当前位置:文档之家› 二次函数与相似三角形结合问题

二次函数与相似三角形结合问题

琢玉教育个性化辅导讲义

a≠

二.特殊的二次函数:下图中0

、、的坐标吗?(让学生独立计算求解)

C D

二次函数与相似三角形问题(含答案)

y x E Q P C B O A 综合题讲解 函数中因动点产生的相似三角形问题 练习1、如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 练习2、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式. (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?

练习3 、如图所示,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标. (2)过点A 作AP∥CB 交抛物线于点P ,求四边形ACBP 的面积. (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 练习4、在平面直角坐标系xOy 中,已知二次函数2 (0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点 A 在点 B 的左边) ,与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,. (1)求此二次函数的表达式;(由一般式... 得抛物线的解析式为2 23y x x =-++) (2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.

沪科版二次函数与相似三角形综合测试题

二次函数与相似三角形综合测试提高题 (本卷满分150分, 考试时间120分钟) 一选择题: (每题4分,共40分) 1、下列函数是二次函数的是:( ) A 、2(2)(2)(1)y x x x =+--- B 、y = C 、21y x x =+D 、20y x -= 2、已知2=a ,4=b ,c 5=,则a 、b 、c 的第四比例项为( ) A 、 10 B 、 5.2 C 、 8 D 、 22 3、把二次函数221y x x =--配方成顶点式为( ) A 、2(1)y x =- B 、2(1)2y x =-- C 、2(1)1y x =++ D 、2(1)2y x =+- 4.下列每一组中两个图形相似的是 ( ) A 、两个等腰三角形,每个三角形都有一个内角为?30 B 、邻边的比都等于2的两个平行四边形 C 、 底角为?45的两个等腰梯形 D 、有一个角是?120的两个等腰三角形 5、二次函数的图象上有两点(1,-3)和(4,-3),则此拋物线的对称轴是( ) A 、x =1 B 、x =2 C 、x =3 D 、x =2.5 6、函数263y kx x =-+的图象与x 轴有交点,则k 的取值范围是( ) A 、3k < B 、30k k <≠且 C 、3k ≤ D 、30k k ≤≠且 7、直角坐标平面上将二次函数2y 2(x 1)2-=--的图象向左平移1个单位, 再向上平移1个单位,则其顶点为( ) A 、(0,0) B 、(1,-2) C 、(0,-1) D 、(-2,1) 8、二次函数2y ax bx c =++的图象如图所示,则abc , 24b ac -,2a b +,a b c ++这四个式子中,值为正数的有( ) A 、4个 B 、3个 C 、2个 D 、1个

2018中考复习——二次函数和相似三角形

2018数学中考复习 ——二次函数与相似三角形 二次函数中因动点问题产生的相似三角形的解题方法一般有以下三种: 1.如图,已知△ABC 的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6). (1)求经过A 、B 、C 三点的抛物线解析式; (2)设直线BC 交y 轴于点E ,连接AE ,求证:AE=CE; (3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F , 试问以A 、B 、F ,为顶点的三角形与△ABC 相似吗请说明理由. 2、如图,已知抛物线过点A (0,6),B (2,0),C (7, 5 2 ). 若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称. (1)求抛物线的解析式; (2)求证:∠CFE=∠AFE ; (3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似,若有,请求出所有合条件的点P 的坐标;若没有,请说明理由. O A B E D F C x N M

3.如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x 轴相交于点B 、C ,与y 轴相交于点E ,且点B 在点C 的左侧. (1)若抛物线C 1过点M(2,2),求实数m 的值. (2)在(1)的条件下,求△BCE 的面积. (3)在(1)的条件下,在抛物线的对称轴上找一点H ,使BH+EH 最小,并求出点H 的坐标. (4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为 顶点的三角形与△BCE 相似若存在,求m 的值;若不存在,请说 明理由. 4. 如图,已知抛物线 与x 轴的正半轴分别交于点A 、B (点A 位于点 B 的左侧),与y 轴的正半轴交于点 C . ⑴点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示); ⑵请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形如果存在,求出点P 的坐标;如果不存在,请说明理由; ⑶请你进一步探索在第一象限内是否存在点Q ,使得△ QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q 的坐标;如果不存在,请说明理由. 5.如图已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三 x y P O C B A

二次函数与相似三角形结合问题

琢玉教育个性化辅导讲义 教师学科上课时间年月日学生年级讲义序号 课题名称 教学目标1.会根据题目条件求解相关点的坐标和线段的长度; 2.掌握用待定系数法求解二次函数的解析式; 3.能根据题目中的条件,画出与题目相关的图形,继而帮助解题; 教学重点 难点1.体会利用几何定理和性质或者代数方法建立方程求解的方法; 2.会应用分类讨论的数学思想和动态数学思维解决相关问题。 课前检查上次作业完成情况:优□良□中□差□建议_______________________________ 教学容知识结构: 一.二次函数知识点梳理:下图中0 a≠二.特殊的二次函数:下图中0 a≠

3 4 y x =与BC边交于D点. (1)求D点的坐标; (2)若抛物线2 y ax bx =+经过A、D两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P. 方法总结: 1.已知:如图,在平面直角坐标系xOy中,二次函数c bx x y+ + - =2 3 1 的图像经过点 A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.二次函数背景下相似三角形的解题方法和策略: 1.根据题意,先求解相关点的坐标和相关线段的长度; 2.待定系数法求解相关函数的解析式; 3.相似三角形中,注意寻找不变的量和相等的量(角和线段); 4.当三角形的三边不能用题目中的未知量表示时,注意利用相似三角形的转化求解; 5.根据题目条件,注意快速、正确画图,用好数形结合思想; 6.注意利用好二次函数的对称性; 7.利用几何定理和性质或者代数方法建立方程求解都是常用方法。

二次函数与相似三角形问题(含答案 完美打印版)

综合题讲解 函数中因动点产生的相似三角形问题 例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式;(用顶点式... 求得抛物线的解析式为x x 4 1y 2 +-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。 分析:1.当给出四边形的两个顶点时应以两个顶点的连线....... 为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

y x E Q P C B O A 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、 B 两点,交y 轴于点 C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标; (2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形并证明你的结论; (3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式. 练习1、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式.(由一般式... 得抛物线的解析式为2253 33 y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系为什么

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题? 二次函数中因动点产生的相彳以三角形问题一般有三个解题途径: ①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 例题1:已知抛物线的顶点为A (2, 1),且经过原点O,与X轴的另一个交点为B. 1 2 y = --x~ +x (1)求抛物线的解析式:(用顶点式求得抛物线的解析式为 4 ) (2)连接OA、AB.如图2,在x轴下方的抛物线上是否存在点P,使得二OBP与二OAB 相似?若存在,求出P点的坐标:若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO=AB二AOB=CABO. 若二BOP与匚A0B相似,必须有二POB = OBOA =匚BPO 设0P交抛物线的对称轴于A?点,显然AX2-1) 1 y = --x 二直线OP的解析式为2 一一x =一一x? + 由2 4 得x 1 = 0, x 2 =6 -JP(6,~3) 过P 作PE二x 轴,在RtZBEP 中,BE=2,PE=3, 二PB=厢拜. 二PB=OB,HBOP* 二BPO、 ZOPB0与匚BAO不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该 抛物线上不存在点R使得ZBOP与ZAOB相似.

例题2:如图所示,已知抛物线与兀轴交于A、B两点,与y轴交于点c. (1)求A、B、C三点的坐标. (2)过点A作APZCB交抛物线于点P,求四边形ACBP的面积. (3)在x轴上方的抛物线上是否存在一点过M作MG丄兀轴于点G, 使以A、M. G 三点为顶点的三角形与APCA相似.若存在,请求岀M点的坐标; 解:(1)令尸°,得?-1=0 解得“±1 令x=o,得〉‘=一1 二A(70)B(I,°)c(°,j) (2)匚OA=OB=OC= 1 □ ZBAC=厶ACO= ZBCO= 45 ZAPZCB, E Z PAB=45 过点P作PE丄x轴于E,则△ APE为等腰直角三角形 令OE=" > 贝iJPE=Q + l + 0 ::点p在抛物线上“+1=/_i 解得5=2,心=一1 (不合题意,舍去)二PE=3 1 1 1 「1 ———x2xl + —x2x3 = 4 二四边形ACBP的而积S = 2 A B?OC+ 2 A B?PE=2 2 (3).假设存在 二Z PAB= Z BAC =45 匚PA 丄AC ZMG丄 * 轴于点G, □ Z MGA= Z PAC = 90 在Rt 二AOC 中,OA=OC= 1 二AC=Q 在Rt 二PAE 中, AE=PE= 3 ZAP= 3^2 设M点的横坐标为m ,则M(加,m~ -1) □点M在y轴左侧时,贝0VT 图2

中考数学真题汇编:《二次函数》综合题专项训练(二)与解析

《二次函数》综合题专项训练(二)与解析 1.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10). (1)请直接写出B、C两点的坐标及抛物线的解析式; (2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值. 2.如图,直线y=﹣ x x轴、y轴交于B、C两点,点A在x轴上, 3 ∠ACB=90°,抛物线y=ax2+bx A,B两点. (1)求A、B两点的坐标; (2)求抛物线的解析式; (3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.

3.如图,抛物线y=1 4 x2+ 1 4 x+c与x轴的负半轴交于点A,与y轴交于点B,连结 AB,点C(6,15 2 )在抛物线上,直线AC与y轴交于点D. (1)求c的值及直线AC的函数表达式; (2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点. ①求证:△APM∽△AON; ②设点M的横坐标为m,求AN的长(用含m的代数式表示). 4.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3, 0),且M(1,﹣8 3 )是抛物线上另一点. (1)求a、b的值; (2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标; (3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N 作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式. 5.如图,已知抛物线y=ax2﹣﹣9a与坐标轴交于A,B,C三点,其中C(0,

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题 二次函数中因动点产生的相似三角形问题一般有三个解题途径: 例题1:已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 (1)求抛物线的解析式;(用顶点式求得抛物线的解析式为x x 41 y 2+-=) (2)连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO =AB,△AOB =△ABO. 若△BOP 与△AOB 相似,必须有△POB =△BOA =△BPO 设OP 交抛物线的对称轴于A′点,显然A′(2,-1) △直线OP 的解析式为x 21y -= 由 x x 41 x 212+-=- , 得6x ,0x 21== .△P(6,-3) 过P 作PE△x 轴,在Rt△BEP 中,BE =2,PE =3, △PB =13≠4. △PB≠OB,△△BOP≠△BPO, △△PBO 与△BAO 不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P 点. 所以在该抛物线上不存在点P,使得△BOP 与△AOB 相似. 例1题图 图1 O A B y x O A B y x 图2 E A' O A B P y x 图2 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ② 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③ 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数中相似三角形存在性

相似三角形的存在性(作业) 例:在平面直角坐标系中,二次函数图象的顶点坐标为C (4,3-),且与x 轴 的两个交点间的距离为6. (1)求二次函数的解析式; (2)在x 轴上方的抛物线上,是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与△ABC 相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由. x y O C B A x y O C B A 第一问:研究背景图形 【思路分析】 ①由顶点坐标C (4,3-)可知对称轴为直线_______,利用两个交点间的距离为6,再结合抛物线的对称性可知A (___,___),B (___,___). ②设交点式__________________,再代入坐标__________可求解出解析式__________________. 6 (4,-3) (7,0) (1,0) x y O C B A 【过程示范】 ∵顶点坐标为C (4,3-), ∴抛物线对称轴为直线x =4, 又∵抛物线与x 轴的两个交点间的距离为6, ∴由抛物线的对称性可知:A (1,0),B (7,0). 设抛物线的解析式为(1)(7)y a x x =--, 分析不变特征,确定分类标准. 定点:_____________; 动点:_____________; 目标三角形: 特征:

Q 1 E x y O D C B A Q 2 x y O B A 将C (4,3-)代入可得,39 a =, ∴所求解析式为238373999 y x x = -+. 第二问:整合信息、分析特征、设计方案 【思路分析】 相似三角形存在性问题也是在存在性问题的框架下进行的: ①分析特征:先研究定点、动点,其中_________为定点,点__为____________________的动点;则________为目标三角形.进一步研究此三角形,发现其中________________;构造辅助线:____________________________,能够计算出∠BAC =_____°,∠ACB =________°;再考虑研究△QAB ,固定线段为______,并且由于点Q 在x 轴上方的抛物线上,所以△QAB 为______(填“钝角”或“直角”)三角形. ②画图求解:先考虑点Q 在抛物线对称轴右侧的情况,此时 ∠ABQ 为钝角,要想使△ABC 与△ABQ 相似,则需要∠ABQ = _____°,且_________.求解时,可根据∠ABQ =_____°,AB =BQ =_____来求出Q 点坐标.同理,考虑点Q 在抛物线对称轴左侧时的情况. ③结果验证:考虑点Q 还要在抛物线上,将点Q 代入抛物线解析式验证. 【过程示范】 存在点Q 使得△QAB 与△ABC 相似. 由抛物线对称性可知,AC =BC ,过点C 作CD ⊥x 轴于D , 则AD =3,CD =3. 在Rt △ACD 中,tan ∠DAC = 3 3 , ∴∠BAC =∠ABC =30°,∠ACB =120°. ①当△ACB ∽△ABQ 时, ∠ABQ =120°且BQ =AB =6. 过点Q 作QE ⊥x 轴,垂足为E , 则在Rt △BQE 中,BQ =6,∠QBE =60°, ∴QE =BQ ·sin60°=3 6332 ? =,BE =3, ∴E (10,0),Q 1(10,33). 当x =10时,y =33, ∴点Q 1在抛物线上.

二次函数与相似三角形综合题

二次函数与相似三角形综合题 黄陂区实验中学邓静 教学目标: 1、会求二次函数解析式; 2、根据条件寻找或构造相似三角形,在二次函数的综合题中利用其性质求出线段的长度,从而得出点的坐标。 教学重点: 1、求二次函数解析式; 2、相似三角形的判定与性质在二次函数综合题中的运用。 教学难点: 根据条件构造相似三角形解决问题。 情感与态度: 1、培养学生积极参与教学学习活动的兴趣,增强数学学习的好奇心和求知欲。 2、使学生感受在数学学习活动中获得成功的体验,锻炼学生克服困难的意志,建立自信心。 3、培养学生科学探索的精神。

O 教学过程: 一、复习巩固 如图,抛物线y=ax 2+bx -2与x 轴交于点A (-1,0),B (m ,0)两点,与y 轴交于C 点,且∠ACB=90°,求抛物线的解析式. 分析:OC 2=OA·OB ∴4=1×m,m=4 ∴B(4,0) 设抛物线解析式为y=a(x+1)(x -4) 代入C 点(0,-2) ∴抛物线解析式为213222 y x x =--. 二、新授 例题、如图,直线y=-x+3与x 轴、y 轴分别相交于B 、C ,经过B 、C 两点的抛物线y=ax 2+bx+c 与x 轴另一交点为A ,顶点为P ,且对称轴是直线x=2, (1)求抛物线解析式; (2)连结AC ,请问在x 轴上是否存在点Q ,使得以点P 、B 、Q 为顶点的三角形与△ACB 相似,若存在,请求出Q 点坐标;若不存在,说明理由.

(3)D 点为第四象限的抛物线上一点,过点D 作DE ⊥x 轴,交CB 于E ,垂足于H ,过D 作DF ⊥CB ,垂足为F ,交x 轴于G ,试问是否存在这样的点D ,使得△DEF 的周长恰好被x 轴平分若能,请求出D 点坐标;若不能,请说明理由. [解] (1)直线3y x =-+与x 轴相交于点B , ∴当0y =时,3x =, ∴点B 的坐标为(30),. 又抛物线过x 轴上的A B ,两点,且对称轴为, 根据抛物线的对称性, ∴点A 的坐标为(10),. 3y x =-+过点C ,易知(03)C ,, 3c ∴=. 又抛物线2y ax bx c =++过点(1 0)(30)A B ,,,, ∴(1)(3)y a x x =--,经过C 点(0,3) A B C P O x y 2x =

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

二次函数中的相似三角形

二次函数中的相似三角形 例1(2011绵阳):已知抛物线y = x2 -2x +m -1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B. (1)求m的值; (2)过A作x轴的平行线,交抛物线于点C,求证△ABC是等腰直角三角形; (3)将此抛物线向下平移4个单位后,得到抛物线C’,且与x轴的左半轴交于E点,与y轴交于F点。如图,请在抛物线C’上求点P,使得△EFP是以EF为直角边的直角三角形. 例1图例1(1)(2)图例1(3)图

例2:如图,抛物线y = ax2 +bx + 1与x轴交于两点A(-1,0)、B(1,0)与y轴交于点C.(1)求抛物线的解析式; (2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积; (3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由. 例2(1)(2)图例2(3)图

例3:已知,如图,二次函数y = ax2 - 2ax + c(a ≠ 0)的图象与y轴交于点C(0,4),与x 轴交于点A、B,点A的坐标为(4,0). (1)求该二次函数的关系式并写出它的对称轴和顶点坐标; (2)点Q是线段AB上的动点,过点Q作QE∥AC交BC于点E,连接CQ,当△CQE的面积最大时,求点Q的坐标; (3)若平行于x轴的直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标(2,0).问:是否存在这样的直线l.使△ODF是等腰三角形?若存在,请求出点P坐标;若不存在,请说明理由. 思考:在(1)中抛物线的对称轴上是否存在点M,使△BCM是直角三角形?若存在,请直接写出点M坐标;若不存在,请说明理由. 例3(1)(2)图例3(3)图 例3思考

二次函数与相似三角形

课题二次函数与相似三角形 教学目标知识与 技能 根据条件寻找或构造相似三角形,从而得出点的坐标。 过程与 方法 通过复习,掌握中考题型中二次函数的综合应用。 情感态 度与价 值观 培养学生的参与意识和探索精神。 教学重点根据条件寻找或构造相似三角形 教学难点根据条件寻找或构造相似三角形 教学准备课件,活页练习 教学课时1课时 教学过程个案修改 (手写)一、导入: 我们已经学完了二次函数的基础知识,从今天开始我们要学习二次函 数与其他知识的综合应用。首先,我们来学习中考中最常见的一种—— 二次韩数与相似三角形。 二、复习提问: 1、二次函数的一般形式是 2、如何确定一条抛物线与X轴和y轴的交点坐标? 3、抛物线的顶点坐标如何确定? 4、相似三角形的判断方法有哪些? 三、例题讲解: .如图,已知抛物线y=–(x–2)2+1 的图像与x轴交于A、B 两点 (点A在点B左侧),与y轴交于点C. (1)求点A,点B,点C的坐标;

(2)若点D是抛物线的顶点,DH垂直于x轴,垂足为H,试判断直角三角形DHA与直角三角形COB是否相似?说明理由. (3)若点M在抛物线上且在x轴上方,过点M作MG垂直于x轴, 垂足为点G,是否存在M,使得△AMG与△AOC相似。若存在,求出M 点坐标;若不存在,说明理由。 分析: (1)第一步是基础知识,可由学生自己解决,只对个别不会的学生加以辅导,可以由B号学生帮助解决 (2)第二步要判断两个直角三角形相似,可以证明夹着直角的四条边成比例;另外,还要注意强调格式——先回答问题,再书写证明过程(3)第三步要先设出点M的坐标,进一步表示出MG和AG的长度,然后再分两种情况利用四条线段成比例得方程,从而解得点M的坐标。另外,题目中“点M在抛物线上且在x轴上方”能给我们 什么信息,需要注意什么? 教学组织: (1)学生自己分析题意,找出不会的地方; (2)小组内讨论,初步解决 (3)汇总不能解决的问题,教师分析解决 (4)书写第(3)问解答过程,A号展示 四、变式练习: 上题中,若点D是抛物线的顶点,点M在抛物线上且在x轴上方,

二次函数与几何综合题

二次函数与几何综合 一、二次函数与三角形综合 (1) ㈠二次函数与等腰三角形 (2) ㈡二次函数与直角三角形 (7) ㈢二次函数与相似三角形 (9) 二、二次函数与四边形综合 (11) (一)二次函数与平行四边形 (11) (二)二次函数与特殊四边形 (17) 三、二次函数与圆综合 (19) 四、二次函数与面积综合 (22) 五、二次函数与最值综合 (28) 六、二次函数与定值综合 (34) 一、二次函数与三角形综合 二次函数中三角形的存在性问题解题思路: (1)先分类,罗列线段的长度,如果是等腰三角形则分别令三边两两相等去求解;如果是直角三角形则分别令每个内角等于90°去分类讨论;(2)再画图;(3)后计算。 求作等腰三角形、直角三角形的方法: 图一两圆一线图解图二两线一圆图解 总结:(1)通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A、B点重合)即在两圆上以及两圆的公共弦上 (2)通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A、B点重合)即在圆上以及在两条与直径AB垂直的直线上。 等腰三角形、直角三角形可能的情况: (1)当所求三角形是等腰三角形时,可以是三角形任意两边相等,即:AB=AC、AB=BC、AC=BC如图; (2)当所求三角形是直角三角形时,可以是三角形任意的内角为直角,即:∠A=90°、∠B=90°、∠C=90°,如图所示;

㈠二次函数与等腰三角形 例1.(2013?铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 例2.(2013?湘西州)如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于 点C,若已知A点的坐标为A(﹣2,0). (1)求抛物线的解析式及它的对称轴方程; (2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式; (3)试判断△AOC与△COB是否相似?并说明理由; (4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q 点坐标;若不存在,请说明理由.

专题训练二次函数与相似三角形

专题训练:二次函数与相似三角形 例1、如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式; ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 例2、已知:如图,抛物线22 1 412-+= x x y 与y x 、轴分别相交于A 、B 两点,将△AOB 绕着点O 逆时针旋90°到△''A OB ,且抛物线2 2(0)y ax ax c a =++≠过点''B A 、。 (1)求A 、B 两点的坐标; (2)求抛物线2 2y ax ax c =++的解析式; (3)点D 在x 轴上,若以'B D 、B 、为顶点的三角形与△B B A ''相似,求点D 的坐标. 图1 O A B y x O A B y x 图 2 B' A'O B A y x

例3、已知:矩形OABC 在平面直角坐标系中的位置如图所示,()6,0A ,()0,3C ,直线 3 4 y x = 与BC 边交于D 点. (1)求D 点的坐标; (2)若抛物线2 y ax bx =+经过A 、D 两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 是对称轴上一动点,以P 、O 、M 为顶点的三角形与△OCD 相似,求出符合条件的点P .

例4、已知抛物线c bx x y ++=2 4 3与坐标轴交于点A,B,C 三点,A 点的坐标为)0,1(-,过点C 的直线343 -= x t y 与x 交于点,Q 点P 是线段BC 上的一个动点,过点P 作OB PH ⊥于点H ,若)10(,5<<=t t PB ,请回答下面的问题; (1)、求出抛物线的解析式 (2)、求线段QH 的长,(用含有t 的式子表示) (3)、根据P 点的变化,是否存在t 的值,使得以点Q H P ,,为顶点的三角形与COQ ?相似?若存在,求出所有的t 的值,若不存在,说明理由;

二次函数与相似专题复习

东升学校九年级上数学导学稿(编号:813) 班级 姓名 组 号 时间 年 月 日 课题:二次函数与相似问题 课型:新授 主备 严光华 审核 九年级数学组 例1.已知抛物线经过A (-2,0),B (-3,3)及原点O ,顶点为C . (1)求抛物线的解析式; (2)P 是抛物线上第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M , 是否存在点P 使得以点P 、M 、A 为顶点的三角形与△BOC 相似?若存在, 求出点P 的坐标;若不存在,请说明理由. 例2.把抛物线 向左平移1个单位,再向下平移4个单位, 得到抛物线 所得抛物线与轴交于A,B 两点(点A 在点B 的左边),与轴交于点C ,顶点为D. (1)写出h,k 的值;(2)判断 的形状,并说明理由; (3)在线段AC 上是否存在点,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由. 例3.抛物线 与X 轴的两个交点分别为A (-3,0)、B (1,0), 过顶点C 作CH ⊥x 轴于点H . (1)直接填写:a= ,b = ,顶点C 的坐标为 ; (2)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标. 2y x =2()y x h k =-+ACD △32++=bx ax y

例4.如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6). (1)求经过A、B、C三点的抛物线解析式; (2)设直线BC交y轴于点E,连接AE,求证:AE=CE (3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F,为顶点的三角形与△ABC相似吗?请说明理由. 练习一 如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3:2. (1)求这条抛物线对应的函数关系式; (2)连接BD,试判断BD与AD的位置关系,并说明理由 (3)连接BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由. 练习二 如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0) (1)求抛物线的解析式; (2)如图2,设E是抛物线上在第一象限内的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长 (3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.

二次函数与相似三角形结合问题

琢玉教育个性化辅导讲义 教师姓名学科上课时间年月日学生姓名年级讲义序号 课题名称 教学目标1.会根据题目条件求解相关点的坐标和线段的长度; 2.掌握用待定系数法求解二次函数的解析式; 3.能根据题目中的条件,画出与题目相关的图形,继而帮助解题; 教学重点难点1.体会利用几何定理和性质或者代数方法建立方程求解的方法; 2.会应用分类讨论的数学思想和动态数学思维解决相关问题。 课前检查上次作业完成情况:优□良□中□差□建议_______________________________ 教学内容知识结构: 一.二次函数知识点梳理:下图中0 a≠二.特殊的二次函数:下图中0 a≠

3 4 y x =与BC边交于D点. (1)求D点的坐标; (2)若抛物线2 y ax bx =+经过A、D两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P. 方法总结: 1.已知:如图,在平面直角坐标系xOy中,二次函数c bx x y+ + - =2 3 1 的图像经过点 A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.二次函数背景下相似三角形的解题方法和策略: 1.根据题意,先求解相关点的坐标和相关线段的长度; 2.待定系数法求解相关函数的解析式; 3.相似三角形中,注意寻找不变的量和相等的量(角和线段); 4.当三角形的三边不能用题目中的未知量表示时,注意利用相似三角形的转化求解; 5.根据题目条件,注意快速、正确画图,用好数形结合思想; 6.注意利用好二次函数的对称性; 7.利用几何定理和性质或者代数方法建立方程求解都是常用方法。

相关主题
文本预览
相关文档 最新文档