【必考题】中考数学试题(含答案)
一、选择题
1.如图是某个几何体的三视图,该几何体是()
A .三棱柱
B .三棱锥
C .圆柱
D .圆锥
2.已知11(1)11
A x x ÷+=-+,则A =( ) A .
2
1
x x x -+ B .
2
1
x x - C .
2
1
1
x - D .x 2﹣1
3.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )
A .7分
B .8分
C .9分
D .10分
4.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A .94
B .95分
C .95.5分
D .96分 5.下列运算正确的是( ) A .23a a a +=
B .()2
236a a =
C .623a a a ÷=
D .34a a a ?=
6.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )
A .∠2=20°
B .∠2=30°
C .∠2=45°
D .∠2=50°
7.如图,将?ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若
ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )
A .102o
B .112o
C .122o
D .92o
8.如图,已知////AB CD EF ,那么下列结论正确的是( )
A .
AD BC
DF CE
= B .
BC DF
CE AD
= C .
CD BC
EF BE
= D .
CD AD
EF AF
= 9.二次函数2
y ax bx c =++的图象如图所示,则一次函数2
4y bx b ac =+-与反比例函数a b c
y x
++=
在同一坐标系内的图象大致为( )
A .
B .
C .
D .
10.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )
A .5米
B .6米
C .8米
D .(5)米
11.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、
MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )
A.
1
2
OM AC
=B.MB MO
=C.BD AC
⊥D.AMB CND
∠=∠
12.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()
A.3B.15
4
C.5D.
15
2
二、填空题
13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:
抽取的体检表
数n
501002004005008001000120015002000色盲患者的频
数m
37132937556985105138色盲患者的频
率m/n
0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).
14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出
一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述
过程.以下是利用计算机模拟的摸球试验统计表:
摸球实验次数100100050001000050000100000
“摸出黑球”的次数36387201940091997040008
“摸出黑球”的频率
(结果保留小数点后三
0.3600.3870.4040.4010.3990.400
位)
根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).15.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.16.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.
17.计算:82
-=_______________.
18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
19.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D
恰好落在BC边上的点F处,那么cos∠EFC的值是.
20.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是三、解答题
21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:
(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.
(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.
22.2x=600
答:甲公司有600人,乙公司有500人.
点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.
23.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.
活动一
如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.
数学思考
(1)设,点到的距离.
①用含的代数式表示:的长是_________,的长是________;
②与的函数关系式是_____________,自变量的取值范围是____________.
活动二
(2)①列表:根据(1)中所求函数关系式计算并补全表格.
654 3.53 2.5210.50
00.55 1.2 1.58 1.0 2.473 4.29 5.08
②描点:根据表中数值,描出①中剩余的两个点.
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
数学思考
(3)请你结合函数的图象,写出该函数的两条性质或结论.
24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.
(1)求y与x之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
25.先化简(
3
1
a+
-a+1)÷
244
1
a a
a
-+
+
,并从0,-1,2中选一个合适的数作为a的值代
入求值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.
考点:由三视图判定几何体.
2.B
解析:B
【解析】
【分析】
由题意可知A=
11
1)
11
x x
+
+-
(,再将括号中两项通分并利用同分母分式的减法法则计算,
再用分式的乘法法则计算即可得到结果.【详解】
解:A=
11
1
11
x x
+
+-
=
1
11
x
x x
+-
g=
21
x
x-
故选B.
【点睛】
此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.3.B
解析:B
【解析】
【分析】
根据平均数的定义进行求解即可得.
【详解】
根据折线图可知该球员4节的得分分别为:12、4、10、6,
所以该球员平均每节得分=124106
4
+++
=8,
故选B.
【点睛】
本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.
4.B
解析:B
【分析】
根据中位数的定义直接求解即可.
【详解】
把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,
则该同学这6次成绩的中位数是:=95分;
故选:B.
【点睛】
此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
5.D
解析:D
【解析】
【分析】
【详解】
解:A、a+a2不能再进行计算,故错误;
B、(3a)2=9a2,故错误;
C、a6÷a2=a4,故错误;
D、a·a3=a4,正确;
故选:D.
【点睛】
本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.
6.D
解析:D
【解析】
【分析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
【详解】
∵直线EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故选D.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
7.B
解析:B
【解析】
由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1
BDF DBC DFC 202
∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果. 【详解】
AD //BC Q ,
ADB DBC ∠∠∴=,
由折叠可得ADB BDF ∠∠=, DBC BDF ∠∠∴=,
又DFC 40∠=o Q ,
DBC BDF ADB 20∠∠∠∴===o ,
又ABD 48∠=o Q ,
ABD ∴V 中,A 1802048112∠=--=o o o o ,
E A 112∠∠∴==o , 故选B . 【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.
8.A
解析:A 【解析】 【分析】
已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可. 【详解】 ∵AB ∥CD ∥EF ,
∴
AD BC
DF CE =. 故选A . 【点睛】
本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
9.D
解析:D 【解析】 【分析】
根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.
∵二次函数图象开口方向向上, ∴a >0,
∵对称轴为直线02b
x a
=->,
∴b <0,
二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,
∴2
4y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,
反比例函数a b c
y x
++=
图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】
考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.
10.A
解析:A 【解析】
试题分析:根据CD :AD=1:2,CD=3米,AD=6米,根据AB=10米,∠
D=90°可得:米,则BC=BD -CD=8-3=5米.
考点:直角三角形的勾股定理
11.A
解析:A 【解析】 【分析】
由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形
AMCN 是平行四边形. 【详解】
∵四边形ABCD 是平行四边形, ∴OA OC =,OB OD =,
∵对角线BD 上的两点M 、N 满足BM DN =, ∴OB BM OD DN -=-,即OM ON =, ∴四边形AMCN 是平行四边形,
∵1
2
OM AC =,
∴MN AC =,
∴四边形AMCN 是矩形.
【点睛】
本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.
12.C
解析:C
【解析】
【分析】
【详解】
解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,
在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,
解方程得x=5,即ED=5
故选C.
【点睛】
本题考查翻折变换(折叠问题);勾股定理;方程思想.
二、填空题
13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故
解析:07
【解析】
【分析】
随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.
【详解】
解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07
故答案为:0.07.
【点睛】
本题考查利用频率估计概率.
14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率
解析:4
【解析】
【分析】
大量重复试验下摸球的频率可以估计摸球的概率,据此求解.
【详解】
观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,
故摸到白球的频率估计值为0.4;
故答案为:0.4.
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.
15.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1
解析:-1
【解析】
试题分析:根据待定系数法可由(-2,3)代入y=k
x
,可得k=-6,然后可得反比例函数的
解析式为y=-6
x
,代入点(m,6)可得m=-1.
故答案为:-1.
16.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC
解析:6
【解析】
试题解析:∵DE是BC边上的垂直平分线,
∴BE=CE.
∵△EDC的周长为24,
∴ED+DC+EC=24,①
∵△ABC与四边形AEDC的周长之差为12,
∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,
∴BE+BD-DE=12,②
∵BE=CE,BD=DC,
∴①-②得,DE=6.
考点:线段垂直平分线的性质.
17.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键
【解析】
【分析】
.
【详解】
=.
故答案为2.
【点睛】
本题考查了二次根式的运算,正确对二次根式进行化简是关键.
18.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角
解析:3或.
【解析】
【分析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当
△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=3.
综上所述,BE的长为或3.
故答案为:或3.
19.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF
解析:.
【解析】
试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.
由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,
∴∠EFC+∠AFB=90°,∵∠B=90°,
∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,
∴cos∠EFC=,故答案为:.
考点:轴对称的性质,矩形的性质,余弦的概念.
20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-
4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式
解析:k≥,且k≠0
【解析】
试题解析:∵a=k,b=2(k+1),c=k-1,
∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,
解得:k≥-,
∵原方程是一元二次方程,
∴k≠0.
考点:根的判别式.
三、解答题
21.(1)过点C作CG⊥AB于G
在Rt△ACG中∵∠A=60°
∴sin60°=∴……………1分
在Rt△ABC中∠ACB=90°∠ABC=30°
∴AB=2 …………………………………………2分
∴………3分
(2)菱形………………………………………4分
∵D是AB的中点∴AD=DB=CF=1
在Rt△ABC中,CD是斜边中线∴CD=1……5分
同理 BF=1 ∴CD=DB=BF=CF
∴四边形CDBF是菱形…………………………6分
(3)在Rt△ABE中
∴……………………………7分
过点D作DH⊥AE 垂足为H
则△ADH∽△AEB ∴
即∴ DH=……8分
在Rt△DHE中
sinα==…=…………………9分
【解析】
(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;
(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;
(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.
22.无
23.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.
【解析】
【分析】
(1)①利用线段的和差定义计算即可.
②利用平行线分线段成比例定理解决问题即可.
(2)①利用函数关系式计算即可.
②描出点,即可.
③由平滑的曲线画出该函数的图象即可.
(3)根据函数图象写出两个性质即可(答案不唯一).
【详解】
解:(1)①如图3中,由题意,
,
,,
故答案为:,.
②作于.
,,
,
,
,
,
故答案为:,.
(2)①当时,,当时,,
故答案为2,6.
②点,点如图所示.
③函数图象如图所示.
(3)性质1:函数值的取值范围为.
性质2:函数图象在第一象限,随的增大而减小.
【点睛】
本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
24.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元. 【解析】 【分析】
(1)可用待定系数法来确定y 与x 之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围. 【详解】
(1)由题意得:4030055150k b k b +=??+=? 10
700k b =-???=?
.
故y 与x 之间的函数关系式为:y=-10x+700, (2)由题意,得 -10x+700≥240, 解得x≤46,
设利润为w=(x-30)?y=(x-30)(-10x+700),
w=-10x 2+1000x-21000=-10(x-50)2+4000, ∵-10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=-10(46-50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
(3)w-150=-10x2+1000x-21000-150=3600,
-10(x-50)2=-250,
x-50=±5,
x1=55,x2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元.
【点睛】
此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.25.【解析】
试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.
试题解析:原式=
2
2
311
1(2)
a a
a a
-++
?
+-
=2
(2)(2)1
1(2)
a a a
a a
-+-+
?
+-
=
2
2
a
a
+
-
-
;
当a=0时,原式=1.
考点:分式的化简求值.