就表示重氮化反应已完成。 3.对氯甲苯的制备 将重氮盐溶液缓缓倒入己冷却至0℃的氛化亚铜盐酸溶液中,并搅拌,用冰水浴冷却,使反应温度控制在15℃以下。这时,有深红色悬浮物析出。大约10分钟后,撤去冰水浴,在室温下反应2. 5小时,再用水浴慢慢加热到60℃,保持半小时,直到没有气泡放出为止.将反应混合物进行水蒸气蒸馏,直到馏出液中没有油珠时为止。把馏出液倒入分液漏斗中,分离出粗对级甲苯。用适量的用水洗涤一次,分离出对抓甲苯,用无水氛化钙干燥后,进行蒸馏,收集160一164℃的馏分。得有特殊气味、无色透明液体,产量为10. 8g,含量为97. 2%。 五、注意事项 1.配置各溶液时各量一定要标准。 2.加入亚硫酸氢钠溶液时一定要振摇,否则形成的褐色沉淀易结块,影响氯化亚铜的质量。 3.制备氯化亚铜时静置时白色的氯化亚铜沉淀完全,倾倒上层液体时要小心不要将沉淀倒出。 4.氯化亚铜易被氧化成有色的二价铜盐,制备好以后应密闭冷却保存。 5.制备重氮盐时一定要保持好温度。在加入90-95%的亚硝酸钠溶液后即可用试纸检验,变蓝则不再继续加入。 6.分解重氮盐-CuCl复合物宜室温多放置,加热分解。 六、思考题 1.重氮化反应在有机合成中的用途。

实验六乙酰苯胺的制备

实验六 乙酰苯胺的制备 一、实验目的 1、了解酰化反应的原理和酰化剂的使用; 2、掌握重结晶、热过滤的操作方法 二、实验原理 胺的酰化在有机合成中有着重要的作用。作为一种保护措施,一级和二级芳胺在合成中通常被转化为它们的乙酰基衍生物以降低胺对氧化降解的敏感性,使其不被反应试剂破坏;同时氨基酰化后降低了氨基在亲电取代反应(特别是卤化)中的活化能力,使其由很强的第Ⅰ类定位基变为中等强度的第Ⅰ类定位基,使反应由多元取代变为有用的一元取代,由于乙酰基的空间位阻,往往选择性的生成对位取代物。 用冰醋酸为酰化剂制备乙酰苯胺。 +H 3C OH O NH 2 H N CH 3O +H 2O 芳胺可用酰氯、酸酐或与冰醋酸加热来进行酰化,使用冰醋酸试剂易得,价格便宜,但需要较长的反应时间,适合于规模较大的制备。酸酐一般来说是比酰氯更好的酰化试剂。用游离胺与纯乙酸酐进行酰化时,常伴有二乙酰胺[ArN(COCH 3)2]副产物的生成。但如果在醋酸- 醋酸钠的缓冲溶液中进行酰化,由于酸酐的水解速度比酰化速度慢得多,可以得到高纯度的产物。但这一方法不适合于硝基苯和其它碱性很弱的芳胺的酰化。 反应活性是乙酰氯>乙酐>乙酸 三、实验仪器与药品 请学生自已整理罗列 四、实验装置图 五、实验步骤 加热

1. 在100ml圆底烧瓶中,加入5 ml苯胺、7.4ml冰乙酸和0.1g锌粉,小火加热至沸腾,温度控制在100-110℃左右。 2、反应约40min后,反应所生成的水基本蒸出。当温度计的读数上、下波动时(或反应器中出现白雾),则反应达到终点,即可停止加热。 3、将反应液趁热以细流倒入装有100ml冷水的烧杯中,边倒边剧烈搅拌,有细粒状固体析出。冷却后抽滤,并用5ml冷水洗涤固体,得到白色或带黄色的乙酰苯胺粗品。 4、粗产品加入100ml水中,加两粒沸石,加热至沸腾。观察是否有未溶解的油状物,如有则补加水,直到油珠全溶为止。 5、稍冷后加入少量活性炭,再次煮沸2min。 6. 趁热过滤除去活性炭。滤液倒入烧杯中。自然冷至室温有无色片状晶体析出, 7. 减压过滤,烘干,称量。 六、实验记录(须严格按标准格式记录) 七、实验结果 产品的状态,量,并计算产率 八、思考题 1. 根据理论计算,反应完成时应产生几毫升水?为什么实际收集的液体远多于理论量? 答:理论生成0.9ml水。实际收集到的多,主要原因是醋酸的沸点是118度,虽然高于水的沸点,但是醋酸易挥发,在加热的同时会有醋酸蒸发出来,经过冷凝后而收集下来,所以要比理论值多 2. 常用的乙酰化试剂有哪些?哪一种较经济?哪一种反应最快? 答:常用的乙酰化试剂有乙酰氯、乙酸酐和冰醋酸等,其中以冰醋酸最为价廉易得,乙酰氯反应最快。 注意: 1.本次实验的产品回收,提醒学生保护环境,勿冲入下水道。 2.滤纸只可用来过滤,不可用来取物,请老师控制发放。

聚苯胺的制备实验报告

聚苯胺的制备实验报告 姓名:吉武良院系:化院20系学号:PB13206270 摘要:本实验利用化学氧化聚合法制备聚苯胺,旨在了解一种新型的功能聚合物---导电聚合物,探讨电子导电聚合物的结构与机理,并掌握聚苯胺的合成方法。关键词:导电聚合物聚苯胺 Abstract:In this experiment, the chemical oxidative polymerization preparing polyaniline, aimed at understanding a novel functional polymer --- conductive polymer , to investigate the structure and mechanism of the electronically conductive polymer and grasp the polyaniline synthesis method . Keywords:Polyaniline Conducting polymer 一、引言 导电聚合物(conducting polymer):又称导电高分子,是指通过掺杂等手段,能使得电导率在半导体和导体范围内的聚合物。通常指本征导电聚合物(intrinsic conducting polymer),这一类聚合物主链上含有交替的单键和双键,从而形成了大的共轭π体系。π电子的流动产生了导电的可能性。 1977年A. J. Heeger、A. G. MacDiarmid 和白川英树(H. Shirakawa) 发现,聚乙炔薄膜经电子受体(I,AsF5等) 掺杂后电导率增加了9个数量级,(他们为此共同获得2000年度诺贝尔化学奖) 。这一发现打破了有机聚合物都是绝缘体的传统观念,开创了导电聚合物的研究领域,诱发了世界范围内导电聚合物的研究热潮。大量的研究表明,各种共轭聚合物经掺杂后都能变为具有不同导电性能的导电聚合物,具有代表性的共轭聚合物有聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚对苯撑乙烯、聚对苯等。 导电聚合物的早期研究兴趣主要集中在掺杂导电态上。到了1990年随着聚合物发光二极管的发现,导电聚合物本征半导态的电致发光特性、激光特性和光伏打效应又引起了广泛关注,掀起了研究共轭聚合物的新一轮高潮。 导电聚合物的突出优点是既具有金属和无机半导体的电学和光学特性,又具有有机聚合物柔韧的机械性能和可加工性,还具有电化学氧化还原活性。这些特点决定了导电聚合物材料将在未来的有机光电子器件和电化学器件的开发和发展中发挥重要作用[1]。 聚苯胺(PANI):聚苯胺是导电高分子领域最具应用价值的品种,既具有金属的导电性和塑造的可加工性,同时还具有金属和塑料所欠缺的化学和电化学特性。可广泛应用于电子

乙酰苯胺的制备

化学与环境学院 有机化学实验报告实验名称乙酰苯胺的制备 【实验目的】 1、掌握苯胺乙酰化反应的原理和实验操作; 2、掌握分馏柱的作用机理和用途。 【实验原理】(包括反应机理)

芳香族伯胺的芳环和氨基都容易起反应,在有机合成上为了保护氨基,往往先把它乙酰化为乙酰苯胺,然后进行其他反应,最后水解去乙酰基。 制备乙酰苯胺常用的方法可用芳胺与酰氯、酸酐或用冰醋酸等试剂进行酰化反应。其中与酰氯反应最激烈,酸酐次之,冰醋酸最慢。采用酰氯或酸酐作为酰化剂,反应进行较快,但原料价格较贵,采用冰醋酸作为酰化剂,反应较慢,但价格便宜,操作方便,适用于规模较大的制备。 本实验是用冰醋酸作乙酰化试剂: +CH3COOH NHCOCH3+H2O NH 苯胺与冰醋酸的反应是可逆反应,为防止乙酰苯胺的水解,提高产率,采用了将其中一个生成物——水在反应过程中不断移出体系及反应物醋酸过量的方法破坏平衡,使平衡向右移动。因此,要求实验装置既能反应又能进行蒸馏。由于水与反应物冰醋酸的沸点相差不大,必须在反应瓶上装一个刺形分馏柱,使水和醋酸的混合气体在分馏柱内进行多次汽化和冷凝,使这两种气体得到分离,从而减少醋酸蒸出,保证水的顺利蒸出。 【主要试剂及物理性质】

体 醋酸60.05 16.6 117.9 无色有刺激性气味的 液体 乙酰苯胺135.17 114.3 304 白色有光泽片状结晶 或白色结晶粉末 锌65.38 419.53 907 银白色固体 【仪器装置】 1、主要仪器: 刺型分馏柱、温度计、冷凝管、锥形瓶、尾接管、布氏漏斗、真空循环水泵 2、实验装置: 分馏装置抽滤装置 【实验步骤及现象】 实验步骤实验现象

对硝基苯胺的制备

对硝基苯胺的制备 化学一班常拯波201309020103 1前言 对硝基苯胺,黄色针状结晶,高毒,易升华。微溶于冷水,溶于沸水、乙醇、乙醚、苯和酸溶液。广泛应用于染料工业的人工合成化学物,是多种印染及医药化工品的中间体,也可用于分析试剂。操作时需穿戴防护措施,避免释放至环境。 工业生产对硝基苯胺。可采用乙酰苯胺硝化、水解的方法,也可用对硝基氯苯氨解的方法。 1. 以乙酰苯胺为原料,经硝化、水解而制得。原料消耗定额:乙酰苯胺1210kg/t、硝酸(90%)580kg/t、硫酸3620kg/t、液碱(30%)660kg/t。 2. 以对硝基氯苯为原料,可采用高压釜间歇法生产,也可采用管道反应器连续化生产,收率都在94%左右。原料消耗定额:对硝基氯苯(97%)1170kg/t、氨水(28%)700kg/t 高毒。可引起比苯胺更强的血液中毒。如果同时存在有机溶剂或在饮酒后,这种作用更为强烈。急性中毒表现为开始头痛、颜面潮红、呼吸急促,有时伴有恶心、呕吐,之后肌肉无力、发绀、脉搏频弱及呼吸急促。皮肤接触后会引起湿疹及皮炎。大鼠经口LD50为1410mg/kg 2实验目的 1掌握由苯胺设计合成对硝基苯胺的原理 2、掌握邻硝基苯胺和对硝基苯胺的分离方法 3、学会对有毒药品的操作和处理 3反应中各步化合物的物理性质 化合物名称分子量性状熔点℃沸点℃溶解度水乙醇乙醚 苯胺93.12 无色油状液体-6.3 184 微溶溶溶 乙酸酐 102.09 无色透明液体-73.1 138.6 微溶溶溶

乙酰苯胺135.16 斜方晶体133.4 305 微溶于冷水,溶于热水溶溶 对硝基乙酰苯胺180.16 无色晶体100 215.6 微溶于冷水,易溶于沸水溶溶 邻硝基乙酰苯胺180.16 淡黄色片状94 100 微溶于冷水,易溶于沸水溶溶 对硝基苯胺138.12 淡黄色针状148.5 331.7 微溶于冷水,易溶于沸水溶溶 邻硝基苯胺138.12 橙黄色针状69.7 284.5 微溶于冷水,易溶于沸水溶溶 4实验原理 先以苯胺为原料,经乙酰化合成乙酰苯胺,再经过硝化,水解得到邻硝基苯胺和对硝基苯胺的混合物,再通过蒸馏,柱层析,或水蒸气蒸馏分离即可得到对硝基苯胺 1乙酰苯胺的制备 乙酸和苯胺的反应是可逆的,且反应速率较慢,可采用乙酸过量的方法和利用分馏柱将反应中生成的水蒸除,使平衡向水生成的方向移动而提高乙酰苯胺的产率 2、硝化反应

聚苯胺的制备

聚苯胺的制备 黄鹏PB10206252 中国科学技术大学高分子科学与工程系 230026 【摘要】 使用过硫酸铵作为氧化剂,在酸性条件下用化学氧化聚合的方法合成了聚苯胺。合成之后用2mol/L 的盐酸对合成的聚苯胺进行了参杂,以使其具有较好的导电性。随后聚苯胺放在培养皿中拿到烘箱中烘干。通过实验得到的关于氧化聚合和导电性高分子材料的进一步认识。 【关键词】聚苯胺导电高分子质子酸掺杂 【前言】 聚苯胺是一种典型的导电性聚合物,具有优良的环境稳定性和高导电性,且原料便宜,易于合成,因此成为具有商业应用前景的导电聚合物之一。目前,聚苯胺的应用在二次电池、半导体器件和隐身材料等。i从 DeBerry W.发现聚苯胺对铁基金属具有保护作用以来,目前,大量实验结果证明了聚苯胺涂料对铁基金属具有起阳极保护作用的防护能力。目前,开发聚苯胺防腐涂料已成为高分子导电材料的应用和涂料研究开发领域的一个新的热点。ii 聚苯胺的结构如下图所示: 通常聚苯胺是其多样化结构的总称。与其他聚合物相比,聚苯胺具有: 1)结构多样化,实验发现不同的氧化-还原态的聚苯胺对应于不同的结构, 其颜色和导电率也相应发生变化;2)特殊的参杂机制,它是通过质子酸参 杂而导电的,参杂过程中聚苯胺链上的电子数目没有变化,聚苯胺的这种 性能使得它在防腐材料开发方面显示出极大的应用前景。 聚苯胺的聚合过程是一个氧化偶联的过程,其机理为一个链式聚合的机理。。引发过程是一个苯胺分子失去两个电子和一个质子形成一个nitrenium的过程。生成的 nitrenium随即进攻一个苯胺分子的对为氢。链增长过程与引发过程相似,也是首先端头的伯胺被氧化,随后生成的nitrenium进攻苯胺分子的对位氢进行亲电取代。

相关主题
文本预览
相关文档 最新文档