当前位置:文档之家› 根据synchro的干线协调控制及优化

根据synchro的干线协调控制及优化

根据synchro的干线协调控制及优化
根据synchro的干线协调控制及优化

基于synchro的干线协调控制及优化

1概述

1.1研究背景

不同等级城市道路组成的交叉口在功能、类型和信号控制等方面都有不同的设置。本报告中研究的内容为南北方向未央路与东西方向凤城二路、凤城三路、凤城四路凤城五路的协调控制,其中,未央路为干线。

1.2 研究过程

研究过程主要分为以下部分:

(1)对未央路-凤城二路交叉口及未央路-凤城五路交通流量调查;

(2)根据调查的流量对未央路-凤城三路交叉口及未央路-凤城四路交叉口交通流量配平;

(3)用Synchro对配平数据进行检验;

(4)用Synchro对干线协调控制进行优化;

(5)比较干线协调控制定时信号控制和感应信号控制两个方案;

(6)得出结论,给出意见。

2现状调查与分析

2.1现状调查

2.1.1交通量调查

对干线中未央路-凤城五路交叉口、未央路-凤城二路交叉口的车道数、车道宽度、交通流量进行调查。具体见表2-1、表2-2和图2-1。

表2-1 交叉口断面基础数据调查

表2-2 交叉口断面基础数据调查

图2-1 交叉口分布

2.1.2断面形式调查

未央路为双向八车道,设有左转车道,凤城二路为双向八车道,设左转车道,凤城三路、凤城四路、凤城五路均为双向四车道,不设置专左或者专右车道。

3synchro应用

3.1synchro简介

Synchro软件是一套完整的城市路网信号配时分析与优化的仿真软件;与“道路通行能力手册(HCM2000)”完全兼容,可与“道路通行能力分析软件(HCS)”及“车流仿真软件(SimTraffic)”相互衔接来整合使用,并且具备与传统交通仿真软件CORSIM,TRANSYT-7F等的接口,它生成的优化信号配时方案可以直接输入到Vissim软件中进行微观仿真。Synchro软件既具有直观的图形显示,又具

有较强的计算能力,能很好地满足信号配时评价的各项要求,其仿真结果对交通管理者具有极高的参考价值,是一套易学易用、能与交通管理与控制的专业知识密切结合的有效分析工具。

Synchro软件以城市道路信号系统作为分析对象,具备通行能力分析仿真,协调控制仿真,自适应信号控制仿真等功能,包括:

(1)单一交叉口/干道/区域交通系统的通行能力分析

(2)单一交叉口/干道/区域交通系统的现状服务水平分析

(3)单一交叉口/干道/区域交通系统的现状信号运作绩效评估

(4)单一交叉口的信号配时设计

(5)干道/区域交通系统的信号协调控制系统设计

Synchro软件同时结合了道路通行能力分析、服务水平评估及信号配时设计等多项功能,且可同时适用于市区独立交叉口(十字形或T形、Y形)、干道系统与区域交通系统等多种道路几何类型。此外,Synchro在从事信号配时设计时,其配时优化目标的设定,除可沿用传统独立交叉口配时设计中所常用的最小化平均延误外,还加入了干道续进绿波带宽最大化的信号协调控制目标,同时还兼顾到交叉口相位设计的需要。

在实际操作中,Synchro除可提供方便的窗口编辑人机接口(图1)外,还可与实时车流仿真软件SimTraffic相互结合,来模拟路口交通流状况;同时,Synchro可将所构建完成的路网几何数据转换成可与传统模拟模式CORSIM、区域路网配时设计模式TRANSYT、道路通行能力分析模式HCS以及微观仿真软件Vissim等常用交通工程分析软件来相互转换使用文档,以利用户针对各种建议方案进行客观性的整合分析与应用。

3.2 synchro操作流程

3.2.1基本建模流程

Synchro软件内包括了HCM2000和HCM2010两版的评价标准,可以直接对交叉口数据进行评价,不需要用户建立模型。对synchro软件而言,建模主要是指单个交叉口、路段、路网的道路线型绘制和基本信息的输入,即基础信息建模。流程图详见图3-1。

图3-1 Synchro基本建模流程图

使用Synchro软件进行基础信息建模时,首先需要构建路网,进行路网编辑。路网编辑的方法有两种:手绘路网图和导入底图文件。需要注意的是,在导入底图文件时,Synchro只能导入格式为bmp、jpg、dxf等的底图,无法识别其他格式的底图文件。之后,在路网窗口中绘制相对应的,细化交叉口基础信息,设置交叉口进口道的车道信息和各进口的流量信息,完成路网的基本建模。

3.2.2交通仿真流程

Synchro软件可以对单个交叉口和线性路段、路网进行仿真,其仿真流程基本类似,这里对Synchro软件的交叉口仿真进行详细说明,流程图详见图3-2。

图3-2 单个交叉口仿真流程图

使用Synchro软件对单个交叉口进行仿真时,首先要进行路网的基本建模,

具体见第二部分。完成基本建模后,进行交叉口配时设置和相位设置。在Synchro 软件的配时设置中,可以更改单一交叉口节点的信号控制类型(定周期控制方式、感应费协调控制、无信号交叉口、环形交叉口等)、现行周期长度、描述信息和信号配时的数据。相位设置的内容包括交叉口的相位数、黄灯时间、全红时间、相位是否可以后置、相位延长时间等。完成配时设置和相位设置后,使用SimTraffic对交叉口进行仿真,得到仿真录像。

路段和路网的信号控制实际也是对单个交叉口的控制,其仿真流程与单个交叉口类似。

3.2.3交通系统的评价流程

与Synchro的交通仿真流程类似,Synchro软件可以对单个交叉口和路段、路网进行交通系统评价,其评价流程基本类似,这里详细说明Synchro软件的交叉口评价流程,流程图详见图3-3。

图3-3 单个交叉口交通评价流程图

使用Synchro软件对单个交叉口进行评价时,与单个交叉口仿真的流程非常

类似。交叉口的基础信息的导入和设置方法完全相同。在进行交叉口配时和相位设置时需要注意,这里设置的都是现状的交叉口信息。现状信息设置完成后可以得到现状的延误和v/c比。之后,需要对现状配时和相位进行优化,优化过后得到交叉口优化后的延误和v/c比。最后,通过文件中的“create report”创建交叉口的评价报告。

路段和路网的交通评价仿真流程与单个交叉口类似。在对路段和路网进行评价时,是对路网中每个交叉口分别评价,得到每个路口的评价信息。

4干线控制分析

4.1建模流程

4.1.1导入底图

将中官西路—东昌路交叉口的电子地图存为JPG、JPEG、BMP、DXF、SHP 等格式,保存在底图文件夹下,作为背景底图使用;

打开Synchro软件,新建文件,按照File→Select Backgrounds→Add Files,在底图文件夹中选择底图,选中并打开,并设置比例,如图4-1。

图4-1 导入底图

4.1.2路网编辑

点击Add Link按钮(或A+Mouse Click),在底图上构建实际路网。当需要描绘曲线时,可以用鼠标右键点击一个直线路段并选择添加曲率,曲线路段上会出现两个作为控制点的直角尺,点击并拖动一个控制点可调整曲线形状。

编辑路网时,软件并没有直接添加路口的命令。当插入一个与现有路段相交的新路段时,系统会自动创建路口,同时不能使用曲线路段创建路口,可以用直线路段创建路口后,再进行曲率调整。

需要删除已描绘的路段,可以点击Delete Link按钮;需要移动路口或外部节点,可以点击Move Node按钮(或M+Mouse Click);需要删除交叉口,可以点击Delete Node按钮。

路网如图4-2所示。

图4-2 路网结构图

4.1.3车道设置

点击Lane Settings按钮(F3),可以在表格中输入道路名称、车道以及几何形状等信息。例如:

(1)车道和共有(Lanes and Sharing)

在车道和共有的下拉列表中可以选择不同的车流箭头,也可以设定车道和下拉列表中任何共有转向车流的编号。

(2)储车长度(Storage Length)

储车长度是用英尺(米)为单位的转向车道长度。对于两个或以上数量的储车道,输入平均长度而不要输入长度总和。储车长度数据用于分析潜在交通拥塞

问题,如直行交通流阻塞左转交通流和左转交通流阻塞直行交通流。

(3)右转渠化(Right Turn Channelized)

右转渠化分为无、转换、自由、停车和信号。

4.1.4流量设置

点击V olume Settings按钮(F4),输入各进口道各流向的流量数据。例

如:

(1)交通流量(Traffic V olumes)

在交通流量中,以车/每小时为单位输入每个车流的交通流量值。

(2)高峰小时系数(Peak Hour Factor)

在HCM2000中建议:在没有适用的高峰小时系数计算方法的情况下,可使

用近似值代替。当交通处于拥塞时,PHF近似去0.92;当高峰小时中交通流为均

衡时,PHF近似取0.88.

(3)重型车辆(Heavy Vehicles)

在流量设置中的重型车辆百分数代表每一交通流中卡车和公交车的比例。当

在车道设置中增加重型车辆百分数值时,饱和流率会降低。

因为只调查了两个交叉口,所以需要对未央路-凤城三路交叉口及未央路-凤

城四路交叉口进行配平。

配平结果如表4-1所示。

东进口西进口北进口南进口左转直行右转左转直行右转左转直行右转左转直行右转凤城四路100 280 420 172 50 289 144 1585 300 174 1516 228 凤城三路50 108 196 208 60 127 100 1852 180 200 1708 200

表4-1交通量配平数据

图4-3 车道、流量设置对话框

4.1.5信号配时设置

点击Timing Settings按钮(F5),出现如图2-6对话框。

窗口左侧是节点设置,可以对节点数量、区域名称、路口坐标、信号配时数据等进行数据更新。

窗口右侧是信号配时设置,可以显示所有车辆的行驶情况,每辆车的行驶均可以有多个相位。同时,最右侧为行人相位和锁定相位。

窗口底部是信号相位配时图,表示当前信号配时情况,可拖动“红”、“绿”信号之间的竖线来调整绿信比,调整过程中,窗口的参数(如总绿信比、交叉口延误、服务水平等)将发生变化。

图4-4信号配时设置

4.1.6信号配时优化

对交叉口进行定时信号控制和感应信号控制,并优化信号配时。选择optimize→network cycle lengths...,得出如图4-5对话框,进行优化配置。其中,定时信号控制周期时长为120s,感应信号控制周期时长为90s。

图4-5干线信号优化

图4-6干线定时信号控制

4.2控制评价

4.2.1生成评价文件

通过选择菜单File→Create Reports命令按钮,选择Select Reports命令窗口,在该窗口中选择需要报告的内容,同时在Option中选择需要包括在其中的数据,然后可以预览或打印。

图4-7定时信号控制评价文件

图4-8感应信号控制评价文件

4.2.2评价

定时信号控制和感应信号控制方案比较:

(1)定时信号控制(周期时长120s):

总延误(hr):38.1;速度延误:38hr;总停车次数:2619;平均速度27kph;油耗247.1L,碳氢化合物排放:752g;一氧化碳22076g;氮氧化物2486g。

其中:凤城五路最大V/C:1.46;信号灯延误143.3;服务水平F。

凤城四路最大V/C:0.98;信号灯延误25.9;服务水平C。

凤城三路最大V/C:0.88;信号灯延误19.2;服务水平B。

凤城二路最大V/C:0.92;信号灯延误35.7;服务水平D。

(2)感应信号控制(周期时长90s):

总延误(hr):37.4;速度延误:37.2hr;总停车次数:3072;平均速度28kph;油耗248.7L,碳氢化合物排放:762g;一氧化碳22576g;氮氧化物2532g。

其中:凤城五路最大V/C:1.51;信号灯延误141.1;服务水平F。

凤城四路最大V/C:1.01;信号灯延误23.3;服务水平C。

凤城三路最大V/C:0.89;信号灯延误18;服务水平B。

凤城二路最大V/C:0.98;信号灯延误35.0;服务水平D。

综上所述,定时信号控制和感应信号控制均不能改变道路的服务水平,但是相对而言感应信号控制略优于定时信号控制。

火力发电厂协调控制系统的分析

大型火电厂锅炉-汽轮机组协调控制系统的分析 上海发电设备成套设计研究所杨景祺 目前我国火电站领域的技术具有快速的发展,单元机组的容量已从300MW 发展到600MW,外高桥电厂单元机组容量已达到900MW。DCS系统在火电站的成功应用,大大提高了电站控制领域的自动化投入水平。本文主要对大型火电机组的两种主要炉型—汽包炉和直流炉机组的协调控制系统的设计机理进行概要性的说明。 1.协调控制系统的功能和主要含义 协调控制系统是我国在80年代引进的火电站控制理念,主要设计思想是将锅炉和汽机作为一个整体,完成对机组负荷、锅炉主汽压力的控制,达到锅炉风、水、煤的协调动作。对于协调控制系统而言包含三层含义:机组与电网需求的协调、锅炉汽轮机协调以及锅炉风、水、煤子系统的协调。 1.1.机组与电网需求的协调 机组与电网需求的协调主要是机组最快的响应电网负荷的要求,包括了电网AGC控制和电网一次调频控制两个方面。目前华东电网已实现了电网调度对电厂机组的负荷调度和一次调频控制。 1.2.锅炉汽轮机的协调 锅炉汽轮机的协调被认为是机组的协调,主要是协调控制锅炉与汽轮机,提高机组对电网负荷调度的响应性和机组运行的稳定性。从协调控制系统而言,对汽包锅炉和直流锅炉都具有相同的控制概念,但由于两种炉型在汽水循环上有很大的差别,导致控制系统具有很大的差别。 1.3.锅炉协调 锅炉协调主要考虑锅炉风、水、煤之间的协调。 2.汽包锅炉机组的协调控制系统 汽轮机、锅炉协调控制系统概念的引出,主要在于汽轮机和锅炉对于机组的负荷与压力具有完全不同的控制特性,汽轮机以控制调门开度实现对压力、负荷的调节,具有很快的调节特性,而锅炉利用燃料的燃烧产生的热量使给水流量变为蒸汽,其控制燃料的过程取决于磨煤机、给煤机、风机

单元机组协调控制系统设计

单元机组协调控制系统设计 摘要 在单元制机组的不断发展,协调控制系统作为单元制机组的控制核心,已然成为电厂自动化系统中最为关键的组成单元。随着机组类型的不同,各个机组的参数也越来越高,容量也在逐渐增进,机组的动态特征和控制难度也随机组型号的不同而改动,因此不同机组的协调控制系统也是不同的。所以在设计协调控制系统时,应该综合考虑所研究机组的动态特征和生产流程,针对不同类型机组的进行相应的方略。在火电厂现场中,单元机组协调控制系统是一个具有强耦合、大时滞、大迟延、非线性等特征的一个多变量系统。所以,这些复杂的动态特征,使得创建单元机组的非线性动态模型成为一个难点,而且使协调控制及其参数整定变得复杂起来,往往使调节品质下降,不能得到令人中意的控制品质。 本文首先阐述了单元机组协调控制系统的结构和功能,并对机组的动态特征和负荷指令管理系统进行了描述。然后以一个300MW机组为研究对象,由分析得出该机组的模型结构,再对辨识出的协调系统的对象进行静态解耦控制,用工程正定法对解耦控制器参数进行整定,并用Matlab软件做了系统仿真。仿真结果表明,解耦后的协调控制系统可以达到令人满意的控制品质和效果。 关键词:协调控制;解耦控制;Matlab仿真;PID整定;300MW机组

Design of Coordinated Control System for Unit Abstract In the continuous development of unit system, coordinated control system as a unit system control core, has become the power plant automation system, the most critical component. With the different types of units, the parameters of each unit are getting higher and higher, the capacity is gradually increasing, the dynamic characteristics of the unit and the difficulty of control are also different types of change, so different units of the coordinated control system is different. Therefore, in the design of coordinated control system, should consider the selected units of the dynamic characteristics and process, for different types of units for the corresponding design. In the field of thermal power plant, the unit control system is a multivariable system with strong coupling, time variability, large delay and non-linearity. Therefore, these complex dynamic characteristics make the nonlinear dynamic model of the unit unit become a difficult point, and make the coordination control and its parameter setting become complicated, and the adjustment quality is often reduced, and the satisfactory control effect can not be obtained. In this paper, the structure and function of the unit control system are described, and the dynamic characteristics and load command management system of the unit are described. Then, a 300MW unit is taken as the object of study, and the model structure of the unit is obtained. The decoupling control of the identified coordinate system is carried out. The parameters of the decoupling controller are set by engineering positive definite method. Software to do the system simulation. The simulation results show that the coordinated control system can achieve satisfactory control quality and effect. Keywords:Coordination control system;Decoupling control;Matlab simulation;PID tuning ;300MW unit

(完整版)GPS控制网的优化设计毕业设计

GPS控制网的优化设计

GPS控制网的优化设计 摘要 优化设计是最优化理论和方法在设计中的应用,力求以最低的成本、最高的效率达到最优的目标。本文通过一系列的分析,对控制网的优化方法进行分析,说明可行性。 为了解决控制网优化设计问题,本论文分两大部分,GPS网的优化设计和GPS网的精度和可靠性,在 GPS网形设计中,首先根据工程的特点和GPS网设计规范的要求,大致确定网的规模,用图论和树的有关算法推导出GPS网形中点、边、异步环之间的关系,然后给出一种生成网形的算法,自动生成初步网形,并用模拟法在顾及精度和可靠性准则下对初步网形进行优化设计,确定最终网形,并按最小路径方法生成观测方案。 关键词: GPS控制网,优化设计,精度,可靠性 OPTIMIZING DESIGNING OF CONTROL NETWORK

ABSTRACT The optimization design is a application of the most optimizative theory and method in the design. It is design of GPS control network’s methods by a series of analysis. This paper consists of two parts: Optimizing designing of GPS control network and the Precision and Reliability of GPS network. When designing a GPS control network ,its scale should be predicted as the project requested and the GPS surveying standard disciplined. According to the relationship among GPS points , edges and nonsynchronous loops, we can use an algorithm of Graphic Theory to produce a network when given the number of points and the maximum edges of each nonsynchronous loop, after being modified by using simulate optimizing method we can draw the ultimate network, then the observation plan can be gained by using the best way algorithm. KEYWORDS:gps control network, optimizing designing, precision, reliability

交通信号控制优化服务解决方案

交通信号控制优化服务解决方案 1概述 交通信号控制优化服务是借助专业团队对交通信号控制方面进行挖掘,以更加有效地缓解目前由于机动车数量过快增长而造成路网交通运行压力增大,道路硬件资源增长严重失衡这一问题。具体服务内容包括: ?对交通信号控制理论及相关技术进行总结,规范信号优化工作流程,落实责任,建立统一化与个性化相结合的交通信号管理模式,保证交通信号合理运行,满足各种条件下道路交通参与者的通行需要。 ?通过对相关路口进行周期性调查,及时发现存在不足并予以改善、跟踪,从而不断提高其运行水平。 ?通过路口排查和调研,对有条件进行协调控制的路口设计协调控制方案,降低协调控制路口的行车延误,提高交叉口服务能力。 ?以周报、月报和专项分析报告总结归纳工作开展情况及完成效果,有计划性的回检评价历史优化路口,提炼可取之处及考虑不周的地方,对未来将有可能发生变化的交叉口或路段有一定预测性。 2服务内容 2.1交通信号管理基础工作 (1)交通信号控制理论及相关技术总结 交通信号控制理论及相关技术的总结包括对交通信号控制相关理论的总结和对现今主流信号控制模式及方法的总结2部分内容。 ?对交通信号控制相关理论的总结 包括对信号控制涉及的相关参数的总结、对通过能力的总结及对信号路口对车流停滞作用的总结3部分内容。 ?对现今主流信号控制模式及方法的总结 包括对单点信号控制模式与方法的总结、对交通信号子区划分的模式与方法的总结、对主干道交通信号协调控制模式与方法的总结、对同类型交通信号路口协调控制模式与方法的总结、对长距离交通信号协调控制模式与方法的总结以及

对区域协调控制模式与方法的总结六大类涵盖点、线、面三个层次的信号控制与协调方法的相关技术理论的总结。 在对交通信号控制相关理论的总结基础上,根据各地市信号路口特点,重点对适用该地信号控制特点的信号控制模式及方法进行总结。 ?单点信号控制 主要包括单点定时信号控制、单点感应信号控制和单点自适应信号控制三种方式。针对信号控制路口常用的单点信号控制方法有Webster等方法。 ?交通信号子区划分 主要基于距离原则、车流特征原则、周期原则的子区划分原则及其相关的关联度判断方法、合理周期范围判断方法的划分方法总结。 ?主干道交通信号协调控制 主要包括单向绿波协调控制、对称双向绿波协调控制、非对称双向绿波协调控制的方法。针对不同地市信号控制路口不同的流量特征可选用相对应的主干道信号协调控制方法。 ?同类型交通信号路口协调控制 主要针对信号路口饱和度同类型及其基础上的潮汐特征同类型进行交通信号路口同类型的判定分析,归纳与其相对应的信号控制适用方法。 ?长距离交通信号协调 主要对相邻路口间距离较长的信号路口及交通信号路口数较多的整体距离较长的协调控制方法进行研究,针对长距离交通信号协调的分类归纳相对应的协调模式及方法。 ?区域协调控制 交通区域协调控制是二维上的控制,它通过将绿波协调控制的路口利用组合叠加的方式,对各信号控制路口的信号周期、绿信比以及路口间的相位差进行优化,以减小延误、提高路网通行效率的信号控制方法。当前交通信号区域协调控制的方法主要可以分为结合调控的协调方法、基于延误的协调方法和基于绿波带优化的协调方法。 通过全面深入的了解信号控制的基础理论及信号控制主流模式及技术方法,掌握前沿技术,归纳出适用性强的主流核心技术规范,为交通信号控制优化提供

燃烧控制系统的设计

目录 一绪论...................................................................................................................................... 二燃烧控制系统的设计 2.1燃烧过程控制任务 2.2燃烧过程调节量 2.3燃烧过程控制特点 三燃料控制系统 ........................................................................................................................ 3.1燃料调节系统...................................................................................................................... 3.2燃料调节——测量系统...................................................................................................... 3.3给煤机指令.......................................................................................................................... 四600MW火电机组DCS系统设计 4.1 电源部分 4.2 通信部分 4.3 系统接地 4.4 软件部分 五结论................................................................................................................................... 参考文献...................................................................................................................................

连续系统的最优控制

第6章 连续系统的最优控制 6.1 最优化问题 6.2 最优控制的变分法求解 6.3 线性系统二次型性能指标的最优控制 1、线性系统有限时间最优状态调节系统 ◆二次型性能指标 设受控系统对平衡点的增量方程为 ()()()()()x t A t x t B t u t ?=?+?,00()x t x ?=? 简记为 ()()()()()x t A t x t B t u t =+,00()x t x = 最优状态调节是指:对上述系统,在时间区间0[,]f t t t ∈,

寻求最优状态反馈控制,使初始状态偏差00()x t x =迅速衰减,且同时使二次型性能泛函 11()()[()()()()]d 22f t t t t f f f x u t J x t Q x t x t Q x t u t Q u t t =++? * min f x u J J J J J =++→= 式中 ()0f n n Q ?≥——终端加权矩阵。 ()0x n n Q ?≥——状态加权矩阵。 ()0u r r Q ?>——控制加权矩阵。 三个加权矩阵均为对称矩阵,为简单,一般取为对角矩 阵。 ●1()()2 t f f f f J x t Q x t =表示对终端状态偏差即稳态控制精度的限制。当1 diag[]f f fn Q q q =,2 1 1()2n f fi i f i J q x t ==∑

●0 1()()d 2f t t x x t J x t Q x t t =?表示对控制过程中状态偏差衰减速度的要求。当1 diag[]x x xn Q q q =,0 2 11()d 2f t n x xi i i t J q x t t ==∑? ●0 1()()d 2f t t u u t J u t Q u t t =?表示对控制过程中所消耗的能量的限制,以避免状态偏差过快衰减导致控制量超过允许数值。当 1 diag[]u u ur Q q q =,0 2 11()d 2f t r u ui i i t J q u t t ==∑?,2()i u t 可理解为功率。 实际上,在性能指标中,x J 已经对控制的稳态精度有所要求。当对稳态精度有更高的要求时,才增加f J 项。 由上可知,上述二次型性能指标的物理意义是,在整个时间区间0[,]f t t t ∈,特别是终值时刻f t t =上状态变量尽量接近于0

600MW机组协调控制系统优化-5页文档资料

600MW机组协调控制系统优化 1 机组概况 河北国华沧东发电有限责任公司一期工程为两台600MW亚临界燃煤发电机组。汽机岛由上海汽轮机厂供货,锅炉岛由上海锅炉厂供货。 2 协调控制系统控制原理 协调控制的设计方案是以锅炉跟随为基础的协调控制系统,原设计机组采用定-滑-定运行方式,从0到27%为定压方式运行,27%到77%负荷区间为滑压运行方式,77%以上为定压运行方式。 锅炉主控输出指令由以下几个部分组成:1)机组负荷指令给定值信号;2)机组负荷指令给定值的微分信号;3)机组负荷指令目标值的微分信号;4)机组滑压设定值的微分信号;5)频差信号;6)压力设定值与实际值偏差的微分信号;7)锅炉主汽压力PID调节器输出信号。 其中,机组负荷指令给定值信号为锅炉主控制器的主前馈信号,其他微分前馈用于在机组负荷升降过程中提高锅炉主控制器的响应速度,压力设定值与实际值偏差的微分信号用于在主汽压力与设定值偏差过大时快速动作锅炉主控制器帮助调节主汽压力。 在机组负荷指令变化的初期汽机侧调门是基本不变的,因为送到汽机控制器的机组负荷指令要经过一个四阶滞后,延时时间t为锅炉产生蒸汽时间的0.2倍。经过四阶惯性环节延迟后的负荷指令还要加上压力拉回回路计算的结果,再与实际负荷值进行偏差运行,偏差值经PID回路计算后做为汽机主控的输出送往DEH控制系统控制阀门开度。汽机主控输出指令由以下几个部分组成:1)机组负荷指令给定值经过四阶惯性延迟;2)锅

炉主控送来的机组负荷指令给定值的一阶微分信号;3)频差信号;4)主汽压力偏差信号即压力拉回回路;5)实际负荷值。 以上信号1-4相加后同实际负荷求偏差送入汽机主控PID调节器,PID 调节器的输出来控制汽轮机调速汽门的开度。压力拉回回路就是计算设定压力与实际压力的偏差,当偏差值超过规定值后(原设计为±1.8%),就将这个偏差值经过处理放大后叠加到负荷命令回路中。举例来说,当升负荷时,根据滑压曲线首先要增大压力设定值,如果在升负荷过程中,实际压力比设定压力低出太多,超过规定值,就会产生一个负数加到负荷命令上,从而减小负荷命令,减小调门开度,以便于增大实际压力,当实际压力与设定压力偏差小于规定值时,该值输出为0。降负荷时也起到同样道理,因为该回路具有将压力拉回作用,因此称之为压力拉回回路。一次调频功能就是当电网频率低于或高于某个限值时,不通过协调控制回路产生命令,直接将信号作用到汽机控制器负荷调节回路,使机组负荷迅速变化以响应电网需要。 3 存在问题 #1、#2机组协调控制系统在2007年机组投入商业运营后基本能满足现场生产的需要,但是在负荷升降和遇到机组吹灰或燃料等扰动的情况下,主汽压力、温度的摆动幅度过大,导致汽包水位剧烈波动。同时快速负荷变化能力差,负荷命令变化后机组实际负荷响应慢,达不到调度中心对投运AGC机组的要求。 AGC投入合格标准:1)AGC机组负荷调节速率(MW/分钟)不小于机组额定出力的1.5%;2)机组投入AGC控制时,出力调整迟延时间应小于

协调控制系统(CCS)调试方案

ITEM NO.: BALCO-COMM-IP008 Complied by: 编写: Checked by: 初审: Revised by: 审核: Approved by: 批准:

目录 Contents 1.编制目的 Compile Purpose 2.调试范围 Scope of commissioning 3.调试前必须具备的条件 Conditions of commissioning 4.调试步骤 Process of commissioning 5.注意事项 Precautions

1.编制目的Compile Purpose 为了指导和规范系统及设备的调试工作,检验系统的性能,发现并消除可 能存在的缺陷,检查热工联锁、保护和信号装置,确保其动作可靠。使系统及设 备能够安全正常投入运行,制定本方案。 This commissioning procedure is compiled to guide and standardize the practice of testing and adjusting to facilitate proofing of system performance, finding and repairing of possible defects, thus ensuring that the equipment and system can be brought into operation safely and smoothly. 2.调试范围Scope of commissioning 2.1协调控制系统是大型火力发电机组的主要控制系统,它将锅炉和汽轮发电机 作为一个整体考虑来进行控制,协调锅炉控制系统与汽轮机控制系统的工作,以 消除锅炉和汽轮机在动态特性方面的差异,使机组既能够适应电网负荷变化的需 要,又能够保证机组的安全稳定经济运行。机炉协调控制系统直接作用的控制对 象是锅炉主控制系统和汽轮机主控制系统,然后再由这两个主控系统分别控制各 自的子控制系统如锅炉燃烧控制子系统、锅炉给水控制子系统和汽轮机电液调节 子控制系统等。 As a major control system of large thermal power generating unit, coordinated control system (CCS) treats the boiler and turbine-generator as a whole, harmonizes the effect of boiler and turbine control systems, and compensates the difference in boiler and turbine-generator dynamic characteristics, thereby meeting changing demand of the Grid and also ensuring safe and economic operation of the unit. The CCS exerts influence directly upon the main control system of boiler and that of turbine, then these two systems exert influence respectively on their own subsystems such as boiler combustion control, boiler feed water, turbine digital electro-hydraulic control (DEH). 2.2 印度BALCO扩建4 x300 MW燃煤电站工程协调系统有如下几种控制方式:BALCO EXPANSION PROJECT 4×300 MW THERMAL POWER PLANT CCS has following control modes: 手动方式 Manual mode 机跟随控制方式(TF) Turbine follow control mode 炉跟随控制方式(BF) Boiler follow control mode 机炉协调控制方式 Coordinated boiler-turbine control mode

600MW机组协调控制系统设计解析

1引言 单元机组协调控制的任务是快速跟踪电网负荷的需要和保持主要运行参数的稳定。当电网负荷变动时,从汽轮机侧看,只要改变汽机调速汽门的开度,就能迅速改变进汽量,从而能立即适应负荷的需要。但锅炉即使马上调整燃料量和给水量,由于锅炉固有的惯性及迟延,不可能立即使提供给汽轮机的蒸汽量发生变化。如果汽轮机调汽门开度已改变,流入汽机的蒸汽量相应发生变化,那么此时只能利用主汽压力的改变来弥补或储蓄这个蒸汽量供需差额,此时,主汽压力将产生较大的波动。因此,提高机组负荷适应能力与保持主要参数稳定存在一定的矛盾。协调控制系统设计时将锅炉、汽轮机和发电机作为一个整体来考虑,使锅炉、汽机同时响应负荷要求,协调锅炉及其辅机与汽机的运行,以迅速、准确、稳定地响应负荷要求。 协调控制系统保证机组出力适应电网的负荷变化要求、维持机组稳定运行。具体地说就是对外保证单元机组有较快的功率响应和有一定的调频能力,对内保证主蒸汽压力偏差在允许范围内。协调控制系统是协调地控制锅炉燃料量、送风量、给水量等,以及汽机调节阀门开度,使机组既能适应电网负荷指令的要求,又能保持单元机组在额定参数下安全、经济地运行。单元机组协调控制系统可认为是一种二级递阶控制系统。处于上位级的机炉协调级,也叫作单元机组主控系统,是整个系统的核心部分。处于局部控制级的子系统包括锅炉以及汽机子控制系统。

2 协调控制系统任务与作用 2.1 协调控制系统 协调控制系统作用:保证机组出力适应电网的负荷变化要求、维持机组稳定运行。具体地说就是对外保证单元机组有较快的功率响应和有一定的调频能力,对内保证主蒸汽压力偏差在允许范围内。 协调控制系统任务:是协调地控制锅炉燃料量、送风量、给水量等,以及汽机调节阀门开度,使机组既能适应电网负荷指令的要求,又能保持单元机组在额定参数下安全、经济地运行 在单元机组中,锅炉和汽轮机是两个相对独立的设备,从机组负荷控制角度来看,单元机组是一个存在相互关联的多变量控制对象,经适当假设可以看作是一个具有的两个输入和两个输出的互相关联的被控对象,其方框图如图2.1所示。 图2.1 单元机组负荷控制对象原理方框图 μT- 通汽阀开度μB- 燃烧率水平NE-实发功率PT-主蒸汽压力 单元机组协调控制系统可认为是一种二级递阶控制系统。处于上位级的机炉协调级,也叫作单元机组主控系统,是整个系统的核心部分。处于局部控制级的子系统包括锅炉以及汽机子控制系统。子控制系统作用于负荷被控对象,如图2.2所示。 图2.2 单元机组协调控制系统简图

基于synchro的干线协调控制及优化

基于synchro的干线协调控制及优化 1概述 1.1研究背景 不同等级城市道路组成的交叉口在功能、类型和信号控制等方面都有不同的设置。本报告中研究的内容为南北方向未央路与东西方向凤城二路、凤城三路、凤城四路凤城五路的协调控制,其中,未央路为干线。 1?2研究过程 研究过程主要分为以下部分: (1)对未央路-凤城二路交叉口及未央路-凤城五路交通流量调查; (2)根据调查的流量对未央路-凤城三路交叉口及未央路-凤城四路交叉口交通流量配平; (3)用Synchro对配平数据进行检验; (4)用Synchro对干线协调控制进行优化; (5)比较干线协调控制定时信号控制和感应信号控制两个方案; (6)得出结论,给出意见。 2现状调查与分析 2.1现状调查 2.1.1交通量调查 对干线中未央路-凤城五路交叉口、未央路-凤城二路交叉口的车道数、车道宽度、交通流量进行调查。具体见表2-1、表2-2和图2-1。 未央路凤城二路 进口机动车(pcu) 左直右总量 南进口22416082002112 北进口12412921S41600 西进口2161006409前 东进口200216168504 表2-1交叉口断面基础数据调查

未央路--- 凤城五路 进口机动车(pen) 左直右总量 南进口174103822S1440 北进口14414403901974 西进口216100640956 东进口2045526641420 表2-2交叉口断面基础数据调查 图2-1交叉口分布 2.1.2断面形式调查 未央路为双向八车道,设有左转车道,凤城二路为双向八车道,设左转车道,凤城三路、凤城四路、凤城五路均为双向四车道,不设置专左或者专右车道。 3synchro 应用 3. “synchro 简介 Sy nchro软件是一套完整的城市路网信号配时分析与优化的仿真软件;与“道路通行能力手册(HCM2000) ”完全兼容,可与“道路通行能力分析软件(HCS)” 及“车流仿真软件(SimTraffic)”相互衔接来整合使用,并且具备与传统交通仿真软件CORSIM,TRANSYT-7F等的接口,它生成的优化信号配时方案可以直接输入到Vissim软件中进行微观仿真。Synchro软件既具有直观的图形显示,又具有较强的计算

第7章 单元机组协调控制系统(高8万字)

第七章单元机组协调控制系统 第一节协调控制系统的基本概念 随着电力工业的发展,高参数、大容量的火力发电机组在电网中所占的比例越来越大。大容量机组的汽轮发电机和锅炉都是采用单元制运行方式。所谓单元制就是由一台汽轮发电机组和一台锅炉所组成的相对独立的系统。单元制运行方式和以往的母管制运行方式相比,机组的热力系统得到了简化,而且使蒸汽经过中间再热处理成为可能,从而提高了机组的热效率。 一、单元机组负荷控制的特点 随着大容量机组在电网中的比例不断增大,以及因电网用电结构变化引起的负荷峰谷差逐步加大,大容量单元机组的运行方式也逐步发生了变化,过去常常只带固定负荷的大机组,现在也需求根据电网中心调度所的负荷需求指令和电网的频率偏差参和电网的调峰、调频,甚至在机组的某些主要辅机局部故障的情况下,仍然维持机组的运行。 在单元制运行方式中,锅炉和汽轮发电机既要共同保障外部负荷要求,也要共同维持内部运行参数(主要是主蒸汽压力)稳定。单元机组输出的实际电功率和负荷要求是否一致,反映了机组和外部电网之间能量的供求平衡关系;而主蒸汽压力则反映了机组内部锅炉和汽轮发电机之间能量的供求平衡关系。然而,锅炉和汽轮发电机的动态特性存在着很大差异,即汽轮发电机对负荷请求响应快,锅炉对负荷请求的响应慢,所以单元机组内外两个能量供求平衡关系相互间受到制约,外部负荷响应性能和内部运行参数稳定性之间存在着固有的矛盾,这是单元机组负荷控制中的一个最为主要的特点。 二、协调控制系统及其任务 单元机组的协调控制系统(Coordinated Control Systen简称CCS)是根据单元机组的负荷控制特点,为解决负荷控制中的内外两个能量供求平衡关系而提出来的一种控制系统。从广义上讲,这是单元机组的负荷控制系统。它把锅炉和汽轮发电机作为一个整体进行综合控制,使其同时按照电网负荷需求指令和内部主要运行参数的偏差要求协调运行,即保证单元机组对外具有较快的功率响应和一定的调频能力,对内维持主蒸汽压力偏差在

协调控制系统

单元机组的特点和任务 (1)单元制机组是一个相互关联的多变量控制对象,锅炉和汽轮发电机是一个不可分割的整体 (2)锅炉和汽轮发电机的动态特性存在较大的差异. (3)具有参加电网一次调频的能力. 协调控制系统作用 保证机组出力适应电网的负荷变化要求、维持机组稳定运行.具体地说就是对外保证单元机组有较快的功率响应和有一定的调频能力,对内保证主蒸汽压力偏差在允许范围内. 协调控制系统任务 是协调地控制锅炉燃料量、送风量、给水量等,以及汽机调节阀门开度,使机组既能适应电网负荷指令的要求,又能保持单元机组在额定参数下安全、经济地运行. 定压运行方式 是指无论机组负荷怎样变动,始终维持主蒸汽压力以及主蒸汽温度为额定值,通过改变汽轮机调节气门的开度,改变机组的输出功率。 滑压运行方式 则是始终保持汽轮机调节气门全开,在维持主蒸汽温度恒定的同时,通过改变主蒸汽压力改变机组的输出功率。 联合运行方式特性曲线 1 调峰:用电量多时多发电,用电量少时少发电。 a采用纯液压控制系统时(有自平衡能力)b采用功频电液控制系统时(无自平衡能力) μT不变μB不变PT机主控指令不变PB炉主控制指令不变 输入量-μT汽轮机调节阀开度(外扰)、μB锅炉燃料量调节机构开度,锅炉燃烧率(内扰)输出量-PE单元机组的输出电功率、PT汽轮机前主蒸汽压力

协调控制系统由哪几部分组成:主控系统、子系统、负荷被控对象 单元机组负荷控制系统 1.负荷指令处理回路(LDC)的作用 对外部要求的负荷指令或目标负荷指令(电网调度分配指令ADS、运行人员手动指令,一次调频所要贡献的负荷指令)进行选择,并根据机组主辅机运行的情况加以处理,使之转变为机、炉设备负荷能力,安全运行所能接受的实际负荷指令P0。 2.机炉主控制器的作用 根据锅炉和汽轮机的运行条件和要求,选择合适的负荷控制方式,按照实际负荷指令P0与实发功率信号PE的偏差和主汽压力的偏差△p以及其它信号进行控制运算,分别产生锅炉主控制指令PB和汽轮机主控指令PT 。 外部指令:ADS ADC 内部指令:RB RD RU 大题 1.机组的负荷指令如何选择? A:电网中心调度所的负荷分配指令ADS、B:运行人员手动设定负荷指令、 C:电网频率自动调整指令。 2.机组的最大最小负荷限制如何实现? ∑2:LDC达最大∑3:LDC达最小 机组的最大负荷根据机组的实际情况来定,最小负荷通常为锅炉稳定燃烧的最小值 3.速度限制器的作用: 限制负荷变化速率 4.负荷返回(RB)负荷迫升(RU)负荷迫降(RD)负荷增闭锁(BI)负荷减闭锁(BD) 5.叙述一下负荷形成原因 (1)ADS方式下,切换开关T4动作,输出为A 当A>LDC OUT时,“LDC增”为ON,T6动作,接通K,输出K×C,机组实际负荷指令LDC OUT增长,直到A=LDC OUT为止。 当A

控制网优化设计复习题

1 GPS卫星定位的基本原理 GPS卫星定位的基本原理,就是把卫星视为“飞行”的控制点,在已知其瞬时坐标的条件下,以GPS卫星和用户接收机天线之间的距离为观测量,进行空间距离后方交会,从而确定用户接收机天线所处的位置。 2 在进行载波相位定位时,在不同观测时段,载波可以分别划分为那几个阶段 3 坐标系之间的坐标转换过程 举例:WGS—84大地坐标系至80平面直角坐标系: 方法一:先将WGS—84大地坐标系转换成WGS—84空间直角坐标系,再将WGS —84大地坐标系,利用七参数(三个平移参数,三个旋转参数,一个尺度变换参数)转变成80空间直角坐标系,在将80空间直角坐标系转换成80大地坐标系,通过高斯投影,输入相应中央子午线经度L0,将其转换成80平面直角坐标系。 方法二; 通过高斯投影,输入相应中央子午线经度L0,先将WGS—84大地坐标系转换成WGS—84平面直角坐标系,再利用四参数(两个平移参数,一个旋转参数,一个缩放参数)将WGS—84平面直角坐标系转化成80平面直角坐标系。 4 GPS网络数据处理的基本过程 设置参数,选择椭球,导入数据,数据修正,基线解算,检核基线质量,无约束平差,无约束平差质量检核,约束平差(改变坐标基准,输入控制点),质量检核,导出数据 5 GPS控制网优化设计的分类处理方法 GPS控制网优化设可以参照传统控制网优化设计进行分类处理: 零类设计:即控制网的基准设计,是对一个已知图形结构和观测方案的自由GPS 网确定最优坐标系统的优化设计。对于区域GPS网来说,主要确定控制网的投影面和投影带,一般要考虑现有坐标系统的利用及其两种坐标系统的转换。 一类设计:即控制网图形设计,是在约定网的精度和观测方案的情况下,求得最佳点位的优化设计。研究表明,尽管GPS对网形设计要求不十分严格,但是网形仍然影响着最后成果的精度。GPS网图形设计主要考虑连接方式:即边连接,点连接,重复设站比率,重测基线比率等。 二类设计:即观测方案的最佳选择。选择观测方案主要反映在选星计划,行车路线,观测时间和数据处理方法等内容。 三类设计:用GPS改造现有控制网的最优设计。主要考虑在什么地方加测GPS基线向量,加则多少。在设计时主要计算各种方案的经费、精度和可靠性。 6 GPS网络数据处理精度控制指标 一基本精度指标:各级GPS网测量精度用相邻点弦长标准差 二基线解算质量控制指标:1 基线本身限制, 2 网限制:(1)同一时段观测值的数据剔除率应小于10%。

控制网优化设计

控制网优化设计 一、GPS 卫星定位的基本原理 GPS 定位时,把卫星看成是“飞行”的已知控制点,利用测量的距离进行空间后方交会,便得到接收机的位置。卫星的瞬时坐标可以利用卫星的轨道参数计算。 二、在进行载波相位观测时,在不同观测时段,载波可以划分为哪几部分? 首次观测值0 0)(~φ?Fr = 后继量测值)()(~φφ? Fr Int += 通常表示为)()(~0 0φφ?Fr Int N N ++=+=Φ 三、坐标系之间的转换过程 四、GPS 网数据处理的基本过程 1、数据传输 2、建立坐标系统 1)打开TGO 软件,功能—Coordinate System Manager ,进入坐标系统管理器。 2)增加椭球,输入椭球名称、长半轴、扁率 3)增加基准转换(Molodensky ),创建新的基准转换组。 4)增加坐标系统组 5)选择投影方式:横轴墨卡托投影 6)文件保存退出 3 、新建项目 1)新建项目 2)选择模板(Metric 米制单位模板). 3)改变坐标系统,选择需要的坐标系统。 4、导入静态观测数据(*.dat 或RINEX)数据 1)文件/导入 2)修改测站名,天线高度,天线类型,测量方法。 5、处理Timeline 6、处理GPS 基线 7、GPS 网的无约束平差 1)平差—基准—WGS-84,进行无约束平差。 2)查看网平差报告。看迭代平差是否通过;如果不通过,选择“交替的”加权策略 3)再次进行平差,直到通过为止。 8、网的约束平差 1) 平差—基准—当地投影基准。 2)然后点击观测值,加载水准面模型,输入已知点坐标。 3)点击平差,进行网的约束平差。 9、成果输出 五、GPS 控制网优化设计的分类处理方法 零类设计:即控制网的基准设计,是对一个已知图形结构和观测方案的自由GPS 网确

单元机组协调控制系统(讲稿)

单元机组协调控制系统 概述 定义:锅炉和汽机相互配合接受外部负荷指令,共同适应电网对负荷的需求,并保 证机组本身安全运行的控制系统。 协调控制系统(CCS 是整个单元机组自动化系统的一个重要组成部分, CCS 与 FSSS DEH 等的联系如图所示:其组成如下。 手设 动 定 ADS 行政管理中心 逋 监视保护 系统 汽包水位 汽水取样 连续分析 I 示记录仪表音 亍响灯光报警 锅炉 及给水 控制 操 作 中 心 汽轮 发电机 控制 CCS PASS SSS TIS DEH MEH MARC 「级管理计算机 火焰 BTG CRT 控制室 机房

组成:主控制系统 锅炉的燃料控制系统 风量控制系统 给水控制系统和汽温控制系统汽机侧的数字功频电液控制 正常运行时,锅炉和汽机控制系统接受来自主控制系统的负荷指令。主控制系统是协调控制系统的核心部分,有时把主控制系统直接称为协调控制系统。协调控制系统的方框图如下: 主控系统 图1单元机组协调控制系统方框图 一、主控系统的组成 1、任务:(1)产生负荷控制指令 (2 )选择机组负荷控制方式 2、组成:负荷(功率)指令处理装置 机炉主控制器 二、负荷指令处理装置 (一)负荷指令运算回路 输入信号:机组值班员手动给定的负荷指令 ADS △ f 输出信号:机组负荷指令NN 负荷指令处理回路实例图 工作过程:运行人员输入T负荷率限止T上下限限止T机组负荷出力。

增减 (出力变化率限止) 图2负荷指令处理回路实例 (二) 机组最大可能出力运算回路 定义:考虑各种辅机的运行状况而计算出的机组出力。 机组最大可能出力运算回路原理图 (三) 机组的允许最大负荷运算回路 定义:考虑锅炉燃烧器等不可测故障时,使锅炉的实际出力达不到机组功率指令 N o 的要求,而设置的机组负荷运算回路,简称返航回路。 返航回路的工作过程: (1) 正常运行:N 允许=N 最大,4接通6 (2) 大于5%勺燃烧率,积分器 2的输出为机组允许最大负荷信号。运算过程示意图如 下: 运行人 员要求 负荷指 令 减 增 I I-PR-I

相关主题
文本预览
相关文档 最新文档